CORNING

A Path to the Realization of "A Day Made of Glass"

M.K.Badrinarayan P.Bocko Corporate Research

A Day Made of Glass 2 – Advancing the Vision

Corning Incorporated

Founded:

1851

Headquarters:

Corning, New York

Employees:

29,000 worldwide

2011 Sales:

\$7.9 Billion

Fortune 500 Rank (2012):

328

Corning is the world leader in specialty glass and ceramics.

We create and make keystone components that enable high-technology systems for consumer electronics, mobile emissions control, telecommunications, and life sciences.

We succeed through sustained investment in R&D, more than 150 years of materials science and process engineering knowledge, and a distinctive collaborative culture.

Corning Market Segments and Additional Operations

- for OI FD and high-performance LCD platforms
- Equipment
 - Fiber optic connectivity products
- vehicles
- Light-duty and heavy-duty on-road diesel vehicles
- Heavy-duty nonroad diesel vehicles
- Stationary

- **Throughput** Screening
- Genomics and **Proteomics**
- General Laboratory **Products**

- Corning® Gorilla®
- **Display Optics** and Components
- **Optical Materials**
 - Semiconductor materials
 - Specialty fiber
 - Polarcor™
- **Optics**
- Aerospace and Defense
- **Ophthalmic**

Emerging Display Technology

Other

Products

and Services

- **Drug Discovery** Technology
- **New Business** Development
 - Equity Companies
 - · Cormetech. Inc.
 - Dow Corning Corp.
 - Eurokera, S.N.C.
 - Samsung Corning Precision Materials Co., LTD (SCP)

Innovation Recipe Drives Strategic Actions

Deep understanding of a specific technology

Identification of customers' difficult systems problems

Demanding Requirements

Material

Unique Keystone Component
A component that is a
system enabler

Differentiated by:

Uniqueness
Intellectual Property
Specialized Capital Investment

Outline

- The history of a trend...and the making of a vision
- Underlying technology...what is real, what is ready, what is not
- Opportunities and Challenges

Key themes of display with glass as the common denominator...why?

Attributes needed to realize the vision of DMOG

DISPLAY

- Thin
- Light weight
- High resolution
- Small-large size
- Damage resistant
- Flexible
- Bezel free
- Touch
- Smudge free
- Anti-microbial
- Low power
- Environmentally friendly

COMMUNICATION

- Bandwidth
- High speed
- Wireless
- Flexible
- Software
- Device to device communication

Our products in the value chain for Ubiquitous Connectivity & Display

Information Delivery

Corning Optical Fiber, Cable, Components & Wireless Solutions

Information Display

EAGLE XG® & Lotus™
Substrate Glass for High
Performance LCD & OLED

User Interface: Touch Screen Cover

Corning® Gorilla® Cover Glass

A Day Made of Glass..."Why Glass"?

Consumers want to interact with information anytime, anywhere

Specialized glass delivers enabling attributes at the human visual & tactile interface

Thin

Green

Vivid & Compelling Display

pelling Find Engaging Touch Experience

Light, Slim & Green

Superior Mechanica Attributes

Conform-

able

Arresting Design

3D

Accurate &

Value Add (e.g. Sound)

Precision Surface

Damage resistance is a critical attribute for many applications

Greater damage resistance.

It takes more load to initiate radial cracks in the glass.

Greater retained strength

There is less strength degradation after scratching.

High Resolution display is required for next generation display

- Lower compaction
- Lower compaction variation
- Higher modulus
- Enhanced mechanical properties

Internet growth has enabled display revolution which in turn drives need for bandwidth

A virtuous cycle enabled by Corning capabilities

A Technology Scale applied to key effects in the original "Day Made of Glass" video

Interactive Bathroom Mirror

- Displays in mirror exist today very expensive, just for TV and non-interactive
- It would be possible to use existing technology to incorporate touch
- Requires additional function to toggle between reflective & viewable.

Multifunctional Kitchen Surface

Specialty glass enables PV application

Demonstrated 2% improvement in efficiency

Flexible Display, Transparent Display, Displays Talking to Displays

Corning's ultra-slim glass is flexible enough to be rolled

Typical 100µm thick glass can be rolled on a 150mm spool

Large-Format Sunlight-Readable Displays

Autostereoscopic 3D

Challenges with the Day Made of Glass Vision

Smudge free surface enhances touch - Progress made with anti-smear coating

Low Cost, High Volume Capability For 3D Parts

Edge-to-edge Display

Technology to create bezel-free display is under development

Anti-microbial surfaces with high kill rate and low cost will enable new applications

^{*} Based on JIS Z 2801 Japanese Test for Anti-microbial Activity and Efficacy

A Day Made of Glass Vision for the Future Connected Home A combination of wireless and fiber connectivity

Device-to-device communication can be enhanced by 60 GHz technology and AOC

Small, light, flexible

Challenges

- Combine functionality
- Anti smudge
- Glass mold interaction
- Lower loss fiber
- Low temperature sealants
- Role of Sodium in CIGS
- Lower cost high strain point glass
- Modeling of composition
- Process innovation

Acknowledgements

- Special thanks to P. Bocko for much of the material in this presentation
- Waguih Ishak
- Odessa Petzold
- Sean Garner
- Fred Sears
- Anthony Ng'oma
- T.Gross
- M.Pambianchi
- Pam Strollo