Glass Processing

Lecture 20 # Introduction to Dielectric Waveguide: Optical fibers

Younès Messaddeq

Centre d'optique, Photonique et laser, Québec, Canada (younes.messaddeq@copl.ulaval.ca) Spring 2015

0844014)

JIRU

Lectures available at: <u>www.lehigh.edu/imi</u> Sponsored by US National Science Foundation (DMR-

Outline

- Introduction & Useful References
- Basic of Optical Fibers
 - a) Mode LP_{Im}
 - b) Optical fibers Parameters
 - c) Dispersion
 - d) Atenuation
- Fabrication Method
- Properties of Optical fibers
- Special fibers

USEFUL REFERENCE

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by **Safa O. Kasap** (Author)

Introduction Optical Fiber Chronology

- Light guiding in water jet, *Tyndall (1878)*
- Dielectric waveguide analysis, *Hondros & Debye (1910)*
- Early experiments with silica fibers, *Lamb (1930)*
- Image trans. by fiber bundles, van Heel, Kapany (1951)
- Mode analysis of optical fiber, *Snitzer(1961)*
- 1st. semiconductor lasers , *various groups(1962)*
- 1st. POF, *DuPont (1963)*
- Fiber Lasers proposed & analyzed, Snitzer(1964)

Introduction Optical Fiber Chronology

- FO proposed for long distance communication, *Kao & Hockman(1966)*
- First fiber with < 20dB/Km loss, *Corning(1970)*
- Record low loss of 0.2dB/Km @ 1.55um (1979)
- Er fiber amplifier , *Payne & Desurvire (1987)*
- Holey fibers first proposed, *Russell (1991)*
- Fist solid-core PCF fiber made (1996)
- Bend-insensitive fiber introduced, Corning(2007)

Introduction Technological Revolution

1960

Theodore Maiman, working at Hughes Research Laboratories in Malibu, California, produced the first laser (Rubi).

Charles Kao (1933)

1966

The attenuation of glass is due largely to the presence of impurities, and if a glass can be developed with attenuation of only 20 dB / km, then optical communication could become a reality.

(1927-2007)

Decade 70

WAVELENGTH DEPENDENCE OF FIBER ATTENUATION

Figure 1. Comparison of Spectral Attenuation of AllWave Fiber and Conventional Single Mode Fiber

Basic of Optical Fibers

A. Types Of Optical Fiber

B. Numerical Aperture (NA)

$$\mathbf{NA} = \left(n_1^2 - n_2^2\right)^{1/2}$$

Maximum acceptance angle α_{max} is that which just gives total internal reflection at the core-cladding interface, i.e. when $\alpha = \alpha_{max}$ then $\theta = \theta_c$. Rays with $\alpha > \alpha_{max}$ (e.g. ray B) become refracted and penetrate the cladding and are eventually lost.

 $2\alpha_{max}$ = total acceptance angle

NA is an important factor in light launching designs into the optical fiber.

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Mode LP_{lm}(linearly Polarized)

Weakly guiding modes in fibers $\Delta << 1$ weakly guiding fibers

E and **B** are 90° to each other and z

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Fundamental Mode is the LP_{01} mode: l = 0 and m = 1

(a) Electric field of the fundamental mode fundamental fundamental

(b) Intensity in the fundamental mode LP_{01}

The electric field distribution of the fundamental mode, LP_{01} , in the transverse plane to the fiber axis *z*. The light intensity is greatest at the center of the fiber

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

The electric field distribution of the fundamental mode in the transverse plane to the fiber axis *z*. The light intensity is greatest at the center of the fiber. Intensity patterns in LP_{01} , LP_{11} and LP_{21} modes. (a) The field in the fundamental mode. (b)-(d) Indicative light intensity distributions in three modes, LP_{01} , LP_{11} and LP_{21} .

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

COPL Centre d'optique, photonique et lass

LP_{Im}

 $E_{\rm LP} = E_{lm}(r,\phi) \exp(\omega t - \beta_{lm} z)$

m = number of maxima along r starting from the core center. Determines the reflection angle θ

2*l* = number of maxima around a circumference

l - radial mode number

l - extent of helical propagation, i.e. the amount of skew ray contribution to the mode.

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Optical Fiber Parameters

 $n = (n_1 + n_2)/2$ = average refractive index $\Delta =$ normalized index difference $\Delta = (n_1 - n_2)/n_1 \approx (n_1^2 - n_2^2)/2$ *V*-number $V = \frac{2\pi a}{\lambda} \left(n_1^2 - n_2^2 \right)^{1/2} = \frac{2\pi a}{\lambda} \left(2n_1 n \Delta \right)^{1/2}$ V < 2.405 only 1 mode exists. Fundamental mode V < 2.405 or $\lambda > \lambda_c$ Single mode fiber (SMF). V > 2.405 Multimode fiber $M \approx \frac{V^2}{2}$ **Number of modes**

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

a) Intermode (Intermodal) Dispersion: Multimode fibers

b) Materials Dispersion

Group velocity depends on N_g and hence on λ

c) Waveguide Dispersion

Group velocity depends on waveguide structure

d) Chromatic Dispersion Material dispersion + Waveguide Dispersion

a) Intermode Dispersion (MMF)

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Intramode Dispersion (SMF)

Dispersion in the fundamental mode

Group Delay $\tau = L / V_g$

Group velocity V_q depends on

Refractive index = $n(\lambda)$

V-number = $V(\lambda)$

 $\Delta = (n_1 - n_2)/n_1 = \Delta(\lambda)$

Material Dispersion Waveguide Dispersion Profile Dispersion

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

b) Material Dispersion

JIRU

unesp[♦]

Emitter emits a spectrum $\Delta \lambda$ of wavelengths.

Waves in the guide with different free space wavelengths travel at different group velocities due to the wavelength dependence of n_1 . The waves arrive at the end of the fiber at different times and hence result in a broadened output pulse.

$$\frac{\Delta \tau}{L} = D_m \Delta \lambda$$

 D_m = Material dispersion coefficient, ps nm⁻¹ km⁻¹

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Material Dispersion

c) Waveguide dispersion

b hence β depends on *V* and hence on λ

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Chromatic Dispersion

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Attenuation

JIRU

Attenuation = Absorption + Scattering

Attenuation coefficient α is defined as the *fractional decrease in* the optical power per unit distance. α is in m⁻¹.

$$P_{\text{out}} = P_{\text{in}} \exp(-\alpha L)$$

$$\alpha_{\text{dB}} = \frac{1}{L} 10 \log\left(\frac{P_{\text{in}}}{P_{\text{out}}}\right) \qquad \qquad \alpha_{\text{dB}} = \frac{10}{\ln(10)} \alpha = 4.34 \alpha$$

Optoelectronics & Photonics: Principles & Practices (2nd Edition) Hardcover – October 25, 2012 by <u>Safa O. Kasap</u>

Attenuation

Absorption and Scattering Loss

1) Losses (Material):

a) Intrinsic Absorption

UV Region

• "Urbach tail":
$$\alpha = \alpha_o \exp\left(\frac{\sigma \hbar}{k_B T} (\omega - \omega_o)\right)$$

•SiO₂: $\lambda_0 \cong 140 \text{ nm}$

•GeO₂: $\lambda_0 \cong 185 \text{ nm}$

IR Region

• $\alpha_{IR} = 7.81 \times 10^{11} \exp(-48.48/\lambda \,[\mu m])$ [dB/km]

b) Absorption due to impurities:

Transition Metal: Cr, Mn, Cu, Fe, Ni, etc

• 1-10 dB/km @ 1-5 ppm

<u>hydroxyl Ions (OH⁻)</u>

• ν_{OH} (fondamental) \rightarrow 2.73 μm

$$2\nu_{OH} \rightarrow 1.38 \ \mu m$$

 $3\nu_{OH} \rightarrow 0.95 \ \mu m$
 $2\nu_{OH} + \nu_1 \rightarrow 1.24 \ \mu m$

c) Rayleigh scattering :

- Microscopic variations (sub- λ) density of Material.
- $\alpha_R \cong (0.75 + 66 \Delta n_{Ge}) \lambda^{-4} [\mu m]$ [dB/km] où Δn_{Ge} : n variation due to Ge.
- Main factor losses in the visible and near infrared

 $(\rightarrow 1.6 \ \mu m)$

2) Guide Loss:

- a) Guide Imperfection:
- Irregularities of the interface Core-cladding;
- Mie Diffusion (defects $>> \lambda$)
- < 0.05 dB/km for silice.

b) Bending Loss:

• Distortion mode: Distortion of indice profil.

$$n'(r) = n(r)\left(1 + \frac{r}{R}\cos\varphi\right)$$

R : Rayon de courbure

•
$$\alpha_c = \frac{A_c}{\sqrt{R(m)}} e^{-KR(m)}$$
 [dB/m]

où:
$$A_c = \frac{1}{2} \left(\frac{\pi}{aw^3}\right)^{1/2} \left[\frac{u}{wK_1(w)}\right]^2 \cong \frac{30(\Delta n)^{1/4}}{\sqrt{\lambda(m)}} \left(\frac{\lambda_c}{\lambda}\right)^{3/2} \left[\frac{\mathrm{dB}}{\sqrt{\mathrm{m}}}\right]$$

$$K = \frac{4\Delta n w^3}{3aV^2 n_2} \cong 0.705 \frac{(\Delta n)^{3/2}}{\lambda(m)} \left(2.748 - 0.996 \frac{\lambda}{\lambda_c} \right)^3 \left[\text{m}^{-1} \right]$$

D. Marcuse, JOSA, 66(3), 1976

• e.g. $\Delta n = 5 \times 10^{-3}$ $\lambda = 1.0 \mu m$ $\lambda_c = 900 nm$

 $\alpha_{2\rm cm} = 1 \, \rm dB/km$ $\alpha_{1\rm cm} = 10^4 \, \rm dB/km$

Optical Loss for different Materials

Transmission Window: Optical Loss for Different Fiber Materials

Fabrication Methods

Optical Fiber Fabrication Methods

- Glass
- CVD preform \rightarrow fiber drawing
- Rod-in-tube prefrom \rightarrow fiber drawing
- Cast preform \rightarrow fiber drawing
- Double crucible \rightarrow direct draw
- Sol gel preform \rightarrow fiber drawing
- Stack and draw \rightarrow PCFs
- Polycrystalline
- Extrusion
- Hot rolling
- Monocrystalline
- Seed crystal growth from melt
- Zone melting
- Polymer
- Extrusion
- Cast prefrom \rightarrow fiber drawing

MCVD—Modified Chemical Vapor Deposition PMCVD—RF Plasma Enhanced MCVD PCVD—Microwave Plasma CVD OVD—Outside Vapor Deposition VAD—Axial Vapor Deposition

Optical Fiber Fabrication Methods

JIRU

unesp*

MCVD system

MCVD Process

Typical Glass Fiber Compositions

<i>Multimode</i> <i>Singlemode</i>	GeO2•B2O3•SiO2	$B_2O_3 \bullet P_2O_5 \bullet SiO_2$		
	GeO ₂ •P ₂ O ₅ •SiO ₂ GeO ₂ •SiO ₂	$ \begin{bmatrix} B_2O_3 \bullet P_2O_5 \bullet SiO_2 \\ F \bullet P_2O_5 \bullet SiO_2 \\ SiO_2 \end{bmatrix} $		
	GeO₂∙SiO₂	$ \begin{cases} F \cdot P_2 O_5 \cdot SiO_2 \\ SiO_2 \\ P_2 O_5 \cdot SiO_2 \\ F \cdot SiO_2 \end{cases} $		
	SiO ₂	$\begin{cases} F \bullet P_2 O_5 \bullet SiO_2 \\ F \bullet SiO_2 \end{cases}$		

Dopant Effects in Silica Glass

	INDEX n	EXPANSION a	VISCOSITY	STABILITY	DURABILITY		RAYLEIGH SCATTERING	IR LOSS	COST
GeO2	t	ł	ł	•	ł	t	tt	•	t
P205	t	ł	Ħ	•	ŧŧ	•	t	t	•
B ₂ O ₃	ł	t	Ħ	٠	Ħ	•	?	ł	•
F	Ħ	•	ł	٠	++	•	?	•	•
TIO ₂	tt	ł	ł	ł	?	ł	?	•	•
AI203	ł	ł	+ .	Ħ	?	ł	?	•	•

Indice Profil of the Preform

JIRU

COPL Centre d'optique, photonique et laser

Image BSE of the GRIN preform

Other Method: Rotational Casting

Rotational Preform Casting Process

Optical Fiber Coatings

- Environmental Protection
- -Abrasion
- Moisture ingress
- Hydrogen diffusion
- Chemical attack
- Temperature resistance
- Mechanical bending

- Sensing
- Fluorescence
- Swelling
- Chem/Bio reactive
- Magnetic
- -Acoustic
- Piezoelectric

Coatings Materials

Optical Fiber Coatings Sensing

Evanescent-Wave Sensor Principle Chemically-Induced Cladding Change

- Presence of chemical agent in cladding region changes optical properties
- Light propagating through sensor waveguide is affected by changes in exposed region

Fiber Drawing Process

Mechanical Properties

Silica Fiber Strength

- Optical fibers behave as an elastic material up to the point of failure.
- Theoretical strength of silica glass determined by cohesive bond strength of constituent atoms > 20 GPa (3-5Mpsi)!
- Glass fiber strengths are on the order of **4-6 GPa** (~800Kpsi).
- Actual strength is limited by surface flaw distribution.

JIRU

NIVERSITÉ

Breaking Strength

Effective fiber strength is a function of:

- Length
- Strain rate
- Temperature
- Relative Humidity
- Chemical or mechanically induced flaws

Proof-Testing

- Fiber is subjected to a short-term tensile strain during or subsequent to production. Applied load is the proof-stress value.
- Establishes minimum strain capability: fiber will break for large cracks larger than the proofstress value.
- Typical proof-stress levels: 50Kpsi & 100Kpsi

Special Optical Fibers

Hollow Core Optical Fibers

In contrast to solid core glass fibers, hollow core fibers can propagate light by:

Hollow-core fiber

Multilayer Dielectric Mirror

2D Photonic Crystal cladding

Hollow Core Optical Fibers

Waveguide probes are currently being developed for applications in : beam delivery, trace gas detection, signal collection, and IR imaging.

JIRU

Jason M. Kriesel, SPIE defence, April (2011)

Fluoride Glasses

1974- Fluoride glasses (M. Poulain)

JIRU

unesp*

Fiber Laser

Dopant(s)	Host glass	Pump λ (μm)	Laser λ (µm)	Transition	Output power (W)	Slope efficiency (%)	Reference
Er ³⁺ , Yb ³⁺	Silicate	0.975	1.5	$ ^{4} _{13/2} \rightarrow ^{4} _{15/2}$	297	19	21
Tm ³⁺ , Ho ³⁺	ZBLAN	0.792	1.94	${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	20	49	33
Tm ³⁺	Silicate	0.793	2.05	${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	1,050	53	22
Tm³⁺, Ho³⁺	Silicate	0.793	2.1	$5 _7 \rightarrow 5 _8$	83	42	34
Ho ³⁺	Silicate	1.950	2.14	$5 _7 \rightarrow 5 _8$	140	55	23
Tm³+	ZBLAN	1.064	2.31	$^{3}\text{H}_{4} \rightarrow ^{3}\text{H}_{5}$	0.15	8	35
Er ³⁺	ZBLAN	0.975	2.8	${}^{4} _{11/2} \rightarrow {}^{4} _{13/2}$	24	13	24
Ho ³⁺ , Pr ³⁺	ZBLAN	1.1	2.86	$5 _6 \rightarrow 5 _7$	2.5	29	25
Dy ³⁺	ZBLAN	1.1	2.9	${}^{6}\text{H}_{13/2} \rightarrow {}^{6}\text{H}_{15/2}$	0.275	4.5	36
Ho ³⁺	ZBLAN	1.15	3.002	${}^{5}I_{6} \rightarrow {}^{5}I_{7}$	0.77	12.4	26
Ho ³⁺	ZBLAN	0.532	3.22	${}^{5}S_{2} \rightarrow {}^{5}F_{5}$	0.011	2.8	27
Er ³⁺	ZBLAN	0.653	3.45	${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$	0.008	3	28
Ho ³⁺	ZBLAN	0.89	3.95	$5 _5 \rightarrow 5 _6$	0.011	3.7	29

S.D.Jackson, Nature Photonics, 6,423 (2012)

Fiber Laser

Fiber Laser

Microstructure Fibers

Optical fiber constructed with a lattice of voids (air holes) along its length \rightarrow provide unique optical properties impossible to obtain with solid fibers.

Very large index of refraction differences

- -1.0 (air) to 1.45 (undoped silica): $\Delta n \sim 0.45$
- Doped silica fiber: $\Delta n \sim 0.03$
- Voids can be filled with functional materials allowing dynamic properties

– Control local index with temperature, electrical field, magnetic field, etc.

Photonic bandgap operation

– Periodic structure creates resonance, like a 2-D gratings.

Microstructure Fibers

PCF: Index Guided

5 µm

Un-doped silica glass is used for both core and cladding regions. Core is solid.

Placement of air channels (n = 1) in the cladding creates an "effective " index below that of the solid core region. Light is confined and guided by total internal reflection. NA can approach 1.

Different designs can be achieved by varying index delta, channel spacing, size & diam.

PCF: Photonic Band Gap Guided

Un-doped silica glass is used for both core and cladding regions. Core is hollow (air).

Placement of air channels (n = 1) in the cladding creates a 2-D photonic bandgap structure.

Constructive interference is produced by scattered light refracted at the core/cladding interfaces of the periodic lattice structure.

Light can only propagate in specific regions.

PCF Fabrication: Stack-and-Draw Process

PCF Applications

- Telecommunications
- Dispersion compensation
- Transmission fibers
- Broadband SM fibers

• Lasers

- Double Clad fibers (laser cavity)
- Large Area fibers (high power transmission)
- White Light Sources
- Sensing
- Metrology
- Medical
- Optical Coherence Tomography

PCF Applications

Gas Sensor

laser drilled gas inlet hole laser drilled PCF (cross section)

PCF Applications

Ranka, J. K., Windeler, R. S., and Stentz, A. J., Conference on Lasers and Electro-Optics, 1999.**119**

Fiber Designs at COPL

