Neutron and X-ray Scattering Studies of Glass—The basics

Alexis G. Clare NYSCC Alfred NY
Clare@alfred.edu
Outline

- Principles of Diffraction
- Diffraction in Crystals: Bragg Peaks
- What Controls the Intensity
- What Happens When There are no Planes
- X-rays and Neutrons
- Elastic vs Total Scattering
Principle of Diffraction

Wave

Split

Path 1

Recombine

Interference

Path 2

\[\text{Wave} \rightarrow \text{Split} \rightarrow \text{Path 1} \rightarrow \text{Recombine} \rightarrow \text{Interference} \]
Resolution

- To use a wave to resolve two features the features must be separated by \geq the wavelength of the wave
- So the wavelength to resolve features of the order of Å must be of the order of Å (NSOM excepted)
- In E-M radiation that would be X-rays
Planes in crystals

Adapted from Fig. 3.1(a), *Callister 6e.*
Diffraction from Planes

\[2d \sin \theta \cong n\lambda \]

\[I \]

\[2\theta \]
The d-spacing controls peak position what controls the intensity?

- Atom Position on Planes:
The d-spacing controls peak position, but what controls the intensity?

- The wave particle interaction: X-rays
- Electromagnetic waves will interact with charged species
- Coherent scattering and Compton Scattering (incoherent)
- Phase change of π
- Angular Dependence
- Polarization Dependence
The d-spacing controls peak position what controls the intensity? X-rays

- The wave particle interaction
- Scattering from atom is due to electrons (nucleus too heavy to be oscillated)
- Atomic scattering factor

\[
f = \frac{\text{amplitude of wave scattered by an atom}}{\text{amplitude of wave scattered by one electron}}
\]

\[
f = Z : 2\theta = 0
\]

- Form factor depends on distribution of electrons round the nucleus
- Compton increases as Z decreases
The d-spacing controls peak position what controls the intensity? X-rays

- In polycrystalline material the structure factor can be calculated which is a sum of the amplitude and phase of each scattered wave modulated by the form factor for that atom.
The d-spacing controls peak position what controls the intensity? Neutrons

- The wave-particle interaction is with the NUCLEUS
- Different isotopes have different levels of interaction
- A measure of the level of interaction is called the “cross section” σ and it is measured in “barns” where

$$1 \text{ barn} = 10^{-24} \text{ cm}^2$$

- It can also be expressed as the scattering length where

$$\sigma = 4\pi b^2$$

- You can find the neutron cross sections and scattering lengths at

http://www.ncnr.nist.gov/resources/n-lengths/
http://www.ati.ac.at/~neutropt/scattering/table.html
What does cross section mean?
The d-spacing controls peak position what controls the intensity? Neutrons

<table>
<thead>
<tr>
<th>Column</th>
<th>Unit</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>---</td>
<td>Isotope</td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>Natural abundance (For radioisotopes the half-life is given instead)</td>
</tr>
<tr>
<td>3</td>
<td>fm</td>
<td>bound coherent scattering length</td>
</tr>
<tr>
<td>4</td>
<td>fm</td>
<td>bound incoherent scattering length</td>
</tr>
<tr>
<td>5</td>
<td>barn</td>
<td>bound coherent scattering cross section</td>
</tr>
<tr>
<td>6</td>
<td>barn</td>
<td>bound incoherent scattering cross section</td>
</tr>
<tr>
<td>7</td>
<td>barn</td>
<td>total bound scattering cross section</td>
</tr>
<tr>
<td>8</td>
<td>barn</td>
<td>absorption cross section for 2200 m/s neutrons</td>
</tr>
</tbody>
</table>

Note: 1 fm = 1E-15 m, 1 barn = 1E-24 cm^2, scattering lengths and cross sections in parenthesis are uncertainties.

All of this data was taken from the Special Feature section of neutron scattering lengths and cross sections of the elements and their isotopes in *Neutron News*, Vol. 3, No. 3, 1992, pp. 29-37.

<table>
<thead>
<tr>
<th>Isotope</th>
<th>conc</th>
<th>Coh b</th>
<th>Inc b</th>
<th>Coh xs</th>
<th>Inc xs</th>
<th>Scatt xs</th>
<th>Abs xs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>---</td>
<td>4.1491</td>
<td>---</td>
<td>2.163</td>
<td>0.004</td>
<td>2.167</td>
<td>0.171</td>
</tr>
<tr>
<td>28Si</td>
<td>92.23</td>
<td>4.107</td>
<td>0</td>
<td>2.12</td>
<td>0</td>
<td>2.12</td>
<td>0.177</td>
</tr>
<tr>
<td>29Si</td>
<td>4.67</td>
<td>4.70</td>
<td>0.09</td>
<td>2.78</td>
<td>0.001</td>
<td>2.78</td>
<td>0.101</td>
</tr>
<tr>
<td>30Si</td>
<td>3.1</td>
<td>4.58</td>
<td>0</td>
<td>2.64</td>
<td>0</td>
<td>2.64</td>
<td>0.107</td>
</tr>
</tbody>
</table>
The d-spacing controls peak position what controls the intensity? Neutrons

<table>
<thead>
<tr>
<th>Isotope</th>
<th>conc</th>
<th>Coh b</th>
<th>Inc b</th>
<th>Coh xs</th>
<th>Inc xs</th>
<th>Scatt xs</th>
<th>Abs xs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy</td>
<td>---</td>
<td>16.9-0.276i</td>
<td>---</td>
<td>35.9</td>
<td>54.4(1.2)</td>
<td>90.3</td>
<td>994.(13.)</td>
</tr>
<tr>
<td>156Dy</td>
<td>0.06</td>
<td>6.1</td>
<td>0</td>
<td>4.7</td>
<td>0</td>
<td>4.7</td>
<td>33.(3.)</td>
</tr>
<tr>
<td>158Dy</td>
<td>0.1</td>
<td>6.(4.)</td>
<td>0</td>
<td>5.(6.)</td>
<td>0</td>
<td>5.(6.)</td>
<td>43.(6.)</td>
</tr>
<tr>
<td>160Dy</td>
<td>2.34</td>
<td>6.7</td>
<td>0</td>
<td>5.6</td>
<td>0</td>
<td>5.6</td>
<td>56.(5.)</td>
</tr>
<tr>
<td>161Dy</td>
<td>19</td>
<td>10.3</td>
<td>(+/−)4.9</td>
<td>13.3</td>
<td>3.(1.)</td>
<td>16.(1)</td>
<td>600.(25.)</td>
</tr>
<tr>
<td>162Dy</td>
<td>25.5</td>
<td>-1.4</td>
<td>0</td>
<td>0.25</td>
<td>0</td>
<td>0.25</td>
<td>194.(10.)</td>
</tr>
<tr>
<td>163Dy</td>
<td>24.9</td>
<td>5.0</td>
<td>1.3</td>
<td>3.1</td>
<td>0.21</td>
<td>3.3</td>
<td>124.(7.)</td>
</tr>
<tr>
<td>164Dy</td>
<td>28.1</td>
<td>49.4-0.79i</td>
<td>0</td>
<td>307.(3,)</td>
<td>0</td>
<td>307.(3,)</td>
<td>2840.(40.)</td>
</tr>
</tbody>
</table>

Note: 1fm=1E-15 m, 1barn=1E-24 cm^2, scattering lengths and cross sections in parenthesis are uncertainties.

All of this data was taken from the Special Feature section of neutron scattering lengths and cross sections of the elements and their isotopes in Neutron News, Vol. 3, No. 3, 1992, pp. 29-37.
Concept Check

- The position of a “peak” in a diffraction pattern is controlled by the interference between 2 waves scattered from two scattering centers (in the case of a crystalline material this is two crystal planes)

- The intensity of the peak is controlled by
 - The number of scattering centers (in the case of a crystal the number of atoms per unit plane area)
 - The level of interaction between the wave and the scattering center (in the case of a crystal what type of atoms reside on the plane)
Stay Awake Question
Diffraction from Planes

\[2d \sin \theta \geq n \lambda \]
Bragg’s law (first order):

\[\lambda = 2d \sin \theta, \]

where \(\lambda \) is the incident wavelength and \(2\theta \) is the scattering angle. Rearranging and multiplying through by \(2\pi \) gives

\[Q = \frac{4\pi}{\lambda} \sin \theta = \frac{2\pi}{d}. \]

<table>
<thead>
<tr>
<th>Diffraction</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Parameter</td>
</tr>
</tbody>
</table>

To measure the intensity, \(I(Q) \), it is possible to:

(i) Vary \(2\theta \) at fixed \(\lambda \).

(ii) Vary \(\lambda \) at fixed \(2\theta \).
What if there are no planes?

Born Approximation for Scattering Cross Section

A System of Particles:

\[G(\vec{r}, t) = G^S(\vec{r}, t) + G^D(\vec{r}, t) \]

S = self \quad D = distinct

Self scattering is the correlation between the original scattering center at time=0 and itself at time=t

\[Q = k_0 - k \]

Distinct scattering is the correlation between the original scattering center at time=0 and a different one at time=t

\[\hbar Q = \hbar k_0 - \hbar k \]

\[\hbar \omega = E_0 - E \]
What does that give us?

- Distinct scattering is what we want for structure: it is the spatial distribution of our scattering centers.
- Self scattering tells you about dynamics.
Basic Properties of X-rays and Neutrons

<table>
<thead>
<tr>
<th>Property</th>
<th>X-rays</th>
<th>Neutrons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>Ag-Kα to Cr-Kα, 0.56-2.29Å, Synchotron tune 0.01Å-123Å</td>
<td>0.8-10Å</td>
</tr>
<tr>
<td>Energy at 1Å</td>
<td>\approx12.4keV not likely to initiate atomic vibrations</td>
<td>80meV similar to typical phonon energy</td>
</tr>
<tr>
<td>Production</td>
<td>X-ray tube, synchotron or X-ray laser</td>
<td>Reactor or pulsed accelerator</td>
</tr>
<tr>
<td>Detection</td>
<td>Proportional counters or scintillators</td>
<td>Gas counters or scintillators</td>
</tr>
<tr>
<td>Angular dependence</td>
<td>Form factor f(Q)</td>
<td>No Q dependence if non magnetic</td>
</tr>
<tr>
<td>Isotopic variation</td>
<td>None</td>
<td>b varies irregularly with Z</td>
</tr>
<tr>
<td>Phase change on scattering</td>
<td>180</td>
<td>180 or 0</td>
</tr>
<tr>
<td>Magnetic</td>
<td>None</td>
<td>Magnetic form factor</td>
</tr>
</tbody>
</table>
Where X-rays and Neutrons Differ

- For x-rays the coherent scattering depends on $f(Q_0)$ where Q_0 is the elastic scattering vector, this is roughly proportional to Z. The dimensions of the atomic orbitals are similar to the wavelength of the X-rays. While interaction with phonons are small, interaction with electron momentum (Compton Scattering) is large (this can be used-see later)

- For Neutrons the scattering length of an electron is small so nuclear scattering dominates (unless there is magnetic scattering (see later) The scattering length is not Q dependent (nucleus is too small) it does not vary systematically with atomic number. The inelastic scattering of neutrons can be used to determine phonon distributions (see later)
Elastic Scattering

Single Wavelength

Variable angle

Advantages
Gives the time averaged $G(r, \infty)$ directly

Disadvantages
Loss of intensity and information

Monochromate or Energy analyze
Total Scattering for Neutrons

- All neutrons scattered at a given angle are measured

\[
\frac{d\sigma}{d\Omega}
\]

- Where \(\Omega \) is the solid angle into which the neutrons are scattered and \(N_u \) is the number of composition units

\[
\frac{1}{N_u} \frac{d\sigma}{d\Omega} = I_N^{coh} Q_0^{mph} I_N^{incoh} Q_0^{mph}
\]

\[
= \sum_j b_j^2 + \sum_j \sum_k b_j b_k \int_0^\infty 4\pi r^2 \rho_{jk} \sin \frac{Q_0 r}{Q_0} dr
\]
What is it we want?

The best that we can do it to be able to get at the function ρ which we can interpret through the correlation functions:

$$g \equiv 4\pi r^2 \rho$$

$$d \equiv 4\pi r \frac{\rho}{\rho_0}$$

$$t(r) = 4\pi r\rho(r)$$
Radial Density Function

\(\rho(r) \) is the radial density function and is equal to the average number of atoms per unit volume at a distance \(r \) from an arbitrarily chosen origin atom.
Real Space Correlation Function

Older papers present data as the radial distribution function, whereas modern studies employ the differential correlation function, $d(r)$, or the total correlation function, $t(r)$.

\[d(r) = 4\pi r \left[\rho(r) - \rho^* \right] \]

\[t(r) = 4\pi r \rho(r) \]
Ya can’t git there from here

- The intensity represents a superposition of sinusoidal waves resulting from pair correlations throughout the structure:

\[A_1 \sin \theta_1 \]
\[A_2 \sin \theta_2 \]
\[A_3 \sin \theta_3 \]
Ya can’t git there from here

- So they all add up to some curious looking function
Ya can’t git there from here

- The best way to sort out what frequencies and amplitudes you have in a bunch of sinusoidal waves is to do a Fourier Transform.

- A Fourier Transform catalogs the common sin waves in reciprocal space and translates them to a “histogram” in real space.
$T(r)$ from a Neutron Diffraction Experiment

$I(Q) = I_s(Q) + i(Q)$

$I_s(Q) \quad -I_s(Q) \quad i(Q) \quad Q$

$T(r) = T^0(r) + \frac{2}{\pi} \int_0^{\infty} qi(Q) M(Q) \sin rQ \, dQ$
You can’t get to Infinity from Here Either

- Why do we Fourier Transform Qi(Q)?
- Truncation of the Fourier Integral
- How the way you truncate affects your real space correlation function
- How high should you go in Q anyway?
Neutron Peak Function

The termination of the Fourier integral at a finite value of \(Q, Q_{\text{max}} \), means that the correlation function is broadened by the real space peak function, \(P(r) \). The form of \(P(r) \) depends on the modification function, \(M(Q) \):

A: Lorch function.
B: Artificial temperature factor.
C: Step function.
Neutron Diffraction Techniques

\[Q_e = \frac{4\pi}{\lambda_0} \sin \theta \]

STEADY STATE REACTOR

- Reactor Face
- Shielding
- Collimator
- Sample
- Slit Collimator
- Detector

PULSED ACCELERATOR SOURCE

- Electrons or Protons
- Target
- Moderator
- Shielding Wall
- Slits
- Sample
- Detector

Graphs

- \(\phi(\lambda_0) \)
- \(\lambda_0 \)
- \(2\theta \)
- \(I(Q_e) \)
- \(Q_e \)
- \(t \) or \(\lambda_0 \)