Plan of my talk
1. Basic concept of crystallization in glass
2. What is laser-induced crystallization (LIC)?
3. Patterning and Mechanism of LIC.

Glass
Key materials in information technology

Glass Structure: Inversion Symmetry
No second-order optical nonlinearity
No ferroelectric properties
Not active in light control

Glass/Crystal Hybrid Materials

Laser Patterning of Crystals in Glass

T. Komatsu,
Nagaoka University of Technology, Japan

Materials design based on glass crystallization

Crystallization of Glass

Glass
Nanocrystals
Oriented ceramics
Single crystals

Control

Glass/Crystal Hybrid Materials

Devices
transparent nanocrystallized glass

- 15K2O.15Nb2O5.70TeO2
- nanocrystals (~20nm)
- K[Nb1/3Te2/3]2O4.8
- distorted fluorite-type

light wave conversion

- SHG

- BaTiO3-GeO2 glasses
- Ba2TiGeO8 crystal
- $\Delta \sim 20$ pm/V

- 1064 nm
- 532 nm

- electrode

- Ti:LiNbO3 single crystal
- nonlinear optical crystals: SHG
- ferroelectrics: electro-optic effect

- tunable optical switch
- highly oriented crystallized glass

- transparent nanocrystallized glass
- kiln
- light wave conversion

- telecommunication network system

- new tunable optical switch using glass

- laser-induced micro-fabrication in glass

1. Hill et al. (1978): Ge-dope SiO2 fiber + $\lambda = 488$ nm
 - refractive index change
2. Osterberg et al. (1986): Ge-dope SiO2 fiber + $\lambda = 1064$ nm
 - second harmonic generation (SHG)

new challenge in glass science and technology
- glass: SiO2, photosensitive glass
- laser: excimer, femtosecond
- phenomenon: refractive index change, hole
- local anisotropy

- patterning and designing of crystallization?

we need a technique available for spatially selected crystallization of glass

- high speed
- huge capacity
- slow switching rate
- wdm
- amplification
- o/e/o => o/i/o
Laser crystallization (LC) in a-Si Engineering

High-quality poly-Si TFT

UV excimer laser

LC technique

Poly-crystalline Si

Chalcogenide glasses: DVD Ge2Sb2Te5

LD laser: amorphous-crystal transformation
(nano-pulse)

amorphous

crystal

amorphous

A.V.Kolobov et al.
Nature Mater. 3 (2004) 703

Laser Irradiation in Glass

KrF excimer laser: λ=248 nm

Femtosecond pulsed laser: λ=800 nm

Refractive index change, Abrasion, Crack,

Crystal growth rate U_{max} in oxide glasses

<table>
<thead>
<tr>
<th>Material</th>
<th>U_{max} (μm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li2O·2SiO2</td>
<td>70</td>
</tr>
<tr>
<td>Na2O·2SiO2</td>
<td>1</td>
</tr>
<tr>
<td>CaO·MgO·2SiO2 (Diopside)</td>
<td>230</td>
</tr>
<tr>
<td>2MgO·2Al2O3·5SiO2 (Cordierite)</td>
<td>9</td>
</tr>
<tr>
<td>2BaO·TiO2·2SiO2 (Fresnoite)</td>
<td>430</td>
</tr>
</tbody>
</table>

~1 μs for ~1nm growth

CW YAG laser → crystallization

laser irradiated spot

Crystallization temp.

Glass transition temp.

Heat dissipation

Distance

Temperature

Nano-pulse YAG laser → no crystallization

Lattice vibration (~10¹⁵/s) : ~femtosecond

→ Heat dissipation

BaO-Sm2O3-Te2O5 Glass

cw Nd:YAG λ=1064 nm

Sm2Te2O15 crystals

Rare-earth Atom Heat Processing

1. Absorption of 1064 nm (Nd:YAG Laser)
2. Non-radiative relaxation: Thermal heating

Absorption of 1064 nm (Absorption of 1064 nm (Nd:YAG Laser))

Non-radiative relaxation:

10SmO3-35BiO3-58Bo3

Thermal heating: CW Nd:YAG laser irradiation

Laser power: $P = 0.6 \sim 1.0$ W
Scanning speed: $S = 1 \sim 10 \mu m/s$

Glass plate
YAG laser

Wavelength (nm)
Absorbance

200°C 7.95 cm$^{-1}$
900°C 7.32 cm$^{-1}$
2500°C 7.32 cm$^{-1}$

Sm$_{2}$O$_{3}$-Bi$_{2}$O$_{3}$-Bo$_{3}$ glass

Sm$_{2}$Bi$_{1-x}$Bo$_{3}$ Crystal

SHG

Transition metal atom heat processing

NiO 1 mol% doped
33.3BaO-16.7TiO$_2$-50GeO$_2$ glass

$\alpha_{\text{1064 nm}} = 6.0 \text{ cm}^{-1}$

$\Delta \rightarrow \pi^*$ (six-fold N^+)

Absorption coefficient (cm$^{-1}$)

Wavelength (nm)

300 μm

NIO 1 mol% doped
33.3BaO-16.7TiO$_2$-50GeO$_2$ glass

$\alpha_{\text{1064 nm}} = 6.0 \text{ cm}^{-1}$

$\Delta \rightarrow \pi^*$ (six-fold N^+)

Absorption coefficient (cm$^{-1}$)

Wavelength (nm)

50 μm

Ba$_2$TiGe$_2$O$_9$ crystal

High orientation
Homogeneous crystal growth

1. Nucleation should be avoided.
2. Matching of crystal growth rate and laser scanning speeds would be necessary

Cross-section of crystal line

Sm2O3-MoO3-BaO glasses

Patterning of crystals in glass

1. Rare-earth/transition metal atom heat processing
2. Bending crystal lines
3. Quality of crystal lines and light transmission

- Sm2O3-Bi2O3-B2O3 → SmB12-xBO3
- Sm2O3-BaO-B2O3 → β-BaB2O4
- Li2O-Nb2O5-SiO2 → LiNbO3
- SiO2-Al2O3-CaO-NaF-CaF2 → CaF2
- LiO-FeO-Nb2O5-P2O5 → LiFePO4
10Sm₂O₃·35Bi₂O₃·55B₂O₃

Tₐ=474°C, Tₓ=574°C

SmₓBi₁₋ₓBO₃

Crystal

Temp. >> Tₓ

Refractive index change

Wy=474°C, C, Wₓ=574°C

Temp. < Temp. >> Tx

SmₓBi₁₋ₓBO₃

YAG laser

Power: 0.66W

Scanning speed: 10μm/s

Electric Furnace

Surface crystallized glass

Polarization optical microscopy

8Sm₂O₃·37Bi₂O₃·55B₂O₃ glass → SmₓBi₁₋ₓBO₃

P=0.9 W, S=4 μm/s

Critical angle for total reflection

Glass

<table>
<thead>
<tr>
<th>n</th>
<th>1.964</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δn (%)</td>
<td>5.43</td>
</tr>
</tbody>
</table>

Crystal

| n | 2.070 |

θ MAX ≒ 36°

※ λ=632.8 nm

 poids central

Bending / Quality of crystal lines

8Sm₂O₃·37Bi₂O₃·55B₂O₃ glass

SmₓBi₁₋ₓBO₃

Glass

Crystal

First scan

Second scan

200 μm

200 μm

SmₓO₃·Bi₂O₃·B₂O₃ glass

SmₓO₃·Bi₂O₃·B₂O₃ glass → SmₓBi₁₋ₓBO₃

CW Nd:YAG laser with λ=1064nm

P=0.9W, S=5μm/s
Polarized micro-Raman scattering spectra

- Incident laser
- Raman scattering light

SmₓBi₁₋ₓBO₃

- Same crystal orientation

Gradual change in the crystal structure

- Laser scanning direction

Electric furnace: 760°C, 1h

- Single crystal line
- Polycrystal line

Surface: (110) orientation

- β-BaB₂O₄ crystal line

10Sm₂O₃·40BaO·50B₂O₃ → β-BaB₂O₄

- Micro-Raman spectra: β-BaB₂O₄

- y-cut β-BaB₂O₄
Azimuthal dependence of SHG

\(\beta-BaB_2O_4 \)

Trigonal system R3c \((a=1.2519\ nm, c=1.2723\ nm)\)

Stacking of Planar \(B_3O_6\) rings in \(c\)-axis

Origin of optical nonlinearity: polarizability in \(B_3O_6\)

Electric field in incident light

Strong SHG at \(\theta=0, 180^\circ\) \(B_3O_6\) unit

no SHG at \(\theta=90, 270^\circ\)

\(\theta\): angle between \(E\) and \(B_3O_6\) plane

Single crystal line: strong \(\theta\) dependence

SHG microscope observations

\(\beta-BaB_2O_4\) crystal lines

\(Y\)-cut \(\beta-BaB_2O_4\) single crystal

Sm \(\rightarrow\) \(\beta-BaB_2O_4\)
LiNbO₃
- Glass
- 0.3wt%CuO-0.3wt%Li₂O-Nb₂O₅-SiO₂
- Laser irradiation
- Yb: Fiber laser (λ = 1080 nm)

Oxyfluoride glass: fluoride crystal
- 43SiO₂-22Al₂O₃-5CaO-13NaF-17CaF₂-3NiO
- T_g=573°C, T_p=617°C
- P=1.7 W, S=2 μm/s
- I=1 μm, W=3 μm

Polarized micro-Raman spectra
- High orientation: c-axis growth
Glass part

Line part

520 540 560 580

Wavelength (nm)

Intensity (arb. units)

λ_{\text{ex} } = 488 \text{ nm}

2H_{11/2} \rightarrow 4I_{15/2}

4S_{3/2} \rightarrow 4I_{15/2}

Glass E (CaF}_2

+0.5ErF}_3

Crystallization of oxyfluoride glass

Laser-induced crystallization

Oxyfluoride base glass

Temperature

U (fluoride)

I (oxide)

U (oxide)

Fluoride nanocrystal

Laser irradiated region

Oxyfluoride glass

Combination of Laser irradiation and simple chemical etching

CuO-dope BaO-TiO_2-GeO_2 glass

Cathode materials for Li-ion battery

Laser irradiation with low powers

More open structure

Base glass

Laser irradiated

Cooling

Temperature

P = 0.7 W

Base glass

Temperature

P = 0.8 W

Refractive index change

Combined effects
1N HNO₃ → U-shape groove

1N HNO₃, 35 min

Patterning: \(P=0.85 \text{ W}, S=10 \ \mu\text{m/s} \)

Etching rate
Refractive index > glass > crystal

NiO-doped BaO-TiO₂-GeO₂ glass

NiO-doped BaO-TiO₂-GeO₂ glass

Laser-induced crystallization

Summary

Crystallization of glass + Laser-induced crystallization

Design of Glass/Crystal Hybrid Materials

New micro-devices !!
Laser-induced crystallization

Progress in laser technology
- High power laser
- Ultra short pulse (femtosecond) laser
- Short wavelength laser
 ※ Conventional technique: everybody can use!

High potential in micro-fabrication
- Spatially selected
- Direct and non-contact process
- Fast and easily automated

Patterning of crystals by laser irradiation

1. Factors
- Glass system
- Glass compositions
- Laser irradiation conditions
- Laser power
- Laser scanning speed

2. Mechanism
- Laser-induced nucleation: Very rapid crystal growth: $1 - 10 \, \mu m/s$
 → Large temperature gradient in laser irradiated spot (region): large diffusions