Frits and Sealing

R. Morena Presented at Lehigh University as part of IMI-NFG Series on Glass Processing

14 April 2015

Lectures available at: www.lehigh.edu/imi

Powdered glasses (frits)

Sealing Frits –

Coatings
glazes –
glazes –
cera

glaze (with opacifiers, colorants) ceramic

porcelain enamel ground coat + cover coat metal

Starting point

 Frits – finely powdered glasses that when re-heated will sinter, soften, and flow to form a seal or a coating

At start: unconsolidated frit powder At finish: strong, hermetic seal or impervious coating

Overview

- Brief introduction, frits vs bulk glasses
- Selection criteria for design of frit composition
- Processing of frits

Bulk glass vs frit behavior

- By definition, glass is a thermodynamically unstable structure.
- Converting a bulk glass to a fine powder only increases its instability.
- Relatively few bulk glasses are stable as frits, but will crystallize to at least some extent

SnO-ZnO-P₂O₅ system

Classifications of frits

- Vitreous remains glassy throughout sealing cycle; will soften and flow if re-heated
- **Devitrifying** initially glassy, but at some point during sealing cycle will crystallize to form a hard, rigid bond. If reheated, will not flow and soften.
- Typically, vitreous frits are desired where seals are subjected to repeat thermal cycling; devitrifying frits are preferred for applications in which the seal will be exposed to high operating temperatures

Selection criteria for design of frit composition

- Maximum permissible sealing temperature
- CTE of materials to be bonded (CTE compatibility)
- Use temperature of sealed assembly
- Other durability, strength, hermeticity, required lifetime, IR absorbance

Frit-sealing: SOFC (solid oxide fuel cells)

Frit seal

Requirements: Max. sealing temp: 900° CTE: 110-120Service temp: 750° Other: alkali-free, hermetic during extended (10Y) service time in H₂ environment.

Frit-sealing: OLED devices

Frit seal

Requirements: Max. sealing temp: 450° CTE: 30-35 Service temp: RT Other: hermetic during 5Y lifetime; laser-sealable since temp during sealing must be <100° 1mm from seal edge

Frit-sealing: Micro-reactors for chemical synthesis

Micro-reactors

Requirements: Max. sealing temp: 800° CTE: 35-40 Service temp: -50° to +50° Other: high chemical durability (acids and bases)

CORNING | Science & Technology

Sealing temperature

For a frit, flow is everything – main determinant of sealing temperature

CORNING | Science & Technology

For a frit, flow is everything

Selection criterion: Flow

 For strongest seal, seal temperature should correspond to the softening range of the frit

Flow evaluation

Frit A Unfired 750/1h 860/1h 950/1h 900/1h 950/1h

Frit B

CORNING | Science & Technology

Viscosity curves in softening range

Frit A after firing @ 900°-1hr

Frit B after firing @ 800°-1hr

Temperature interval between T_g and T_x (onset) is best comparative predictor of flow

CORNING | Science & Technology

T_g is highly composition sensitive

Expansion compatibility

Expansion compatibility

- Mismatch stresses from CTE differences can result in seal failure either during sealing, or in subsequent service.
- Measurement of mismatch

Expansion mismatch (\delta) = $\Delta T (\alpha_f - \alpha_g) \longrightarrow \frac{\text{residual stress,}}{\text{residual strain}}$

Selection criterion: Expansion compatibility: microreactor frit

 Perfect expansion match between a frit and a substrate is unlikely (different curvatures to expansion curve)

Expansion compatibility

CTE compatibility: use of fillers

- Fillers are added to adjust CTE of base fit
- Types of fillers
 - Additive depend on Rule of Mixtures
 - Inversion
 - depend on volume change associated with phase transformation to adjust CTE
 - difficult to retain hermeticity because of localized microcracking
 - PbTiO₃, [Co,Mg]₂-P₂O₇

- Will adjust CTE, $\alpha = \frac{\alpha_1 K_1 V_1 + \alpha_2 K_2 V_2}{K_1 V_1 + K_2 V_2}$ (for additive fillers)
- Will affect flow, and raise viscosity (and most likely, sealing temperature)

V-phosphate frit with different filler loadings fired at 380°-1h

- β -eucryptite, LAS glass-ceramic, Li₂O·Al₂O₃·2SiO₂ (intrinsic) CTE = -10x10⁻⁷/degC
- Stuffed β -quartz, ZnAS glass-ceramic, CTE = 0x10⁻⁷/degC
- β -spodumene, LiZnMgAS, CTE = +10x10⁻⁷/degC
- ZWP, $Zr_2(WO_4)(PO_4)_2$, $CTE = -30x10^{-7}/degC$
- Leucite, $K_2O \cdot AI_2O_3 \cdot 2SiO_2$, $CTE = 200x10^{-7}/degC$
- (Stabilized) ZrO_2 , $CTE = 110x10^{-7}/degC$

Additive filler – β -eucryptite

Expansion compatibility with display glass

Temperature, deg C

Inversion filler - $(Co,Mg)_2 \cdot P_2O_7$

© 2015 Corning Incorporated | 29

Inversion filler in frit

Service temperature

Service temperature

- Considerations
 - Frit viscosity (should be $\geq 10^{10}$ P for dimensional stability)
 - Stable chemistry and microstructure needed for long survival times
 - No reaction with substrate
 - Soft vs hard seal –stress relief during cooling vs. dimensional stability

Frit microstructure may change at high service temperatures

As-fired (850°-1hr)

After aging (167hrs at 725°)

High temp frit coating for Pt (must withstand exposure at 1200deg)

Coating for SiC furnace tubes

7760

7702

Thermal aging samples (120hrs @1500°)

CORNING | Science & Technology

Other criteria

Selection criterion: aqueous durability (frits for insulating windows)

Near-IR Absorbance

Selection criterion: compressive surface layer for strength

Processing of frits

Frit pastes

CORNING | Science & Technology

- Although frits may be applied by a variety of techniques (screenprinting, doctor-blading, nozzle dispensing, etc), they are always applied as a paste or ink rather than as a powder.
- Paste = frit powder + solvent + binders + dispersants + surfactants
- The paste is designed to exhibit a specific rheology needed for the dispensing method

Changes in frit paste with temperature

Dispensed paste

After organic burn-out (300-325°) After frit softening and flow (500-600°)

Furnace sealing

Elapsed Time

Processing comparison

Elapsed Time

45 ORNING | Science & Technology

Acknowledgements

• I wish to acknowledge the contributions of my many colleagues at Corning Incorporated whose assistance, hard work, and ideas went into the development of the materials in this presentation.