Functional Glasses: Properties and Applications for Energy & Information

Glass • Coatings • Paint

Integrated Glass Substrates for OLED Lighting Mehran Arbab PPG Industries, Inc.

PPG is...

- A global materials producer with 12 strategic business units in 5 major product areas:
 - Industrial Coatings
 - Performance Coatings
 - Decorative Coatings
 - Optical & Specialty Materials
 - Glass & Fiber Glass
- Founded in 1883, Headquartered in Pittsburgh, Pa.
- More than 40,000 employees, 150⁺ manufacturing sites, in 60⁺ countries
- Invests 3% of revenue in research and development

Our Planet at Night PG Ideaso

- Energy Use
- The OLED Promise
- Glass Requirements
- PPG Roadmap & Results

Beautifully bright, wasteful and uneven

Glass • Coatings •

Building Energy Demand Challenge: End-Use Energy Consumption

- Buildings consume 39% of total U.S. energy
 - 71% of electricity and 54% of natural gas

Lighting in the United States

>250 GW.yr of Primary Energy ⇒ 80 GW.yr of Site Energy

Room for improvement with exiting technology

Lighting Technology is Evolving

Still costly, in early Manufacturing and commercial stages

Transformational

OLED structure

Glass will be the substrate of choice

Chemically and physically stable, Excellent permeation barrier

PHILIPS, By Permission

Barriers to Broad Market Penetration

External Quantum Efficiency: EQE = IQE * LEE

Internal Quantum Efficiency

Light Extraction Efficiency

Loss Mechanisms

- Ohmic
- Incomplete injected e⁻.h⁺ recombination (1 IQE)
- Extraction losses (1 LEE)

Low Cost Integrated Glass For OLED Lighting

Low Cost Integrated Glass For OLED Lighting The PPG Roadmap

- Integrated substrate for the OLED lighting \$26/m² by 2015
- Performance targets per US- DoE's SSL MYPP (SSLMYPP: Solid State Lighting Multi Year Program Plan)

Project Goal – Meet MYPP Cost Targets

Rigid Sheet SSL Cost Targets

Stage/Year	Units	2011	2012-13	2014
Depreciation	\$/m²	520	200	40
Labor	\$/m ²	305	45	5
Other Operations	\$/m²	70	20	4
Organic Materials	\$/m²	30	15	10
Substrate	\$/m²	6	6	6
Electrodes	\$/m²	20	15	10
Light Extraction	\$/m²	20	15	10
Encapsulation	\$/m²	10	8	5
Other Materials	\$/m²	20	15	10
Total Direct Costs	\$/m²	1000	340	100
Total Direct Costs	\$/klm	330	57	10

Integrated Glass Substrate

Is Float glass a usable alternative to expensive display glass?

High internal transmission

Air Side of glass

Low surface roughness (<5Å)

Integrated Glass Substrate Is sodium an issue?

Device Lifetime testing results indicated no need for barrier

Principle function of an OLED

TCO requirements: surface quality

- No spikes (potential shorts; thickness of OLED stacks: few hundreds of nm)
- No particles
- Roughness: difficult to quantify; long-scale waviness uncritical
- Display Quality works (Ra < 1.5 nm, Rmax < 20 nm)

TCO requirements

Conductivity

- Typical spec: sheet resistance < 10 Ohm/sq
- Often metal shunts are used for a homogeneous current injection
- For large area OLEDs, an additional metal grid can be used in the active area

Transparency

- Needed for maximum efficacy: minimum absorption in glass, TCO, organics
- Typical spec for ITO: $T_{max} > 85 \%$ @ 550 nm

PHILIP

By Permission

TCO requirements

- No formation of hillocks/spikes during operation; no electro-migration
- Patternablity (e. g. photolithography, etching)
- Resistance to atmospheric & application conditions
 - > Contact outside of encapsulation is made on the TCO and/or the metal shunts

Transparent Anodes Multiple paths forward

Optical & electronic stack design & Morphology will be critical

Transparent Metallic Conductors on Glass

Solar Control & Low-Emissivity Coatings

- Highly developed design and manufacturing capabilities
- OLED process & service stability must be established

Integrated Glass Substrate The Anode Status

• Room temperature & high temperature PVD and on-line CVD processes

Coating Type	Sheet Resistance (Ω/□)	Transmissi on @ 550nm	RMS Roughness (nm)	Work Function
Control	18	83	3	5.2
Anode 1	10	85	14	4.96
Anode 2	8.5	84	6	5.08
Anode 3	21	84	1	5.4
Anode 4	7.3	89	0.5	5.33
Targets	10	85	2	>5

Target Properties met with multiple anode designs

Substrate Requirements External Light out-coupling

Fraction of photons leaving OLED: ~ 20% (Interfacial and total internal reflections)

Standard

With External Light out-coupling ~ 28%

Commercially available micro lens array or scattering foils

PHILIPS, By Permission

Integrated Glass Substrate External Extraction

1.27x light enhancement on 2.0mm substrates, white PHOLED device Parity with standard diffuser sheet, No significant shift in color

Sample Type	CIE x	CIE y	Output (Lumens)	Enhancement
Control (No EEL)	0.412	0.409	5.77	1.00x
EEL	0.412	0.404	7.3	1.27x
Control + Diffuser	0.423	0.406	7.54	1.31x

The Solution is Scalable

Substrate requirements Internal light out-coupling

PHILIPS, By Permission

Is TCO surface still compatible with OLEDs?

Many papers and patents, but no substrates commercially available!

Lessons from TCO Glass for Solar

Light Scattering at the TCO Interface

Integrated Glass Substrate Internal Extraction

- **1.31x** enhancement (to be optimized)
- **1.73x** in combination with acrylic block EEL
- Low-cost, scalable, anode-compatible
- Still too rough

6" white OLED panels

	At J=2mA/cm ²							
Substrate	Voltage (V)	PE (Im/W)	1931 x	1931 y	сст [К]	∆uv	Extraction Factor	Extraction Factor with 12mm acrylic block
Control	4.12	36.8	0.41	0.436	3722	0.02	NA	1.45x
IEL	3.98	48.3	0.399	0.43	3920	0.02	1.31x	1.73x

Device data for white PHOLED device on IEL substrate

Sample Type	Transmission (%)	Haze (%)	Enhancement
Sample I	69.3	33.2	1.26x
Sample II	73.3	29.5	1.31x

Variation of Enhancement factor with optical properties

Integrated Glass Substrates for Solid State OLED Lighting

Conclusion

- OLED lighting technology is highly promising
 - Cost, and light extraction remain major challenges
 - Glass technology will be key to successful commercialization
- We have demonstrated a combination of low-cost integrated glass substrate technologies
 - The development must be in collaboration with the lighting industry

Integrated Glass Substrates for Solid State OLED Lighting

<u>Acknowledgement</u>

- Abhinav Bhandari, PPG
- Dennis O'Shaughnessy, PPG
- Manfred Ruske, Phillips
- Universal Display Corporation
- US Department of Energy

Additional Slides

Light Extraction Technology comparison: Lit. Review

Schemes	Features	Factor	Ref.
	microcavity reference OLED OLED	(conventional=1.0)	
Conventional	etaion dejectric - 30mm TAD 50mm TAD 500mm TAD 500mm TAD 500000000000000000000000000	1.5 ~ 5	Tokito <i>et al.</i> ,
Dielectric Mirror —	Bragg mimor Som SiO, Som TiO,	(for individual colors)	2407 (1999)
Multi-wavelength Resonance Cavity _		1.3	Shiga <i>et al.</i> , J.Appl.Phys. 93. 19 (2003)
Top Emission		1.0 ~1.2	Kanno <i>et al.</i> Appl. Phys. Lett. 86, 263502 (2005)
Microlens	12222222 122222	~1.5	Möller et al. J.Appl.Phys. 91, 3324 (2002)
Patterned/shaped Substrates	Top contact Organic Metal interconnection Trop Glass substrate	~1.9	Garbuzov et al. Opt. Lett. 22, 396 (1997)

Source: Report from Korea Institute of Technology authored by Byung Doo Chin

A detailed Comparison.....

	Incandescent	Fluorescent	LEDs	OLEDs
Efficacy	17 lm/W	100 lm/W	80-120 lm/W: White 65-80 lm/W: warm white	100 lm/W : CRI 70 71 lm/W : CRI 81
CRI	100	80-85	80 – white 90 – warm white	95 with 40 lm/W
Form Factor	Heat generating	Long or compact gas filled glass tube	Point source high intensity lamp	Large area thin diffuse source. Flexible, transparent
Safety concerns	Very hot	Contains mercury	Very hot in operation	None to date
LT70 (K hours)	1	20	50	> 20 with 68 lm/W > 4 with 100 lm/W
Dimmable	Yes, but much lower efficacy	Yes, efficiency decreases	Yes, efficiency increases	Yes, efficiency increases
Noise	No	Yes	No	No
Switching lifetime	Poor	Poor	Excellent	Excellent
Color Tunable	No	No	Yes	Yes

Displayed products: Revel & kindred from winona

- Efficacy: 51 Lumens/Watt
- Light Output: 370 Lumens
- CCT: 3500K
- CRI > 80
- Power Consumption: 7.3 Watts
- Lamp Life (LT 70): 15,000 hrs

- Efficacy: 51 Lumens/Watt
- Light Output: 3382 Lumens
- CCT: 3500K
- CRI > 80
- Power Consumption: 66 Watts
- Lamp Life (LT 70): 15,000 hrs

These OLED panels use Phosphors produced by PPG's Optical Products

Building Energy Demand Challenge: End-Use Energy Consumption

- Buildings consume 39% of total U.S. energy
 - 71% of electricity and 54% of natural gas

