
Virtual Glass Course — 07 kieffer@umich.edu

1

Modeling & Simulation of Glass Structure

VCG Lecture 21

John Kieffer

Department of Materials Science and 

Engineering

University of Michigan



Virtual Glass Course — 07 kieffer@umich.edu

2

Overview …

 Historical perspective

 Simulation methodologies

 Theoretical background

Monte Carlo simulation

Molecular dynamics simulation

 Reverse Monte Carlo

 Force fields

 Information retrieval

 Statistical mechanical formalisms

 Structural analyses

 Dynamics

 Application examples
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Force Fields
 Types of interactions between two molecules

 Electrostatic interactions
 Between charges (if ions) and between permanent dipoles, quadrupoles and higher multipole 

moments
– May be represented through partial charges

 Embedding terms (metals)

 Induction interactions
 Between, for example, a permanent dipole and an induced dipole

 Dispersion interactions
 Long-range attraction that has its origin in fluctuations of the charge distribution

 Valence (overlap) interactions
 Covalent bonds

 Repulsive interaction at short range which arises from exclusion principle

 Residual valence interactions
 Specific chemical forces giving rise to association and complex formation - e.g., hydrogen bonding

 Types of interactions within a molecule

 Bond stretch, bond-angle bending, torsional potential

r
q 
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Force Fields

 Non-bonded interactions are typically long-range and 
involve a large number of particles.  Yet, contributions 
to the total energy and forces are considered as pair-
wise additive

+

+

-

Non-bonded
(van der Waals)

Non-bonded
(electrostatic)

Johannes Diderik
Van der Waals

1837-1923
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Metals

 Example: Morse force field

 Approximate physical behavior

 Computationally efficient
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Van der Waals interactions

 The most popular model of the van der Waals non-bonded 

interactions between atoms is the Lennard-Jones potential.

Sir John Edward
Lennard-Jones
1894-1954
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Metals

 Embedded atom method
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Metals

 Embedded atom method
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Embedded atom method


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1 2

Ec = cohesive energy

B = bulk modulus

 = atomic volume

Other factors are model parameters 

that are determined based on 

lattice parameter, bulk modulus, 

shear modulus, cohesive energy, 

vacancy formation energy, and 

average electron density
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Formation of dislocations in metals

V. Bulatov, LLNL
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Simulation of Laser Ablation on Metal 

Surface

QuickTime™ and a

TIFF (Uncompressed) decompressor

are needed to see this picture.

G.H. Gilmer, LLNL
3·106 atoms x 140 ps
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Embedded atom method

 Simple closed form

 Computationally efficient

 Based on density functional theory concept

 Accurate for highly symmetric structures (FCC, BCC)

 Accurate for spherical electron orbitals

 Increasingly inaccurate for complex atomic electron 

configurations and low-symmetry structures



Virtual Glass Course — 07 kieffer@umich.edu

13

Range of interactions

Short-range interactions:

1/2·N·NC force calculations
Long-range interactions:

1/2·N·(N-1) force calculations
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Ionic Materials

 Coulomb interactions are fundamental to atomistic 

systems

 Coulomb interactions have long-range effects
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Ionic Materials

 Degree of charge localization can vary

 Charge polarization effects can be accounted for 

analytically
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Ionic Materials

 Repulsion due to electron orbital overlap

 Repulsion due to interactions between nuclei

… handled by empirical function
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The trouble with Coulomb interactions
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The trouble with Coulomb interactions

Conditionally 

convergent … 

I.e., depends on 

how one adds it 

up …
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Long-range interactions: Ewald 

summation method

Total potential energy of one ion at the reference point. 

Summation decomposed into two parts, one to be evaluated in 

real space, the other in reciprocal space. …
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Reciprocal space
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Reciprocal space
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Reciprocal space
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Reciprocal space
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Reciprocal space
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Reciprocal space
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Real space
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Convergence in real and reciprocal space




i


4 


S G G

 2
e
G

2
4 

  2 q
i
  

1 2


q

l

r
l

erfc  r
l 

l



0

1

2

3

4

5

0 1 2 3 4 5


CC

(r
ij
)

r
ij

-1

-0.5

0

0.5

1

0 5 10 15 20 25

S(G)

G



Virtual Glass Course — 07 kieffer@umich.edu

28

Molecular Simulation

 Massively parallel molecular dynamics

 Spatial domain decomposition - large systems

 Replicated data - long simulation times
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Spatial Decomposition and Ewald Sum
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Particle-Mesh Ewald Method
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Example: fracture in brittle materials

Quic kTime™ and a

GIF decompressor

are needed to see this picture.
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Overview …

 Historical perspective

 Simulation methodologies

 Theoretical background

Monte Carlo simulation

Molecular dynamics simulation

 Reverse Monte Carlo

 Force fields

 Information retrieval

 Statistical mechanical formalisms

 Structural analyses

 Dynamics

 Application examples
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Ionic materials

 Fundamentally correct

 Accurate for strongly ionic compounds, including 

many ceramics and salts …

 Long-range interactions cause computational 

expense

 Increasingly inaccurate when partially covalent 

interactions and charge transfer occurs
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Questions?
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“Universal” force fields
 Goal is to develop force field that can be to describe intra- and inter-molecular interactions for 

arbitrary molecules

 UFF (Universal force field)

 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, "UFF, a 
Full Periodic-Table Force-Field for Molecular Mechanics and Molecular-Dynamics 
Simulations," J. Am. Chem. Soc, 114, 10024-10035 (1992)

 Used for many nanoscale carbon structures (buckyballs, nanotubes)

 COMPASS (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation 
Studies)

 Sun, H; Rigby, D. "Polysiloxanes: Ab Initio Force Field And Structural, Conformational 
And Thermophysical Properties", Spectrochimica Acta (A) ,1997 ,53 , 130,  and 
subsequent references

 http://www.accelrys.com/cerius2/compass.html

 AMBER (Assisted Model Building with Energy Refinement)

 Both a force field and a simulation package for biomolecular simulations

 http://amber.scripps.edu
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“Universal” force fields
 CHARMM (Chemistry at HARvard Macromolecular Mechanics )

 Both a force field and a simulation package for biomolecular simulations

 B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. 
Karplus, “A Program for Macromolecular Energy, Minimization, and Dynamics 
Calculations, J. Comp. Chem. 4 (1983) 187-217 (1983)

 http://www.charmm.org/

 Others

 GROMOS (http://www.igc.ethz.ch/gromos)

 Jorgensen‟s Optimized Potential for Liquid Simulation (OPLS) 
(http://zarbi.chem.yale.edu)

 DREIDING (Mayo, S. L., Olafson, B. D. & Goddard, W. A. Dreiding - a Generic Force-
Field for Molecular Simulations. Journal of Physical Chemistry 94 (1990) 8897-8909 )

 Specific systems

 Alkanes and related systems

– SKS: B. Smit, S. Karaborni, and J.I. Siepmann,  `Computer simulation of vapor-
liquid phase equilibria of n-alkanes', J.  Chem.  Phys. 102 , 2126-2140 (1995); 
`Erratum', 109 , 352 (1998)

– TraPPE: Siepmann group (http://siepmann6.chem.umn.edu)

http://www.charmm.org/
http://www.igc.ethz.ch/gromos
http://zarbi.chem.yale.edu/
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Latest trends: Charge transfer

 Charge localization depends on environment

 Chemical nature of surrounding atoms

 Local structure




i

0


E

 q
i











i 0

 1 2 IP  EA Electronegativity



J
ii

0



2

E

 q
i

2











i 0
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IP = first ionization potential; EA = electron affinity



Virtual Glass Course — 07 kieffer@umich.edu

38

Charge transfer

Energy of an isolated atom:
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Charge transfer


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Charge transfer

Chemical potential of electrons associated with atom i:



E

 q
i

 
i
 

i

0
 q

j
J

ij

j  1

N



Equilibrium requires 1 = 2 = 3 = … = N, which yields 

N–1 equations.  In addition, charge neutrality requires that



q
j

j  1

N

  0
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Charge transfer
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Solving the system of equations yields the equilibrium charges

Equilibrium charges depend on the chemical nature of species and 

on the geometry of the configuration, by virtue of the fact that
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Reactive force fields …


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 Charge redistribution

 Flexible coordination
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L. P. Huang and J. Kieffer, 

J. Chem. Phys. 118, 1487 (2003)
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Force field parameterization

 Reproduce known structures (static properties)

 density at ambient pressure

 equation of state (density vs. pressure)

mechanical properties (elastic moduli, strength, etc.)

 Reproduce dynamic properties

melting temperatures

 vibrational spectra

 Compare with results from ab initio calculations

 bonding energies

 Interatomic forces



Virtual Glass Course — 07 kieffer@umich.edu

45

Crystalline silica polymorphs – one parameterization

16 GPa (C2221)

a‟ = 6.7 Å

b‟ = 5.7 Å

c‟ = 6.1 Å

c‟

a‟

20 GPa (P41212)

a = 4.2 Å

b = 4.2 Å

c = 6.0 Å

0 GPa (P41212) 

a = 4.9 Å

b = 4.9 Å

c = 5.4 Å

25 GPa (P42/mnm)

a = 4.2 Å

b = 4.2 Å

c = 2.8 Å

14 GPa (P41212)

40 GPa (Pnnm)

a = 3.7 Å

b = 4.5 Å

c = 2.8 Å

X-I phase

-cristobalite

stishovite post-stishovite

-quartz at 0 GPa

High-P quartz at 25  GPa 

Ideal high-P 

quartz with bcc

anion sub-lattice 

Huang, Durandurdu and Kieffer, 

Nature Materials (in press)
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Parameter Optimization: Crystal Structures

291K, NVT, 64 moleculesJ. Chem. Soc. Dalton Trans. 1994, 3123-3128

(Hexyl-POSS)
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Parameter Optimization: IR Spectrum

J. Chem. Soc. Dalton Trans. 1994, 3123-3128
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Parameter Optimization: Fitting to 

Electronic Structure Calculations

High

Intermediate

Low
POSS-NaCl Potential Surface
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Fitting Results

Mulliken point shell EEM

Si 1.094 3.417 2.685 0.7

O -0.65 -2 -1.545 -0.46

H -0.119 -0.417 -0.3675 -0.01~0.01

(E)2 0.107583 0.104569 0.0541699 0.00427882
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Charge Equilibration Method
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Questions?
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QM Methods

 Doing a QM simulation or calculation means including the 

electrons explicitly.

 With QM methods, we can calculate properties that depend 

upon the electronic distribution, and to study processes like 

chemical reactions in which bonds are formed and broken.

 The explicit consideration of electrons distinguishes QM models 

and methods from classical force field models and methods.
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Different QM Methods

 Several approaches exist. The two main ones are:

 Molecular orbital theory

 Came from chemistry, since primarily developed for individual 
molecules, gases and now liquids.

 Two “flavors”

– Ab initio: all electrons included (considered exact)

– Semi-empirical: only valence electrons included

 Density functional theory

 Came from physics and materials science community, since 
originally conceived for solids.

 All electrons included via electronic density (considered exact).
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Fundamentals

 The operator that returns the system energy is called 
the Hamiltonian operator H.

H = E
Time-independent

Schrodinger Equation
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k
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energy of 
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energy of 
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energy of 
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Potential 
energy of 
electrons 

Potential 
energy of 
nuclei

Eigenvalue equation

for system energy
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Born-Oppenheimer Approximation

 Neutrons & protons are >1800 times more massive than electrons, and 

therefore move much more slowly.

 Thus, electronic “relaxation” is for all practical purposes instantaneous 

with respect to nuclear motion.

 We can decouple the motion, and consider the electron-electron 

interactions independently of the nuclear interactions. This is the Born-

Oppenheimer approximation.

 For nearly all situations relevant to soft matter, this assumption is 

entirely justified.

(Hel+Vn)el(qi;qk) = Eelel(qi;qk)

The Electronic Schrodinger Equation

Need to simplify!
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QM Methods

 Goal of all QM methods in use today:  

Solve the electronic Schrodinger equation for the 
ground state energy of a system and the 
wavefunction that describes the positions of all the 
electrons.

 The energy is calculated for a given trial wavefunction, and 
the “best” wavefunction is found as that wavefunction that 
minimizes the energy.
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QM Methods

 Solving SE is not so easy!  Anything containing more than two 

elementary particles (i.e. one e- and one nucleon) can‟t be solved 

exactly: the “many-body problem”.

 Even after invoking Born-Oppenheimer, still can‟t solve exactly for 

anything containing more than two electrons.

 So -- all QM methods used today are APPROXIMATE after all, even if 

considered “exact”!  That is, they provide approximate solutions to the 

Schrodinger equation.

 Some are more approximate than others.
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Molecular Orbital Theory

 MOT is expressed in terms of molecular wave functions called molecular 

orbitals.

 Most popular implementation: write molecular orbital as a linear combination of 

atomic orbitals (LCAO):

 Many different ways of writing “basis set”, which leads to many different 

methods and implementations of MOT.




i
 a

 i




  1

K

Eq. 2.68 in Leach K = # atomic orbitals
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Molecular Orbital Theory

 Dozens of approaches for writing basis sets (e.g. in terms of 
Gaussian wavefunctions, or as linear combos of Gaussians). 

 Different implementations retain different numbers of terms.

 Semi-empirical MOT methods consider only valence electrons.

 Some methods include electron exchange.

 Some methods include electron correlation.
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Density Functional Theory

 A different approach for solving Schrodinger‟s equation for the ground 
state energies of matter.

 Based on theory of Hohenberg and Kohn (1964) which states that it is 
not necessary to consider the motion of each individual electron in the 
system. Instead, it suffices to know the average number of electrons at 
any one point in space.

 The HK theorem enables us to write Eel as a functional of the electron 
density .

 To perform a DFT calculation, one optimizes the energy with respect to 
the electron probability density, rather than with respect to the electronic 
wave function.

For a given density, the lowest energy is the best one.
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Density Functional Theory

 In the commonly used Kohn-Sham implementation, the density is 
written in terms of one-electron molecular orbitals called “Kohn-Sham 
orbitals”.

 This allows the energy to be optimized by solving a set of one-electron 
Schrodinger equations (the KS equations), but with electron correlation 
included. This is a key advantage of the DFT method - it‟s easier to 
include electron correlation.

 Different choices of basis sets, how many terms to use, of what type, 
contribute to difficulty of calculation.  More than a few hundred light 
atoms is still too time-consuming, even on big computers. 

 For molecules or systems with large numbers of electrons, 
pseudopotentials are used to represent the wavefunctions of valence 
electrons, and the core is treated in a simplified way.



Virtual Glass Course — 07 kieffer@umich.edu

62

Applications of ab initio computations 

using DMol3
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Electronic band structure of POSS cubes functionalized with n

benzene molecules (n = 0-8)

…

-10  -8    -6    -4    -2     0     2     4     6     8    10

Energy (eV)
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Electronic band structure of POSS cubes functionalized with acene 

molecules (benzene, naphtalene, anthracene, tetracene, and pentacene)

-10   -8   -6    -4    -2     0     2     4     6     8    10

Energy (eV)

Pure poss
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Electron densities of acene-functionalized POSS 

HOMO LUMO

Molecule
Band Gap 

(eV)
Pure Acene (eV)

P-POSS 0.999 1.335

T-POSS 1.486 1.597

A-POSS 2.295 3.268 

N-POSS 3.325 3.348 

B-POSS 4.842 13.776

POSS 8.4 -
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Electron densities of silica nanotubes

HOMO LUMO
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Classical vs. ab initio methods

 No electronic properties

 Phenomenological potential 

energy surface (typically 2-

body contributions)

 Difficult to describe bond 

breaking/formation

 Can do up to a billion 

particles

 Electronic details included

 Potential energy surface 

calculated directly from 

Schrodinger equation (many 

body terms included 

automatically)

 Describes bond 

breaking/formation

 Limited to several hundred 

atoms with significant 

dynamics

Classical ab initio
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Questions?

Editor‟s Note:

Lecture 21 ended here – 4/2/07 
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Overview …

 Historical perspective

 Simulation methodologies

 Theoretical background

Monte Carlo simulation

Molecular dynamics simulation

 Reverse Monte Carlo

 Force fields

 Information retrieval

 Statistical mechanical formalisms

 Structural analyses

 Dynamics

 Application examples
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Simulation Observables: Thermodynamics

In a classical, many body system, the temperature is defined from the 

equipartition theorem in terms of the average kinetic energy per degree 

of freedom:

In a simulation, we use this equation as an operational definition of T.

Thus the lower the temperature, the lower the kinetic energy, and the 

slower the average velocity.

1

2
m v

x

2


1

2
k

B
T
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time steps

Simulation Observables: Thermodynamics

 Thermodynamic quantities

 Calculate T, , p, E etc. depending on ensemble

NVE



T ( t ) 
m

i
v

i

2

( t )

k
B

( 3 N  N
c
)

i 1

N



Nc = # of  
constraints 
(e.g. linear 
momentum)

3N - Nc = # 
of degrees 
of freedom
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Pressure



P 
1

3V
m

i
v

i

2


1

6V
f

ij
r

ij

j  1

N


i 1

N


i 1

N



Simulation Observables: Thermodynamics

NVE

time steps

P is obtained 
from the virial
thm of Clausius.

Virial = exp. value
of the sum of the
products of the 
particle coords 
and the forces 
acting on them.

W=xifxi=-3NkBT
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Measuring quantities in molecular simulations

•Suppose we wish to measure in an experiment the value of a 

property, A, of a system such as pressure or density or heat 

capacity.

•The property A will depend on the positions and momenta of the N 

atoms or molecules that comprise the system. The instantaneous 

value of A is: 

A(pN(t),rN(t)) = A(p1x,p1y,p1z, …, x1,y1,z1,…t).

•Over time, A fluctuates due to interactions between the atoms.
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Measuring quantities in molecular simulations

•In any experiment, the value that we measure is an average of A 

over the time of the measurement (a time average).

•As the time, t, of the measurement increases to infinity, the “true” 

average value of A is attained:



A  lim
  

1


A p

N
( t ), r

N
( t ) dt

t  0





Note that strictly speaking this is true only for 
ergodic systems in equilibrium.
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Measuring quantities in molecular simulations

•To calculate properties in a molecular simulation, we average a 

property A over successive configurations in the trajectory 

generated by the equations of motion. 

•The larger nsteps is, the more accurate the estimate of the true 

time-averaged value of A.



A  lim
n

steps
 

1

n
steps

A p
N

( t ), r
N

( t ) 
t  0

n
steps


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Ensemble averages

 In statistical mechanics we learn that experiments 

and simulations may be performed in different 

ensembles.

 An ensemble is a collection of individual systems that 

can be studied en masse to yield macroscopic 

properties of the entire collection.

 Every equilibrium configuration we generate via MD 

represents a unique microstate of the ensemble. 
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Ensemble averages

 There are many different thermodynamic ensembles, each of 
which is characterized by thermodynamic variables that are 
fixed in the simulation.

 NVE - microcanonical

 NVT - canonical

 NPT - isobaric-isothermal

 VT - Gibbs 

N = number of particles, V = volume, E = total energy, T = temperature, P = 
pressure,  = chemical potential

• The simplest MD simulation has constant N, V and E.  The NVE 
ensemble is the microcanonical ensemble; all states are equally likely.

• In NVE MD, solve F=ma for an isolated system, one for which no 
exchange of energy or particles with the outside.
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Molecular Dynamics Simulation: NVT

Velocity Rescaling

 Recall KE = mv2/2 = 3NkBT/2 in an unconstrained system.

 Simple way to alter T: rescale velocities every time step by a factor (t):

 If temperature at time t is T(t) and v is multiplied by , then the temperature change is

 T 
1

2

2

3

m
i
( v

i
)

2

N k
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N

 
1

2
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2

N k
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N



 T  T
ta rg e t

 T ( t )  (
2
 1)T ( t )

  T
ta rg e t

/ T ( t )
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Molecular Dynamics Simulation: NVT

Velocity Rescaling

 This method does not generate configurations in the canonical 
ensemble.

 Why? Because system is not coupled to an external reservoir, or heat 
bath.

 Thus not a good method for controlling temperature, since it‟s 
unknown how rescaling affects properties of the system.

 Instead, use a “proper” thermostat.

 Using a weakly coupled thermostat can help eliminate drift in total energy 
due to algorithm inaccuracies and round-off error.

 Several types of thermostats; choose wisely depending on your problem!
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Molecular Dynamics Simulation: NVT

Stochastic collision method: Andersen thermostat

 Occasionally replace a randomly chosen particle‟s velocity with a 
velocity chosen randomly from a Maxwell-Boltzmann distribution at the 
desired T. 

 This replacement represents stochastic collisions with the heat bath.

 Equivalent to the system being in contact with a heat bath that 
randomly emits thermal particles that collide with the atoms in the 
system and change their velocity.



p (v
ix

) =  
m

2  k
B

T










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T
 m  v

ix

2
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Molecular Dynamics Simulation: NVT

Extended system method: Nose’-Hoover thermostat

 Introduced by Nose‟ and developed by Hoover in 1985. 

 Considers the thermostat to be part of the system (hence 

„extended system‟).

 Based on extended Lagrangian approach in which an additional 

dynamical variable or degree of freedom s, representing the 

reservoir, imposes constraint of constant T.

reservoir

physical system

extended
system
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Molecular Dynamics Simulation: NVT

Extended system method: Nose’-Hoover thermostat

 Reservoir has potential energy Ures and kinetic energy Kres.

 f = # of dof in physical system, and T is the desired temperature. Q has 
dimensions energy x (time)2, and is considered the fictitious “mass” of 
the additional degree of freedom.

 The magnitude of Q controls the coupling between the physical system 
and the reservoir, and thus influences the temperature fluctuations.

reservoir

physical system
Ures = (f+1)kBT ln s

Kres = (Q/2)(ds/dt)2



 ( t )  sp
s

Q
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Molecular Dynamics Simulation: NVT

Extended system method: Nose’-Hoover thermostat

 Q controls the energy flow between system and reservoir.

 If Q is large, the energy flow is slow; the limit of infinite Q corresponds to 

NVE MD since there is then no exchange of energy between system and 

reservoir.

 If Q is small, then the energy oscillates unphysically, causing equilibration 

problems.

 Nose‟ suggested Q = CfkBT, where C can be obtained by performing trial 

simulations for a series of test systems and observing how well the system 

maintains that desired T.

 Upshot: equations of motion are modified and t is multiplied by Q.

Read in Frenkel and Smit for details if interested.
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Molecular Dynamics Simulation: NVT

Extended system method: Nose’-Hoover thermostat

 Best and most used thermostat today for NVT simulations.

 Ensures that average total KE per particle is that of the equilibrium 
isothermal ensemble.

 Reproduces canonical ensemble in every respect (provided only the 
total energy of the extended system is conserved.)

 If momentum also conserved, NH still works only if COM fixed.

 Otherwise, must use the method of “NH chains”.

 More complicated than other methods, but can be used with velocity 
Verlet and predictor-corrector methods.

 Dynamics NOT independent of Q, but better than Andersen.  
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Molecular Dynamics Simulation: NPT

 Just as one might like to specify T in an MD simulation, one 

might also like to maintain the system at a fixed  pressure P. 

 Simulations in the isobaric-isothermal NPT ensemble are the 

most similar to experimental conditions.

 Certain phenomena may be more easily achieved under 

conditions of constant pressure, like certain phase 

transformations.
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Molecular Dynamics Simulation: NPT

Two types:

 Andersen Barostat
 Allows box size to fluctuate but not change shape.

 Appropriate for liquids, which do not support shear stress.

 Change volume by rescaling positions: r = r+r

 Rahman-Parinello Barostat
 Allows box size and shape to change.

 Use only for solids.

 Necessary for simulating phase transformations.

Read in Frenkel and Smit for details if interested.
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Revisit the equations of motion …



L 
1

2
m

i
Ý r 

i

T
Ý r 

i

i 1

N

   r
ij 

j  i

N


i 1

N







 t

 L

 Ý r 
i









 

 L

 r
i

Recall Lagrangian



L

 Ý r 
i

 m
i
Ý r 

i





 t

 L

 Ý r 
i









  m

i
Ý Ý r 

i



 L

 r
i

 
 

 r
ij

r
ij

r
ijj  i

  f
i



m
i
Ý Ý r 

i
 f

i
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Flexible simulation boxes

 Mechanical deformation

 Structural transitions
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Raman-Parinello algorithm



h  a b c 

a

b

c

Basis vectors are dynamical 

variables:
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Raman-Parinello algorithm



L 
1

2
m

i
Ý s 

i

T
G Ý s 

i

i 1

N

 
1

2
W Tr Ý h 

T
Ý h    r

ij 
j  i

N


i 1

N

  p 
1

2
Tr G 





 t

 L

 Ý s 
i









 

 L

 s
i





 t

L

 Ý h 









 

L

h



L 
1

2
m

i
&s

i

T
G &s

i

i  1

N

 f
2


1

2
W T r &h

T
&h 

Q

2

&f
2

  r
ij 

j  i

N


i  1

N

  p 
1

2
T r  G   g  1  k

B
T ln f

Raman-Parinello Nosé-Hoover algorithm
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Thermodynamic Response Functions: Heat Capacity

 NVE: Perform simulations at many different E for the same N & 

V, and measure T.  Calculate Cv from derivative of E(T) 

(numerically or fitting polynomial and then differentiating).

 NVT: (1) Fix N and V, perform simulations at different T and 

measure E. Then calculate Cv from derivative of E(T).

(2) Calculate Cv from fluctuations in energy.

C
V


 E

 T











V


1

k
B
T

2
E  E  

2

Simulation Observables: Thermodynamics

<E2> - <E>2 On the fly

At the end
(less error?)



Virtual Glass Course — 07 kieffer@umich.edu

93

Thermodynamic Response Functions: Adiabatic Compressibility

 NVE: (1) Fix N and E, perform simulations at different V and measure P.  

Calculate S from derivative of V(P).

(2) Calculate S from fluctuations in pressure.

 NVT: Calculate S from fluctuations in pressure.




S
 

1

V

V

P











S

 P   P  
2

Simulation Observables: Thermodynamics
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Thermodynamic Response Functions: Isothermal Compressibility

 NVT: Fix N and T, perform simulations at different V and measure P.  Calculate T

from derivative of V(P).

 NPT: Fix N and T, perform simulations at different P and measure V. Calculate T

from derivative of V(P).

 NPT: Calculate T from fluctuations in volume.

 VT: Calculate T from fluctuations in N.

Simulation Observables: Thermodynamics




T
 

1

V

V

P











T


1

k
B

T

V  V  
2

V
2
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Questions?


