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Basic Statistical Mechanics: Temperature and entropy

• Consider a system with total energy E consisting of 2 weakly interacting sub-

systems A and B. 

Weakly interacting = subsystems can exchange energy and E=EA+AB

• The degeneracy Ω of E is astronomically large (1023). These are the number of 

eigenstates Ω(E,V,N) of a system with energy E and N particles in a volume V.

• For a given choice of EA, the number of degenerated states Ω of the total 

system is ΩA(EA).ΩB(EB).

• It is convenient to have a measure of the degeneracy of the subsystems that is

additive. 

EA , Ω, Ω, Ω, ΩA EB , Ω, Ω, Ω, ΩB



• It is convenient to have a measure of the degeneracy of the subsystems that is additive 

(log !).

ln Ω (EA,EB)=ln Ω (EA,E-EA)=lnΩA (EA)+ln ΩB (E-EA) (1)

• Subsystems A and B can exchange energy. Every energy state of the total system is

equally likely. 

• The number of eigenstates ΩA depends strongly on the value of EA. The most likely

value for EA is the one which maximizes ln Ω(EA,E-EA), i.e. one has :

or, using (1):

because one remembers that EA+EB=E=constant so that dEA+dEB=0.
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(2)

With a short-hand notation :

one has:

for the most probable value of each subsystem (maximum of Ω with respect to EA or EB).

Assume all the energy is in A, one will have energy transfer until equ. (2) is satisfied. 

Or : when the equilibrium of the system is reached, ln Ω is at its maximum : S=kB ln Ω

Second law of Thermodynamics: Entropy S of a system (N,V,E) is at its maximum when the 

system is in thermal equilibrium.

Equation (2) then has a natural implication, the statistical definition of temperature: 

$� = � ln Ω�( �)
� � !�,"�

$�( �, %�, &�) = $#( #, %# , &#) 	
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Equation (2) then has a natural implication, the statistical definition of 

temperature: 

so that at thermal equilibrium, one has: TA=TB

1
) = *#$ = �+

� ",!

Heat bath : Assume that a system A is in thermal equilibrium with a large heat bath 

(system B).

If the system A has an energy Ei, then the bath has EB=E-Ei and a degeneracy of ΩB(E-Ei).
The probability Pi to find the system A at energy i is given by :

And expanding (Taylor) around Ei=0, one obtains for ΩB(E-Ei)

-. = Ω#( −  .)
∑ Ω#( −  .)0

lnΩ#( −  .) = lnΩ#  −  . Ω#  
� + ℴ(1 )
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lnΩ#( −  .) = lnΩ#  −  . Ω#  
� + ℴ(1 )

Or :

And inserted into :

leads to the well-known Boltzmann distribution:

Average energy of the system:  

Where one has introduced the Partition function
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From the partition function, 

one can now compute the free energy F=U-TS of the system via using the Maxwell 

thermodynamic relation:

which is equal to :  

8 =9exp −  0
*#)0

E = −�(
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• F is the workhorse for equilibrium statistical mechanics, as one can write :

etc.
+ = −�:�) => = ) �+�)
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Back to the phase space

� Consider again, an isolated system (microcanonical Ensemble) having 

E=cst, N=cst, V=cst

Natural setting for microscopic evolution per Newton’s equations of motion.

� Consider starting an isolated system in a particular microstate. As the system evolves 

and approaches equilibrium, the total energy E remains constant, at the same value 

that it had for the initial microstate. 

� The principle of equal a priori probabilities then states that the system will ultimately 

visit all of the microstates with that value of E with the same frequency. 

� The function Ω(E, V, N) counts the number of microstates for  atoms in volume V that 

have energy E, and is called the density of states or microcanonical partition 

function. It is given by:

where H is the Hamiltonian of the system and δ is the Dirac functions
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Defining Ensembles

Canonical Ensemble: system characterized by two thermodynamics variables 

Temperature T and total number of particles N.

H being the Hamiltonian of the system, the partition function reads :

or 

where β=1/kBT and Λ volume of  the phase space. The sum runs over all configurations α
of the system. The free energy F(V,N,β) of the system is equal to :

and the probability of having a configuration a as :

Example: Consider a two state model with energies E1 and E2. The partition  function

and the probability of finding are given by :
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Other thermodynamic quantities can be derived from the moments 

of the probability distribution :

Mean energy:

Heat capacity : First moment (mean) of the Hamiltonian

# variance of the Hamiltonian, involving the second moment
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Grand Canonical Ensemble: system characterized by two thermodynamics variables 

Temperature T and chemical potential µ. It also implies that the total number of particles

N can change (remember link between m and Gibbs energy). 

The partition function reads :

where the sum runs over over N particles and over all configurations for  systems having

a number of particles going from 0 to ∞.			
By definition, the Grand Potential ΩΩΩΩ(V,β,µβ,µβ,µβ,µ) is given by :

And similarly the probability distribution:

Or the mean number of particles: 
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Isothermal-isobaric (NPT) Ensemble: system characterized by three thermodynamics

variables : Temperature T , Pressure P and number of particles N.

Important Ensemble given that most of experimental work is performed at constant 

pressure (chemical reaction, measurement,…).

The partition function can be written as a weighted sum of the  Q(V,β,N) of the 

canonical ensemble, i.e. 

In order to have a non-dimensional quantity for ∆(P,β,N), one can choose :

or

leading to : 

out of which can be computed the Gibbs energy G(P,β,N) and the probability Π

∆(-, $, &) = H8(%, $, &) ?�KS"=I%

= = $- = = &/%
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Example of Ensemble calculation: 

Ideal gas consiting of N monoatomic molecules

Integration over the position is immediate. The Hamiltonian being the sum of 

individual degrees of freedom, the integral is equal to the 3N-th power of the integral

with respect to one degree of freedom.

And:
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using Stirling formula: ln N!=NlnN-N
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ℎFFrom the free energy :

one can compute the pressure via : F= - pdV - SdT

Remember that the partition function in isobaric-isothermal (NPT) Ensemble is :

The Gibbs energy is :

One recovers the volume via : G= - VdP - SdT
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