

# IMI-NFG Course on Processing in Glass Spring 2015

(available online www.lehigh.edu/imi)

<u>Lecture 9</u>: Annealing and Tempering

Mathieu Hubert, PhD

CelSian Glass & Solar Eindhoven, The Netherlands

mathieu.hubert@celsian.nl



# **Outline of this lecture**

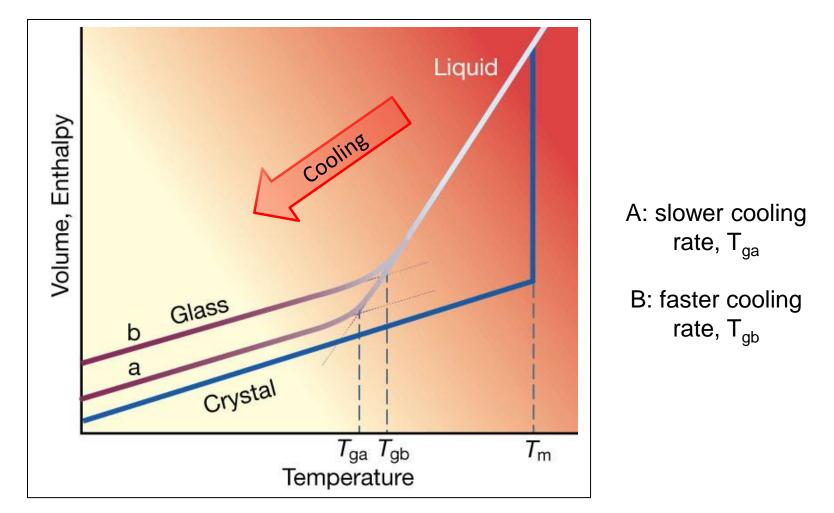
# 1. Annealing of glass

- Introduction Principles
- Annealing in industrial glass production

# Photo: Erik Skaar

# 2. Tempering

- Principles
- Tempering in industrial glass production
- Tempered vs. Heat strengthened glass





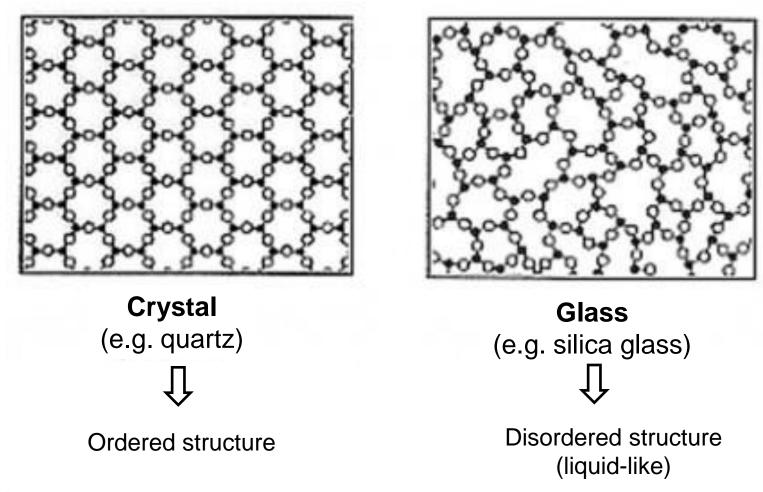



#### Introduction

Just a word on glass science – The glassy state



From P. Debenedetti and F. Stillinger, "Supercooled liquids and the glass transition", Nature 410, 259-267(March 2001)



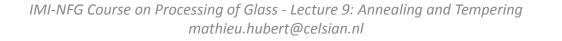

IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Introduction

Just a word on glass science – The glassy state



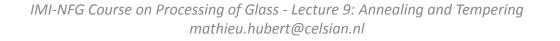



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

#### Introduction

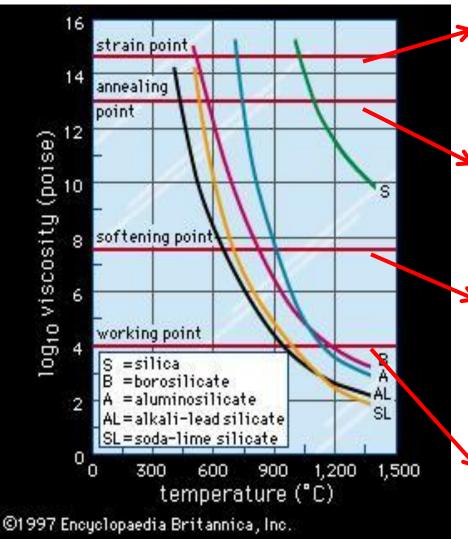
- **Rapid cooling** of the melt is necessary to obtain a glass (avoid crystallization)
- This rapid cooling will generate **constraints** within the glass, which will are detrimental for the mechanical properties
- This constraints can be **relaxed by careful thermal treatment**
- This relaxation of constraints is called **annealing** of the glass
- **Good annealing** is extremely important to produce good commercial glasses and for their durability
- Non-annealed or poorly annealed glasses will be subject to low resistance to cracks/failure under small thermal or mechanical shocks








#### Annealing


- All along the cooling process, the viscosity of the glass increases, from a low-viscosity melt, to a rigid material with a higher viscosity
- A certain "degree of freedom" is necessary for the glass to relax the constraints caused by the rapid cooling (re-arrangements in the glass structure)
- Good annealing can only be obtained in a relatively narrow range of temperatures (thus of viscosity)
- For a good annealing of the constraints, the viscosity of the glass should be:
  - ✓ Not too high (constraints cannot be released anymore)
  - $\checkmark$  Not too low (the glass will not retain its shape)







#### Characteristic temperatures vs. viscosity



Strain point

 $\eta = 10^{14.5}$  Poise (10<sup>13.5</sup> Pa.s)

Internal stresses are relieved in ~ 15 h

- Annealing point
  - $\eta = 10^{13.4}$  Poise (10<sup>12.4</sup> Pa.s)

Internal stresses are relieved in ~ 15 min

#### Softening point

 $\eta = 10^{7.65}$  Poise (10<sup>6.65</sup> Pa.s)

Glass deforms under its own weight at a rate of 1mm/min

• Working point  $\eta = 10^4$  Poise (10<sup>3</sup> Pa.s)





IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

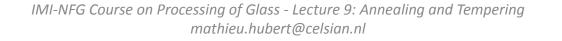
## Annealing point and stress point

#### **Annealing point** $\eta = 10^{12.4} \text{ Pa-s}$

• At this temperature, the internal thermal stresses present in the glass are relieved by **viscous relaxation** within 15 minutes. In order to relieve a glass product from its internal stresses the glass has to be heated to just above the annealing point and subsequently cooled down slowly.

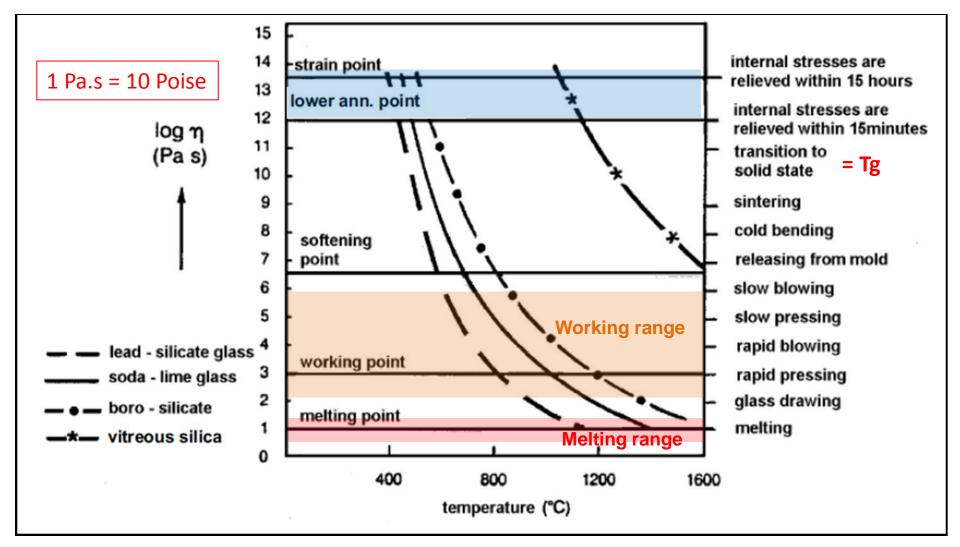
#### **Strain point** $\eta = 10^{13.5}$ Pa·s.

- Below this temperature relieving the internal stresses is practically impossible (at the strain point it may last about 15 hours)
- Between the annealing and the strain point glass products should be cooled down gradually, slowly and uniformly in order to avoid the formation of internal stresses, due to temperature gradients






#### Temperature profile and stresses


- Stresses acquired during cooling and remaining from temperatures above the **strain point** are **permanent stresses** (unless annealed)
- Stresses acquired during cooling below the strain point are considered temporary stresses (but can still lead to failure in case of a too important thermal shock)
- The goal of the **annealing process** is to **relieve the permanent stresses** created by the fast cooling below the strain point which occurred during the forming process of the glass
- To avoid creation of permanent stresses, the cooling of the glass should be slow in the temperature (viscosity) range between the annealing point and the strain point





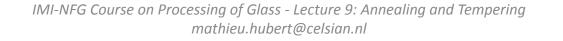


#### Viscosity – Temperature profile of glasses



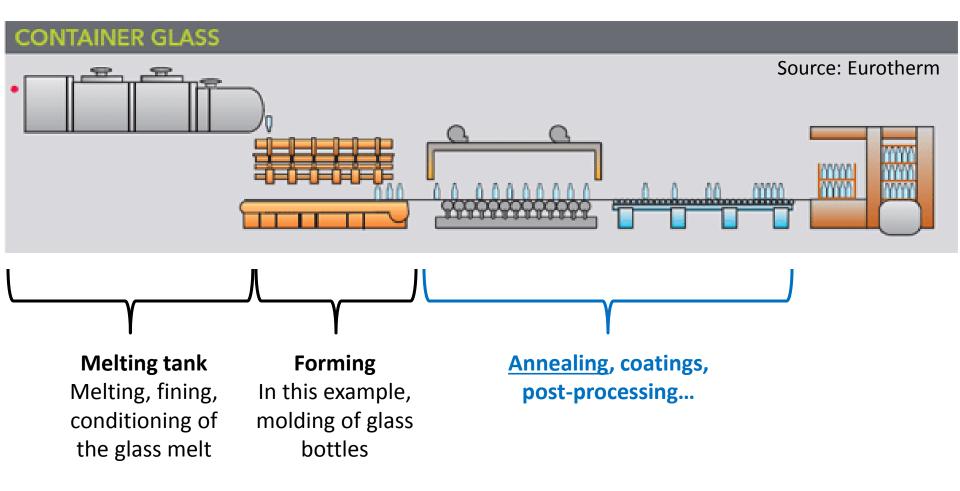
#### In blue: Critical temperature range for annealing



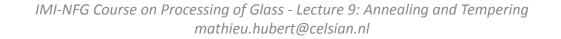

IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



## Annealing in continuous glass furnaces


- Right after the forming process (e.g. molding for container glasses), a rigid glass article is obtained
- The article did not experience a homogeneous cooling and a lot of stresses are generated
- To reduce these stresses, the articles are brought to a temperaturecontrolled kiln, or Lehr, for annealing
- The process from the forming of the article to the annealing Lehr is **continuous**, the articles are conveyed on belts or rollers
- The **temperature profile** in the lehr must be **controlled** for an efficient annealing
- After annealing (at the end of the lehr), the articles are continuously conveyed to further processing steps (coatings, cutting,...)

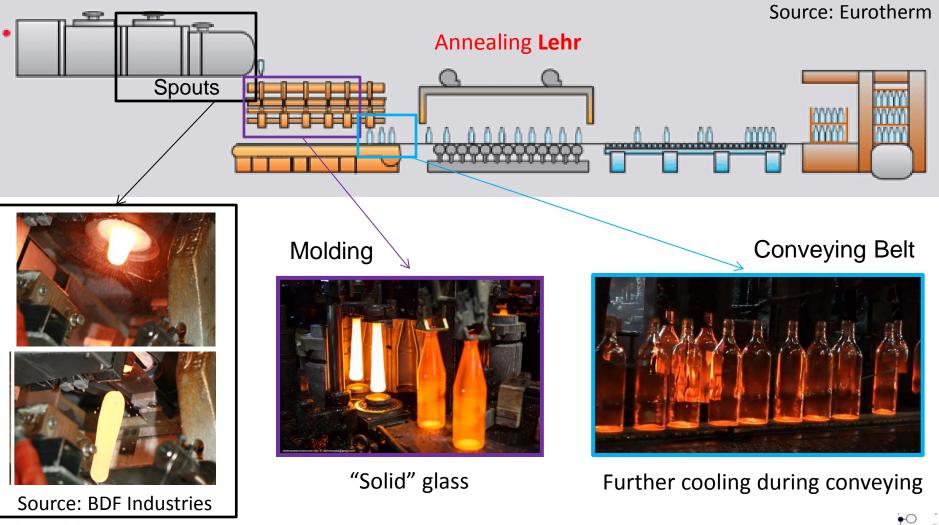







# Example: forming of glass bottles

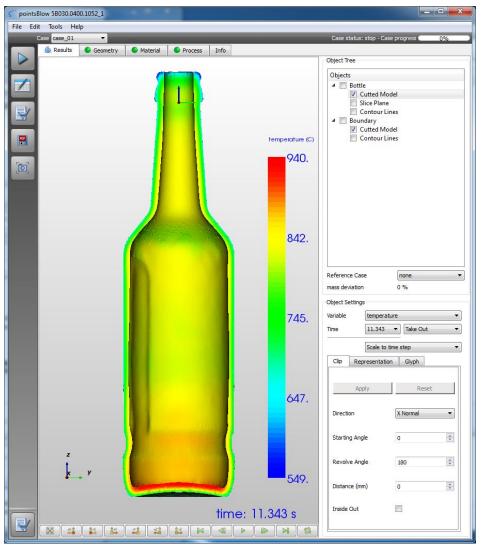









# Example: forming of glass bottles


#### CONTAINER GLASS



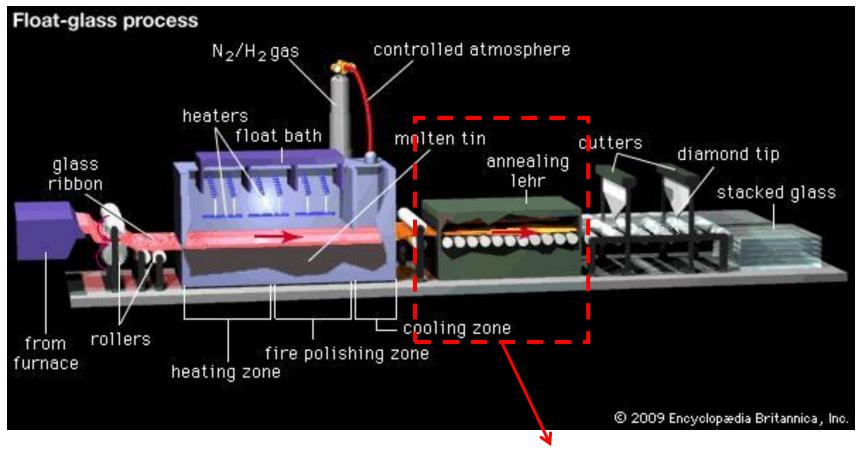


IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

#### Temperature distribution right after forming



- Right after forming (and before annealing), the temperature distribution is not uniform throughout the glass article
- Different parts cooled down at different rates, which can result in constraints and residual stresses

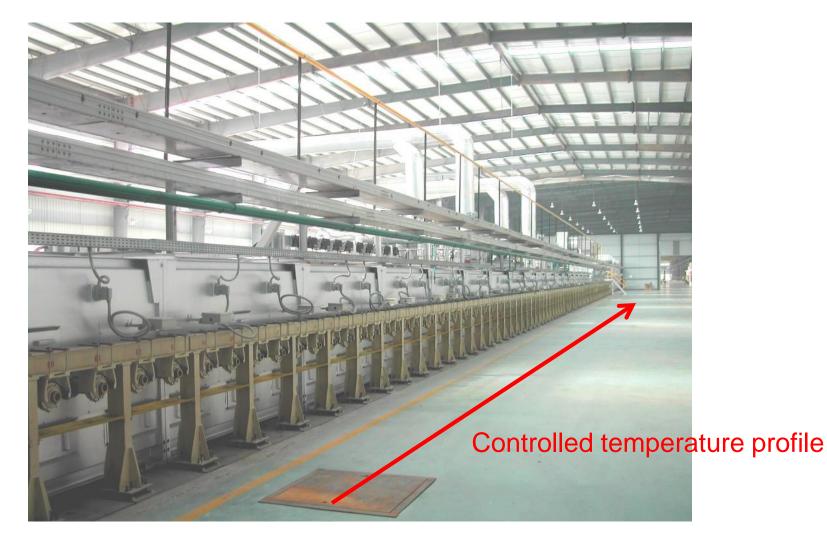

Source: NOGRID, www.nogrid.com/index.php/en/product/nogrid-points-blow1



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

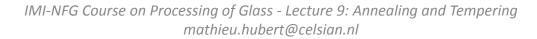


#### Illustration of the continuous process for flat glass




Source: http://www.britannica.com

#### Controlled temperature profile




IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



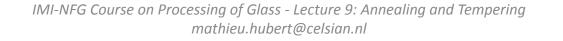
Source: http://newhudson.com/









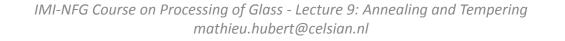



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



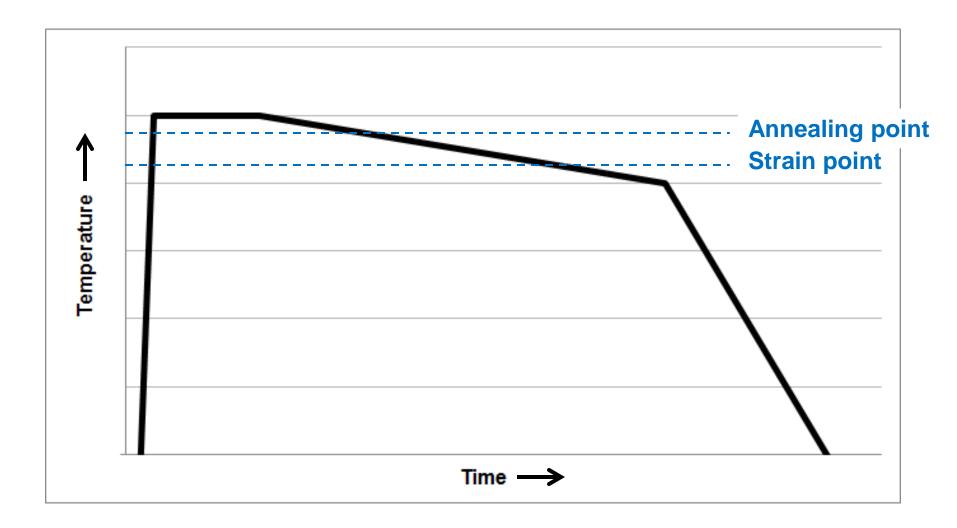
- The viscosity-temperature profile for a glass depends on its composition
- Thus, the annealing point and strain point depend on the type of glass produced
- Different articles with different shapes (e.g. bottles, tubes, plates...) and different characteristics (e.g. thickness, diameter, ...) will have different thermal behavior
- All these parameters have to be taken into account when designing the annealing lehr
- The goal for an annealing lehr: it should be as short as possible while guaranteeing an efficient annealing
- Equations exist to calculate the best temperature profile for the lehr







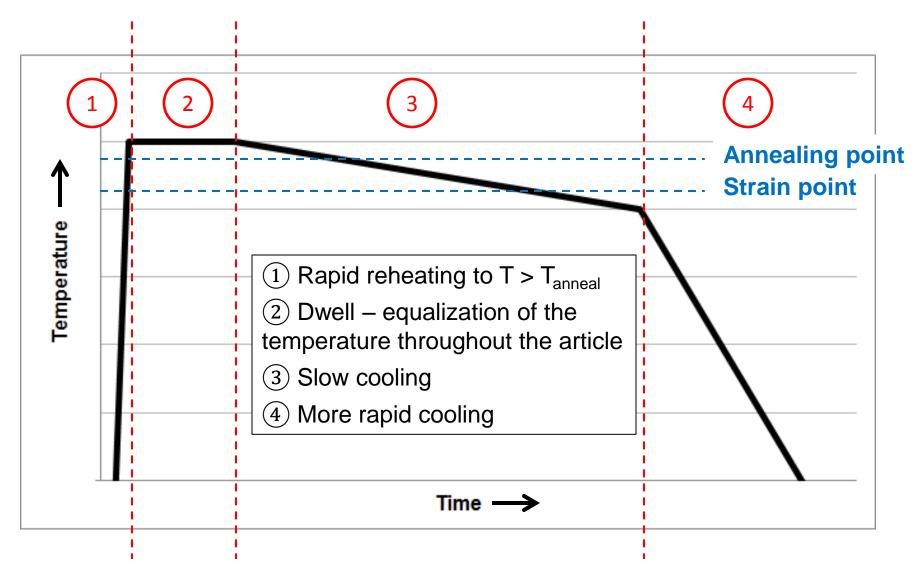

#### Temperature profiles and stresses in glass


- During cooling of glass, internal temperature gradients develop, depending on cooling rate & internal thermal equalization within the glass
- The internal temperature gradients will eventually lead to stresses
- The stress in the glass can be calculated from the cooling rate, properties of the glass and shape of the article
- In return, the "best" cooling rate can be calculated for a maximum allowable residual stress in the glass article
- Keep in mind: the goal of (industrial) annealing is to minimize the stresses in the glass article in a duration as short as possible (annealing = heating = energy consumption = costs)







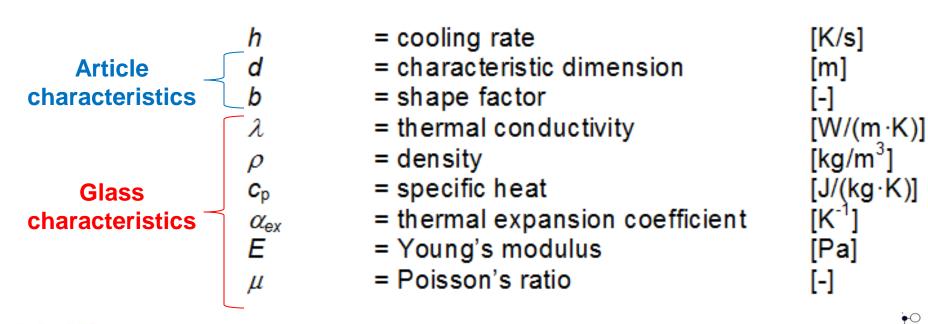

#### Temperature profile in annealing Lehr







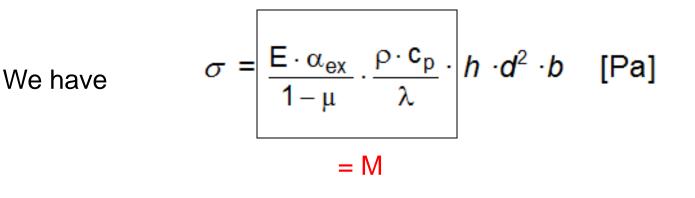
#### Temperature profile in annealing Lehr






#### Temperature profiles and stresses in glass

The relation for cooling rate h from above the annealing point to below strain point and generated permanent thermal stress is given by:


$$\sigma = \frac{\mathbf{E} \cdot \alpha_{\text{ex}}}{1 - \mu} \cdot \frac{\rho \cdot \mathbf{c}_{p}}{\lambda} \cdot \mathbf{h} \cdot \mathbf{d}^{2} \cdot \mathbf{b} \quad [\text{Pa}]$$





IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

#### Temperature profiles and stresses in glass



With

$$M = \frac{\mathbf{E} \cdot \alpha_{ex}}{1 - \mu} \cdot \frac{\rho \cdot \mathbf{C}_{p}}{\lambda} \quad \text{in MPa·s·K-1·m-2}$$

(σ in MPa)

Thus

$$\sigma = M.h.d^2.b \qquad \Longrightarrow \qquad h = \frac{\sigma}{M.d^2.b}$$

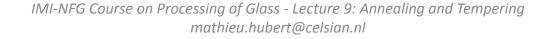


IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

(h in K/s)

MI NFG

#### **Glass characteristics**


Survey of the expansion coefficient  $\alpha_{ex}$  of some familiar glass types

|                                                                | α <sub>ex 0-300°C</sub> [K <sup>-1</sup> ] | T <sub>g</sub> [°C] |
|----------------------------------------------------------------|--------------------------------------------|---------------------|
| Soda-lime-silica glass                                         | 92 x 10 <sup>-7</sup>                      | 520-580             |
| Pyrex borosilicate                                             | 33 x 10 <sup>-7</sup>                      | 565                 |
| E-glass                                                        | 60 x 10 <sup>-7</sup>                      | 670                 |
| Vycor (97 SiO <sub>2</sub> , 3 B <sub>2</sub> O <sub>3</sub> ) | 8 x 10 <sup>-7</sup>                       | 910                 |
| Vitreous Silica                                                | 5 x 10 <sup>-7</sup>                       | 1100                |

For a soda-lime-silica glass, the factor M is equal to 1.2x10<sup>6</sup> MPa.s.K<sup>-1</sup>.m<sup>-2</sup> which gives:

 $\sigma$  = 1.2 x 10<sup>6</sup> h.d<sup>2</sup>.b [MPa] with d in m and  $\sigma$  in MPa







## Characteristic dimensions and shape factor

$$\sigma = M.h.d^2.b$$
 With d: characteristic dimension

#### Characteristic dimension "d"

- d = thickness for one-sided cooled plate
- d = 0.5 thickness for double-sided cooled plate
- d = radius for spheres and cylinders
- d =  $\sqrt{(d.L)}$  for pots and bottles with wall thickness d and bottom thickness L
- d = L for pots and bottles with thick bottoms (L = bottom thickness)





#### Characteristic dimensions and shape factor

**\ \ /!**(]\_

$$\sigma = M.h.d^2.b$$
With d: characteristic dimension  
b: shape factor
$$\frac{Shape factor "b"}{b = 0.336 \text{ for flat plates}}$$

$$b = 0.126 \text{ for massive cylinders}$$

$$b = 0.066 \text{ for spheres}$$

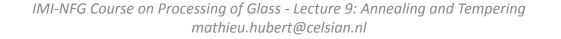
$$b = 0.3 \text{ for hollow products}$$

alson a famia (la allason al



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

# Example annealing (cooling) rate


When a maximal permanent stress of 1 MPa is permitted after cooling, the limit for the cooling rate h for a glass with  $M = 0.8 \text{ MPa} \cdot \text{s} \cdot \text{K}^{-1} \cdot \text{m}^{-2}$  becomes:

h 
$$\leq \frac{1}{0.8 \times 10^6 . d^2 . b}$$
 [K/s]  $h = \frac{\sigma}{M. d^2. b}$ 

h ≤ 6 K/min. for 10 mm plate glass cooled double-sided

- h ≤ 36 K/min. for 4 mm plate glass cooled double-sided
- h  $\leq$  36 K/min. for 2 mm hollow glass cooled one-sided

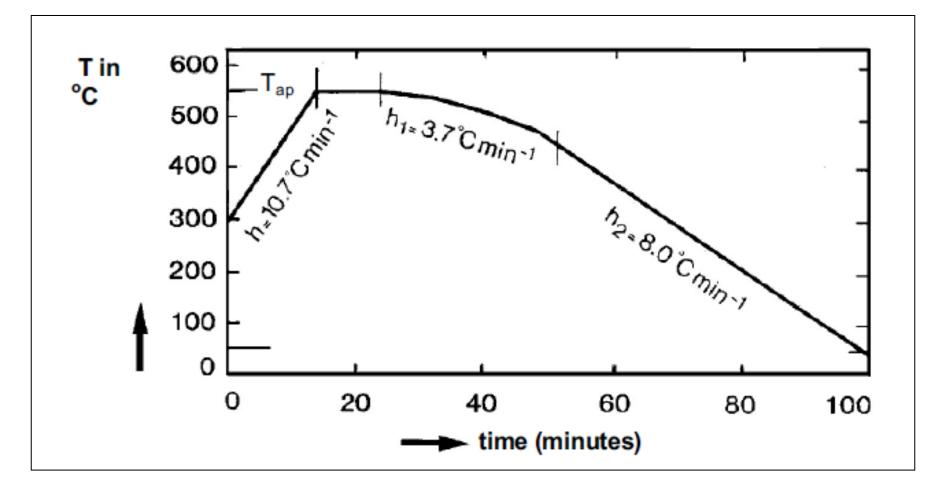






# Example annealing (cooling) rate

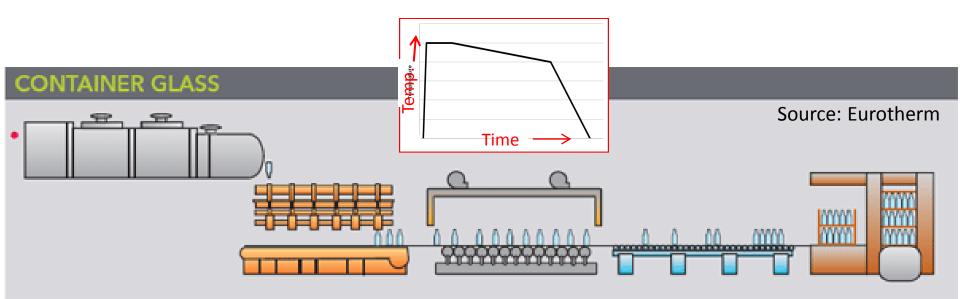
- The **cooling rate** h must be maintained (should not exceed the above given limits) in the critical annealing range between  $T_{ap}$  and  $T_{str}$ , because this is the determining range for the build-up of a permanent stress.
- Below this range a faster cooling rate is allowed, because this will cause only a temporary stress
- However fracture or crack formation during cooling, caused by too large value of  $\Delta T$  still to be prevented
- The limitations on the cooling rates will determine the needed length and temperature profiles in the annealing lehr
- As an example: the annealing range for soda-lime-silica glass is about 20-30°C (± 515 - 545°C).








# Temperature profile in annealing Lehr


Example: annealing curve for tube glass, 10 cm diam. & 1 cm wall thickness






IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

# Example: forming of glass bottles



• At the exit of the annealing lehr, the glass article is (continuously) conveyed to further steps, including coatings, cutting, inspection...

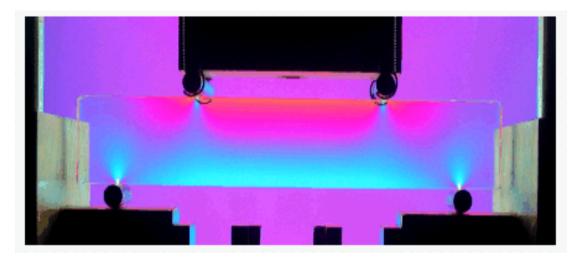






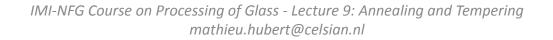
#### Inspection – residual stresses in the glass

- Perfect glass is **optically isotropic**, its refractive index is the same in all directions
- Mechanical stresses causes deformations in the glass that lead to (local) changes in the refractive index within the material
- A difference in the refractive index within the glass article will lead to birefringence
- This birefringence can be analyzed and quantified with a **polarimeter** (or polariscope), in which the angle of rotation of the polarization direction of linearly polarized light passing through the sample is determined
- Thus, polariscopes can be used to determine the presence of residual stresses within the glass article
- Automated devices based on this principle are used in the glass industry for systematic inspection of the articles produced



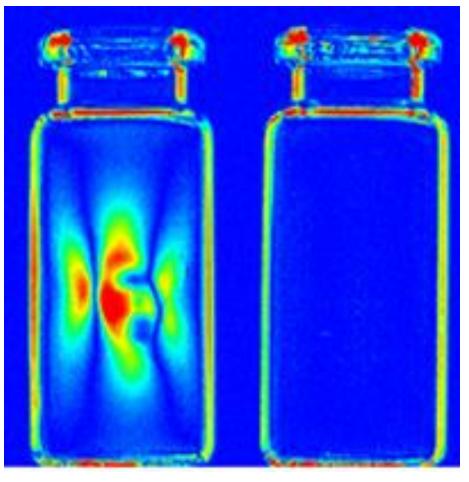



#### Polariscopes and stresses in glass









Example of stress distribution in glass (university Erlangen, Germany







#### Polariscopes and stresses in glass



- Articles with a too high amount of residual stress (e.g. jar on the left of the picture) are rejected (automatic process)
- The rejected product are (often) collected and re-injected in the furnace as raw material (internal cullet)

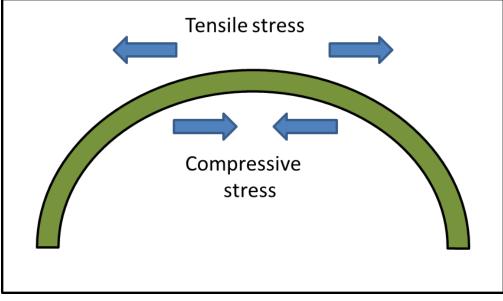
#### http://www.vision-systems.com









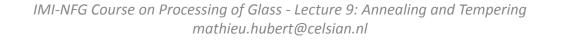



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Introduction – what is tempered glass?

- Glass is stronger in compression than is tension (compressive strength ~10 times higher than tensile strength)
- Glass failure almost invariably originates from flaws at the surface (stress multipliers for local tensile stresses)
- A compressive stress at the surface of the glass can thus increase glass strength

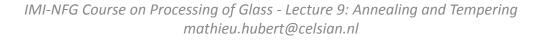





#### Introduction – what is tempered glass?

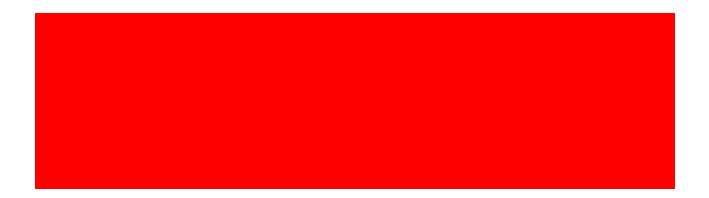
- Tempered glass is a glass that has been subjected to an additional heat treatment after annealing in order to increase its mechanical strength
- The tempering process lies on the controlled creation of permanent stresses in the glass
- The surface is under compressive stress while the core is under tensile stress
- Tempered glass can be as much as 4 to 5 times stronger than annealed glass (without tempering)
- When fracturing, tempered glass breaks into small fragments. It is often referred to as "**safety glass**"





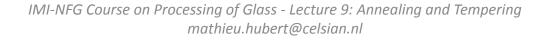



#### Introduction – what is tempered glass?


- Tempering of glass is mostly applied to articles with relatively simple geometries, e.g. windows, windshields...
- The tempering process involves reheating of the glass article to a critical temperature (typically above 600-650°C) and subsequent rapid cooling of the surface to create a desired stress profile within the material
- NB: tempering of the glass is performed on an already well annealed glass
- The following slides will illustrate the principle of tempering for a flat glass plate



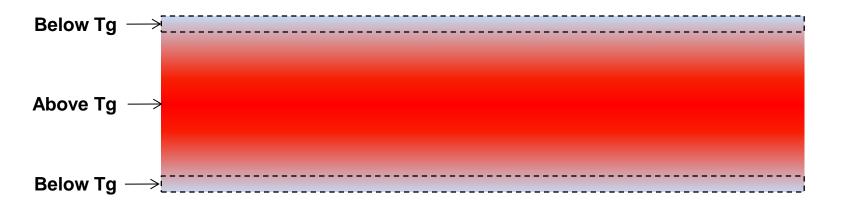



t<sub>0</sub>: Temperature T > Tg

Uniform temperature throughout the sample



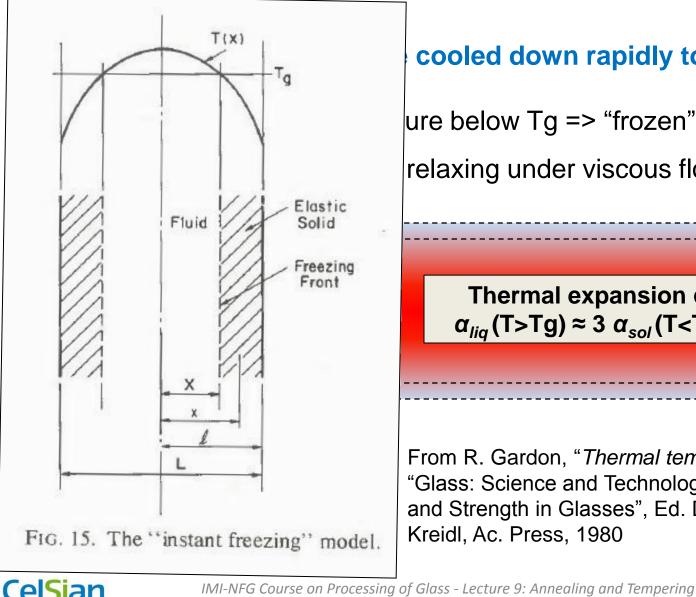
<u>NB</u>: The temperature  $T_0$  (at  $t_0$ ) should not be too high to avoid deformation of the glass plate








• **t**<sub>1</sub>: **surface** of the glass piece **cooled down rapidly to a T < Tg** 


Surface temperature below Tg => "frozen" Core still above Tg, relaxing under viscous flow



At  $t_1$ : Surface tries to shrink while the inner part acts as a counterforce:  $\Rightarrow$  Surface under tensile stress  $\Rightarrow$  Inner part under compressive stress



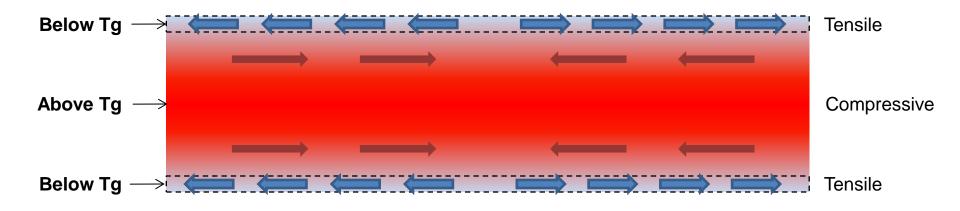




#### cooled down rapidly to a T < Tg

```
ure below Tg => "frozen"
relaxing under viscous flow
```

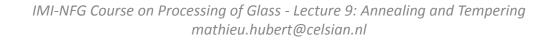
mathieu.hubert@celsian.nl


Thermal expansion  $\alpha$  $\alpha_{lig}$  (T>Tg)  $\approx$  3  $\alpha_{sol}$  (T<Tg)

From R. Gardon, "Thermal tempering of glass", in "Glass: Science and Technology, Vol.5, Elasticity and Strength in Glasses", Ed. D. Uhlmann and N. Kreidl, Ac. Press, 1980



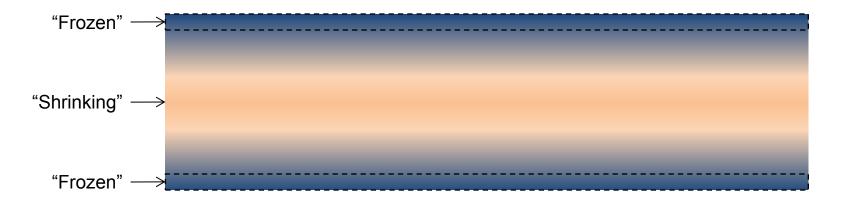
t<sub>1</sub>: surface of the glass piece cooled down rapidly to a T < Tg</li>


Surface temperature below Tg => "frozen" Core still above Tg, relaxing under viscous flow



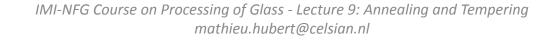
At  $t_1$ : Surface tries to shrink while the inner part acts as a counterforce:

- $\Rightarrow$  Surface under tensile stress
- $\Rightarrow$  Inner part under compressive stress





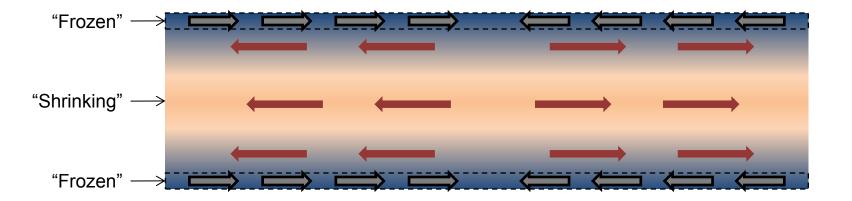




• **t<sub>2</sub>**: **further cooling**, inner part cooled down to a temperature T < Tg

Inner part of the glass piece contracting ("shrinking") Surface temperature already "frozen", shrinking less



At  $t_2$ : Inner part tries to shrink while the surface acts as a counterforce:  $\Rightarrow$  Surface under compressive stress  $\Rightarrow$  Inner part under tensile stress

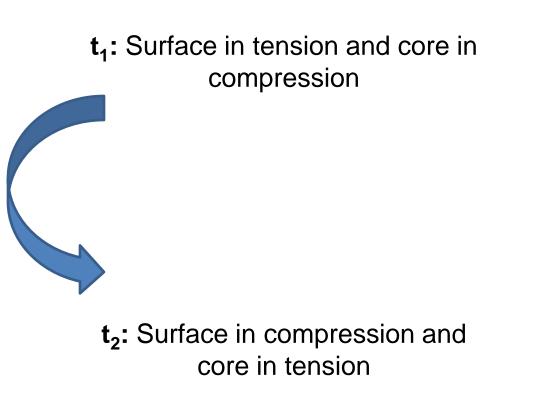


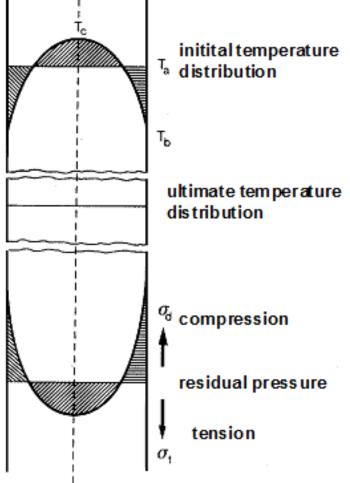





• **t<sub>2</sub>**: **further cooling**, inner part cooled down to a temperature T < Tg

Inner part of the glass piece contracting ("shrinking") Surface temperature already "frozen", shrinking less

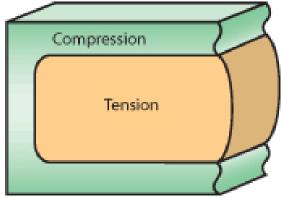




At  $t_2$ : Inner part tries to shrink while the surface acts as a counterforce:

- $\Rightarrow$  Surface under compressive stress
- $\Rightarrow$  Inner part under tensile stress

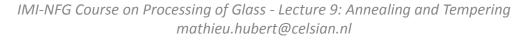








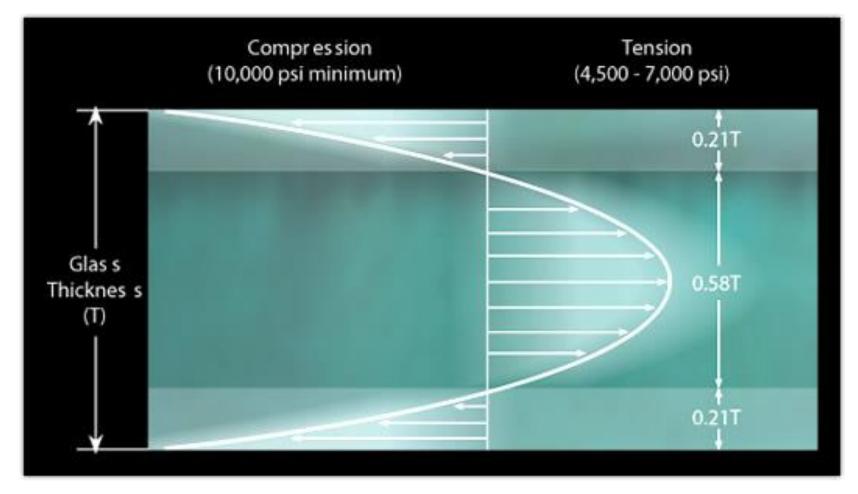




IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

- After further cooling, the glass article is left with a permanent stress profile with:
  - ✓ Surface in compressive stress
  - ✓ Core in tensile stress



- For a crack to propagate from the surface of the glass article, it must overcome the usable strength of the material + the extra compressive force at the surface
- For this reason, tempered glass is more resistant to failure than a glass which is simply annealed (without compressive layer at the surface)



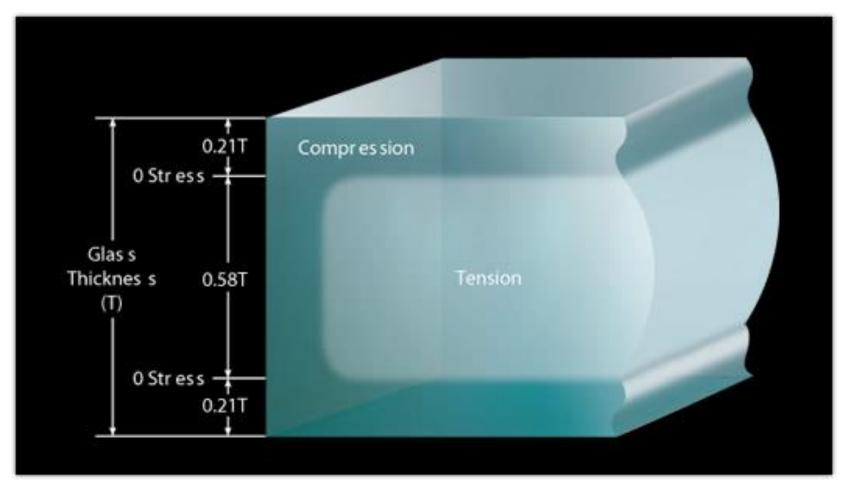







#### Example stress distribution in solar (flat) glass




#### Source: http://www.cardinalst.com/products/solartemp/



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Example stress distribution in solar (flat) glass



#### Source: http://www.cardinalst.com/products/solartemp/



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Fracture pattern of tempered glass



Source: http://www.graysci.com/chapter-seven/shattering-the-strongest-glass/



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl





Taken from: www.bbc.co.uk







IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

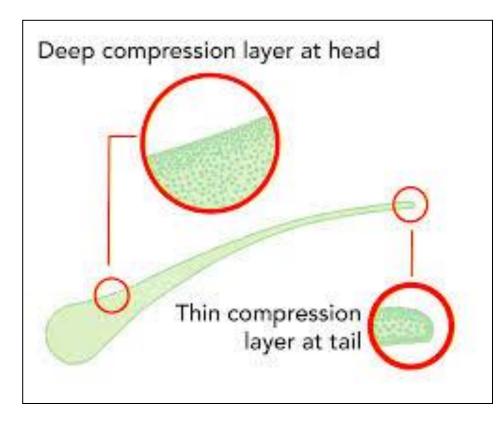


Dropping molten glass into cold water creates a tadpole-like shape called Prince Rupert's Drop.



http://www.youtube.com/watch?v=xe-f4gokRBs#t=29

The head is very strong and can withstand blows from a hammer, but if the tail is damaged at all the whole structure will disintegrate explosively.


RandomInterestingFacts.com



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



• What does it mean?



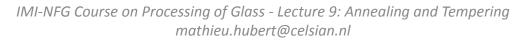


#### Pictures © Smarter everyday



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



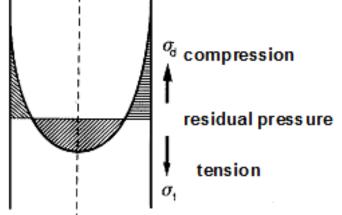

- When damaging the tail => creation of a flaw which propagates to the core, in tensile stress
- All the strain energy stored in the glass (stress-strain relationship) is released, leading to the catastrophic failure of the glass article
- This is similar to what is observed in tempered glass





- More on Prince Rupert's drops? Check out these videos:
  - ✓ Video "Smarter everyday Mystery of Prince Rupert's Drop at 130,000 fps"
  - ✓ Video "Corning- <u>The glass Age, Part 2: Strong, Durable Glass</u> "

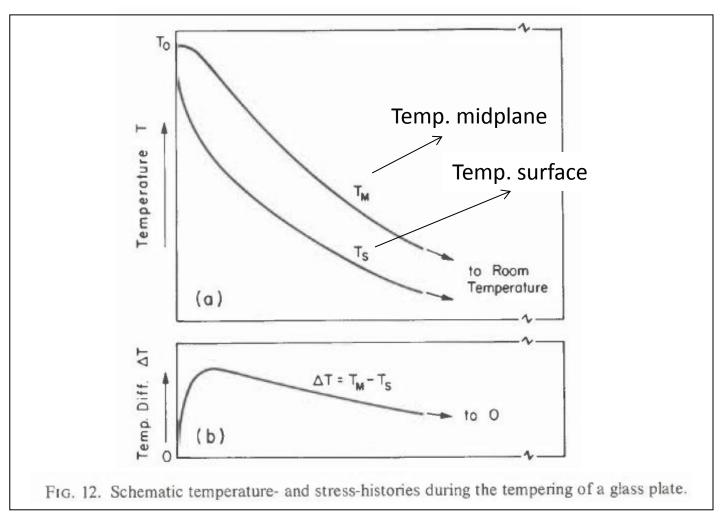







#### Important parameters for glass tempering

Permanent stress profile generated σ<sub>p</sub>


$$\sigma_p = \frac{\alpha.E.\Delta T_{MS}}{1-\mu} = \frac{\alpha.E}{1-\mu} x \left(1 + \frac{2\lambda}{hd}\right)^{-1} x T_E$$

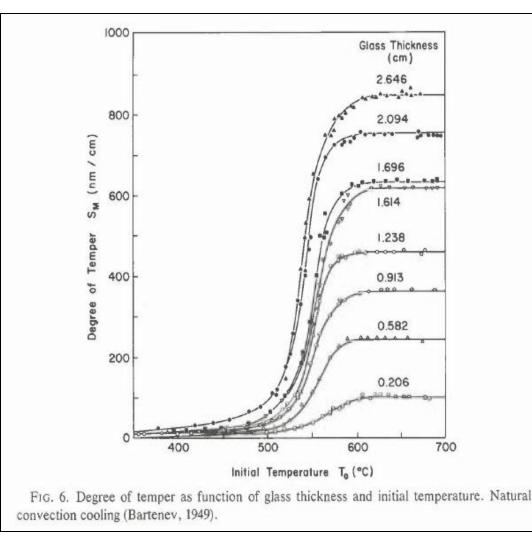


With:  $\alpha$  = thermal expansion coefficient [K<sup>-1</sup>] E = Young's modulus [MPa] Glass  $\mu$  = Poisson's ratio characteristics  $\lambda$  = thermal conductivity [W/m<sup>2</sup>.K] h = heat transfer coefficient [W/m<sup>2</sup>.K]  $\Delta T_{MS} = T_M - T_S = Temp.$  middleplane – Temp. surface [K] **Process** related  $T_F =$  "freezing temperature"  $\approx$  Tg [K] d = thickness of the glass plate [m] IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Thermal history in a tempered glass plate




Adapted from R. Gardon, "*Thermal tempering of glass*", in "Glass: Science and Technology, Vol.5, Elasticity and Strength in Glasses", Ed. D. Uhlmann and N. Kreidl, Ac. Press, 1980



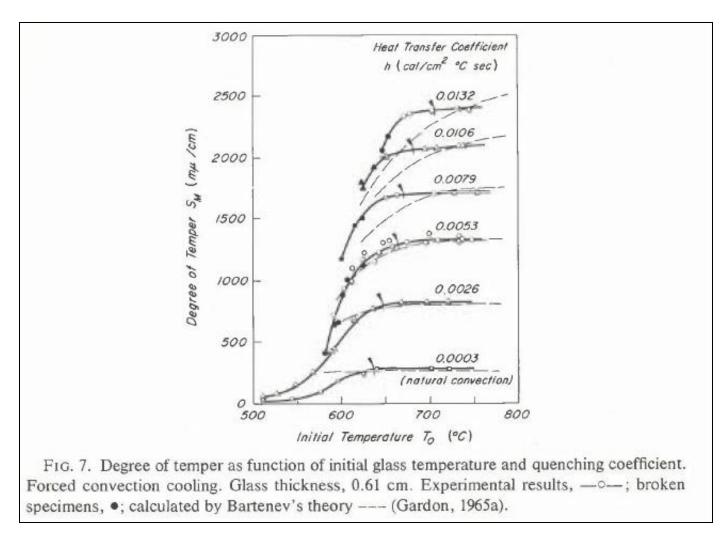
IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Effect of glass thickness



- With thicker plates, higher degrees of temper achieved (larger stress profiles)
- Above a certain temperature, a plateau is reached
- Below a certain thickness, tempering becomes inefficient


From R. Gardon, "*Thermal tempering of glass*", in "Glass: Science and Technology, Vol.5, Elasticity and Strength in Glasses", Ed. D. Uhlmann and N. Kreidl, Ac. Press, 1980



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Effect of temperature and quenching coefficient



From R. Gardon, "*Thermal tempering of glass*", in "Glass: Science and Technology, Vol.5, Elasticity and Strength in Glasses", Ed. D. Uhlmann and N. Kreidl, Ac. Press, 1980



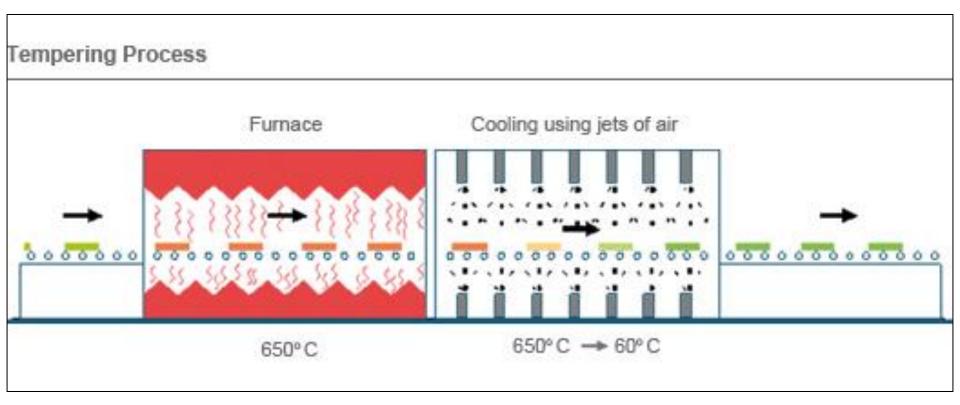
IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Examples for a glass plate of thickness = 8mm

• Initial viscosity of the glass  $\eta_i = 10^8$  Pa.s

|                                                              | H <sub>max</sub><br>(W/m².K) | Initial temp. T <sub>i</sub><br>(°C) | σ <sub>max</sub> midplane<br>(MPa) | σ <sub>max</sub> surface<br>(MPa) |
|--------------------------------------------------------------|------------------------------|--------------------------------------|------------------------------------|-----------------------------------|
| Soda-lime-silicate<br>α = 9.10 <sup>-6</sup> K <sup>-1</sup> | 4500                         | 650                                  | 105                                | 235                               |
| Borosilicate<br>α = 3.10 <sup>-6</sup> K <sup>-1</sup>       | >5000                        | 730                                  | 32                                 | 70                                |


• Initial viscosity of the glass  $\eta_i = 10^9$  Pa.s

|                                                              | H <sub>max</sub><br>(W/m².K) | Initial temp. T <sub>i</sub><br>(°C) | σ <sub>max</sub> midplane<br>(MPa) | σ <sub>max</sub> surface<br>(MPa) |
|--------------------------------------------------------------|------------------------------|--------------------------------------|------------------------------------|-----------------------------------|
| Soda-lime-silicate<br>α = 9.10 <sup>-6</sup> K <sup>-1</sup> | 470                          | 630                                  | 65                                 | 135                               |
| Borosilicate<br>α = 3.10 <sup>-6</sup> K <sup>-1</sup>       | 1500                         | 680                                  | 25                                 | 50                                |



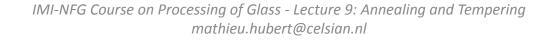
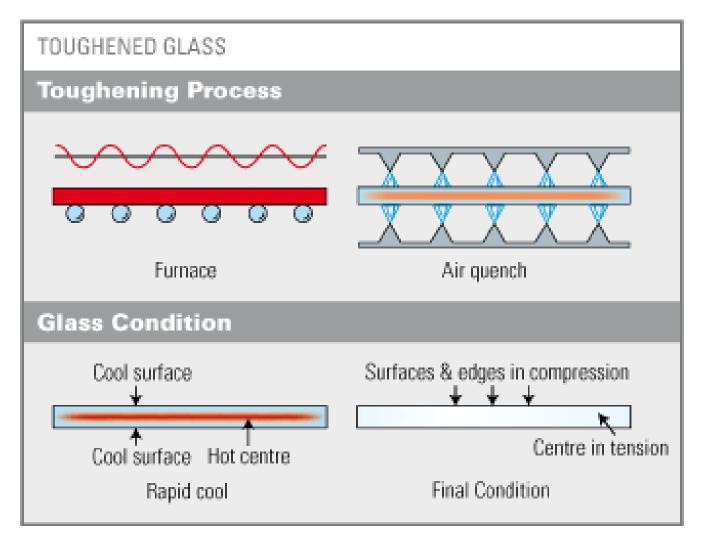


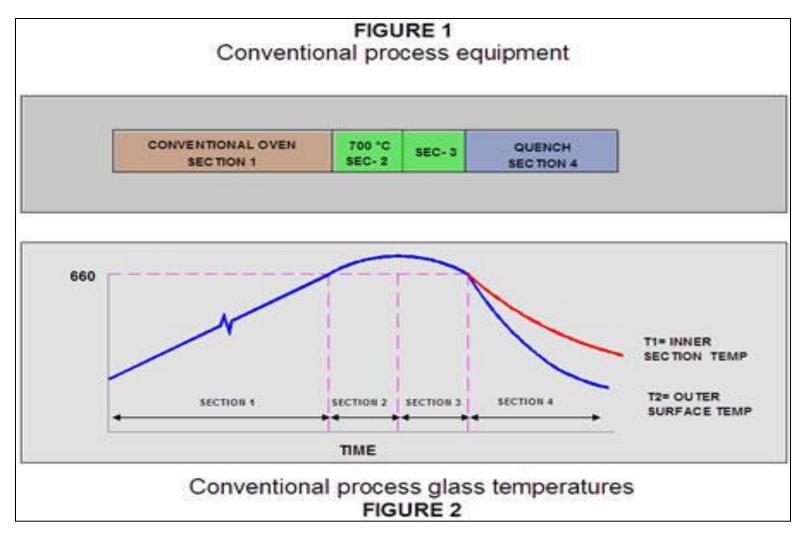

Illustration of the a glass tempering unit for a soda-lime-silica glass




From: http://us.agc.com







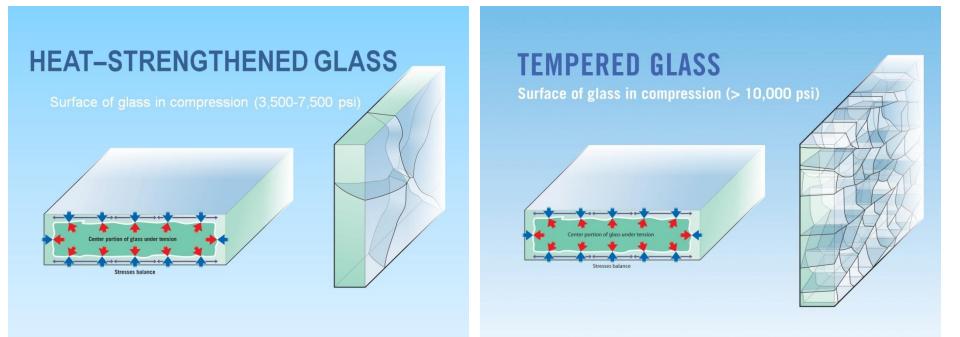



Source: http://www.metroglasstech.co.nz/catalogue/038.aspx



IMI NFG




From P. Boaz "Thin glass processing with radio wave assist", www.glassonweb.com/articles/article/561/

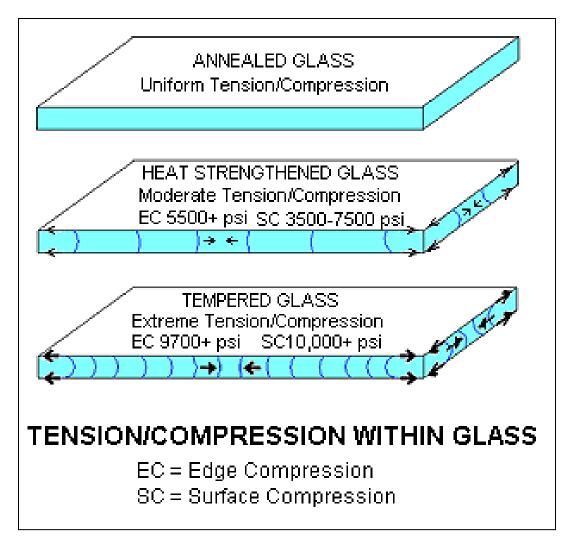




#### Heat-strengthened vs tempered glass?

- Heat-strengthened glass: the cooling process is slower, which means the compression stress is lower
- In the end, heat-strengthened glass is approximately twice as strong as annealed glass but less strong than tempered glass






#### Pictures from: http://educationcenter.ppg.com

IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Heat-strengthened vs tempered glass?



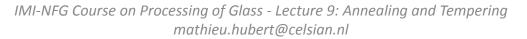
Source: www.chicagowindowexpert.com



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

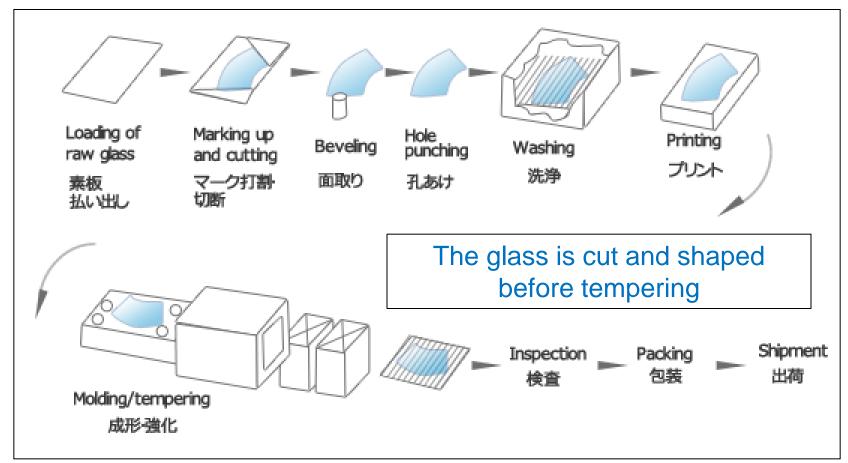



#### **Processing of tempered glass**


- **Tempered glass cannot be cut nor drilled!** It would lead to release of the strain energy and thus catastrophic failure of the glass
- How are the tempered glass articles made (for instance the windshields?)



http://www.grandsportautobody.com



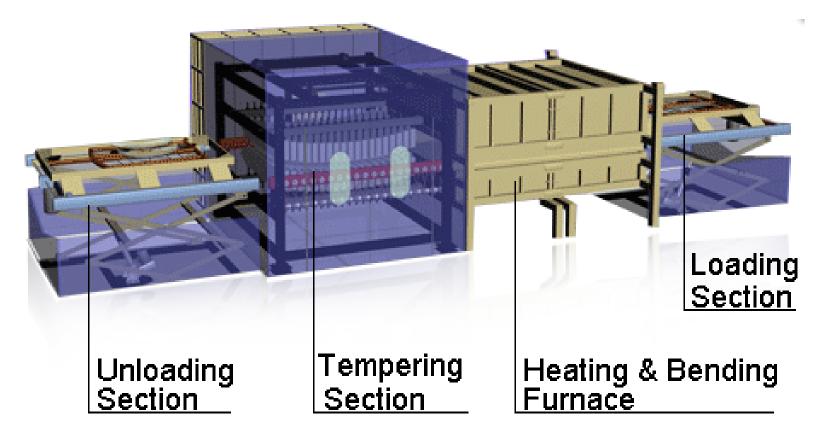







### Processing of tempered glass




• Example of fabrication of tempered windshields

From: www.agc-automotive.com/english/products/temper.html



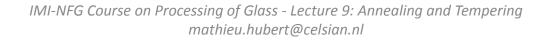
64 MIG

Example of a glass tempering furnace



Picture from www.xinology.com/Glass-Processing-Equipments-Supplies-Consumables/glass-tempering/glass-tempering-furnace/feature/bending-tempering.html

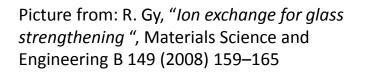



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl



#### Other technical considerations

- A certain thickness is necessary for obtaining an efficient strengthening of the glass by tempering
- For thin glass articles with a thickness below 2mm (typically), thermal tempering becomes much less efficient
- Also, tempering requires a uniform cooling from both sides of the glass article (e.g. both surfaces of a glass plate)
- It is thus complicated to temper glass articles with complex or uneven geometries (such as bottles)
- For these types of products, strengthening (when applied) can be performed using ion-exchange technique (chemical strengthening)








#### Chemical strengthening

- Chemical strengthening of glass also relies on the formation of a compressive stress on the surface, with the core in tensile stress
- The way to achieve this stress profile is however very different (ionexchange instead of thermal treatment)
- Chemical strengthening of glass will be presented by A. Varshneya in this series of IMI-NFG lectures



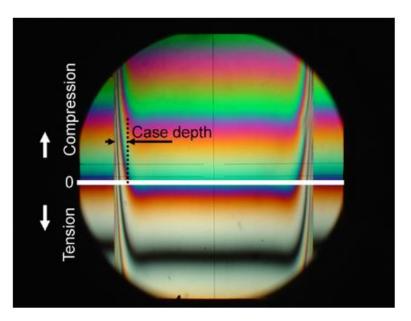
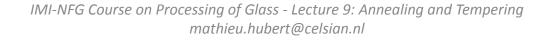



Fig. 3. Stress pattern in a chemically tempered glass: side view in a polariscope equipped with a Babinet compensator.




IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

#### Conclusions – 1/2 - Annealing

- Annealing of the glass articles after the forming process is crucial for relaxing the stresses due to inhomogeneous, rapid cooling
- The annealing consists in reheating the glass above the annealing temperature and perform a **controlled**, **slow cooling** between the annealing point and the strain point
- The **cooling rate between T<sub>anneal</sub> and T<sub>strain</sub>** is crucial and will depend on the type of glass (composition) and the type of article produced (shape, thickness...)
- At industrial scale, annealing is a continuous process, and is performed in annealing lehrs
- The **temperature profile** in the lehr should be optimized to obtain a well-annealed product in the shortest possible time



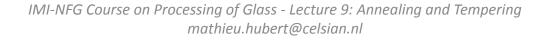




#### Conclusions – 2/2 - Tempering

- **Tempering** of glass is a thermal treatment performed on annealed glasses to create **controlled** stresses in the glass
- The glass is reheated at a critical temperature and then rapidly cooled, leaving the surface in compressive stress and the core in tensile stress
- Tempered glasses can be **5 times stronger** than annealed glass
- If broken, tempered glass will shatter in small fragments (securit glass)
- Tempered glass cannot be cut or drilled, and the glass article must be shaped before the tempering process
- Tempering is limited to relatively thick products (> 2mm) and relatively simple geometries (windows, windshields...)



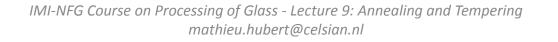





#### Home assignment

- A multiple choice questionnaire (MCQ) including questions on industrial glass annealing and tempering processes is provided with this lecture
- The MCQ will be available online on IMI's website








#### **References and further reading**

- "The glass tempering handbook" by Jonathan Barr, available online (free) at <u>https://dl.orangedox.com/IOM4ukrFcunESCW2Yh/TheGlassTemperingHa</u> <u>ndbook.pdf</u>
- Book "Strength of Inorganic Glass", Ed. C. Kurkjian (Plenum, 1985)
- R. Gardon, "Thermal tempering of glass", in "Glass: Science and Technology, Vol.5, Elasticity and Strength in Glasses", Ed. D. Uhlmann and N. Kreidl (Academic Press, 1980)
- CelSian's glass course e-learning trailer: <u>https://www.youtube.com/watch?v=pID0PYsBlbQ&feature=youtu.be</u>







# Thank you for your attention



# **Questions ?**

Visit us in Eindhoven

Contact me via email:

mathieu.hubert@celsian.nl



IMI-NFG Course on Processing of Glass - Lecture 9: Annealing and Tempering mathieu.hubert@celsian.nl

