Basic Statistical Mechanics: Temperature and entropy
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e Consider a system with total energy E consisting of 2 weakly interacting sub-
systems A and B.

Weakly interacting = subsystems can exchange energy and E=E,+A;

 The degeneracy Q of E is astronomically large (10%3). These are the number of
eigenstates Q(E,V,N) of a system with energy E and N particles in a volume V.

e Fora given choice of E,, the number of degenerated states Q of the total
system is Q,(E,).Q;(Eg).

* |tis convenient to have a measure of the degeneracy of the subsystems that is
additive.
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e |tis convenient to have a measure of the degeneracy of the subsystems that is additive
(log !).

In Q (E,Eg)=In Q (E,E-E,)=InQ, (E,)+In Qg (E-E,) (1)

e Subsystems A and B can exchange energy. Every energy state of the total system is
equally likely.

e The number of eigenstates Q, depends strongly on the value of E,. The most likely
value for E, is the one which maximizes In Q(E,,E-E,), i.e. one has:

0InQ(EQE—Ep)

0E 4 0

or, using (1):
0InQ4(Em) n 0InQp(E-E4) 0InQu(Ea) _ 0InQp(Eg) _ 0

0E 4 0E 4 0E 4 JER

because one remembers that E,+E;=E=constant so that d£,+dE,=0.

(6 In QA(EA)> _ (6 In ‘Q'B(EB)>
J0E, NV J0Eg Np Vs

matthieu.micoul aut@upmc.fr Atomic modeling of glass — LECTURE 4 MD BASICS-adds




(a In QA(EA)) ~ (a In QB(EB)) (2)
OEn  Jy.y, 0Es )y .

With a short-hand notation : B, = (6 In -QA(EA)>
0E 4 NV,
one has: Ba(Eq, Va4, Ny) = Bp(Ep, Vg, Np)

for the most probable value of each subsystem (maximum of Q with respect to E, or Eg).
Assume all the energy is in A, one will have energy transfer until equ. (2) is satisfied.

Or : when the equilibrium of the system is reached, In Q is at its maximum : S=k; In Q

Second law of Thermodynamics: Entropy S of a system (N,V,E) is at its maximum when the
system is in thermal equilibrium.

Equation (2) then has a natural implication, the statistical definition of temperature:
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Equation (2) then has a natural implication, the statistical definition of

temperature:
1 kop (65)
“=kpf=|—
T 0E VN

so that at thermal equilibrium, one has: T,=Ty

Heat bath : Assume that a system A is in thermal equilibrium with a large heat bath
(system B).

If the system A has an energy E,, then the bath has E;=E-E. and a degeneracy of Q;(E-E,).
The probability Pi to find the system A at energy i is given by :

p Op(E — Ey)
X 05(E - E)

And expanding (Taylor) around E.=0, one obtains for Qg(E-E;)

Qp(E) 1
OF > to@)

InQg(E — E;) =InQg(F) — E| (
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InQz(E — E;) = nQg(E) — E; (QB (E)) .

g ) To@

Or:

E, 1
InQp(E — E;) = In Qp(E) — 7 lT +o(2)
B

p Op(E - E;)
l _ZjQB(E_Ei)

And inserted into :

leads to the well-known Boltzmann distribution:

exp(—E;i/kgT)

S S exp(CE; kT

Average energy of the system:

_ SiEexp(=Ei/ksT) _ O3 eXP (

<E> —

E;
~5or)  amo

%, exp(—E;/ksT) o (2

Where one has introduced the Partition function

dInQ

G

J

E;

kpT

)

op

Atomic modeling of glass — LECTURE 4 MD BASICS-adds



From the partition function, Ej
- Yool
: kpT
)

one can now compute the free energy F=U-TS of the system via using the Maxwell
thermodynamic relation:

o(7)

which is equal to :

E.
F=—kgTInQ = —kgT lnz: exp <— k_]T>
B

J

* Fis the workhorse for equilibrium statistical mechanics, as one can write :

. OF - _Tas
T P 79T otc.
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Back to the phase space

O Consider again, an isolated system (microcanonical Ensemble) having
E=cst, N=cst, V=cst
Natural setting for microscopic evolution per Newton’s equations of motion.

O Consider starting an isolated system in a particular microstate. As the system evolves
and approaches equilibrium, the total energy E remains constant, at the same value
that it had for the initial microstate.

O The principle of equal a priori probabilities then states that the system will ultimately
visit all of the microstates with that value of E with the same frequency.

O The function Q(E, V, N) counts the number of microstates for atoms in volume V that
have energy E, and is called the density of states or microcanonical partition
function. It is given by:

1

Q(E,V,N) = PR ff ...fé?[H(pN,r”) — E|dp,dp, ...dpydrydr, ...dry

where H is the Hamiltonian of the system and & is the Dirac functions
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Defining Ensembles

Canonical Ensemble: system characterized by two thermodynamics variables
Temperature T and total number of particles N.

H being the Hamiltonian of the system, the partition function reads :

- s s e 1 4
Q(I*',,ﬁ,f\-‘]:Z@:{p(—;j}{[&}} or Q(V,/g,N):ASNN!jOdrwe—ﬁH(r’V)

where B=1/kgT and A volume of the phase space. The sum runs over all configurations a
of the system. The free energy F(V,N,[3) of the system is equal to :

BF(V,B,N)=—In(Q(V, 8, N)).

and the probability of having a configurationaas: ., » . , _ €XpP(—FH(a))
P(V,8,N;a) = —— -
| Q(V,B8,N)
Example: Consider a two state model with energies E1 and E2. The partition function
and the probability of finding are given by :

Ei E1 E2
Q = e~E1/kBT 4 o—E2/kgT P(i) =e kBT /(e *BT + ¢ kBT)
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Other thermodynamic quantities can be derived from the moments
of the probability distribution :

Mean energy:

O(BF(V, B, N))

UV, B, N) ==
:ZH(&}PH". B8,N;a)
Heat capacity : =(H(a))  First moment (mean) of the Hamiltonian
o (V. 8. N)
AV, B, N) = — 2 : :
Cy(V,B,N) kplB* 33

= k3 Z?{E[m}}-’{‘f, B, N;a) — (Z H(a)P(V,8,N; ﬂ])

= kpB? (H(a)®) — (H(a))?)

# variance of the Hamiltonian, involving the second moment
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Grand Canonical Ensemble: system characterized by two thermodynamics variables
Temperature T and chemical potential . It also implies that the total number of particles
N can change (remember link between m and Gibbs energy).

The partition function reads :  =(V/, 3. ) Z Z exp(—B(Hn(an) — pN))
N=0 ay
where the sum runs over over N particles and over all configurations for systems having

a number of particles going from 0 to co.

By definition, the Grand Potential Q(V,[3,1) is given by :

BV, B, u) = —In(Z(V, B, )

And similarly the probability distribution:  p(y 3 ). ) = exp(—B(Hy(an) — pN))
PO =(V, 8, 1)

Or the mean number of particles: - BV, B, p))
(V(V.B.1) == =508,

= Z Z NP(V, B, ; an)
N an
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Isothermal-isobaric (NPT) Ensemble: system characterized by three thermodynamics
variables : Temperature T, Pressure P and number of particles N.

Important Ensemble given that most of experimental work is performed at constant
pressure (chemical reaction, measurement,...).

The partition function can be written as a weighted sum of the Q(V,3,N) of the
canonical ensemble, i.e.

A(P,B,N) = J Q(V,B,N)e PPV cdy

In order to have a non-dimensional quantity for A(P,[3,N), one can choose :

C =pP or C=N/V
leading to : _
5 . J'f P e - ; 2 f N aArri. N
OLP, B, V) = NV dV exp(—BPV) dr” exp(—BU(r"))
ATV g 0

out of which can be computed the Gibbs energy G(P,[3,N) and the probability I'

Dl — AV exn(—B(U (rN
BG(P, B, J?\.T') = —In(Q(P,B,N)). TECE B, gz} = exp(—AV) exp(—B(U(x )}}

Q(P, 5, N)

C
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Example of Ensemble calculation: 3N
Ideal gas consiting of N monoatomic molecules  ,, _ 2 bi

3N
1 [ 1 [
©= v j e Pl == 1o f e 1_[ dqidp;

1=
Integration over the position is immediate. The Hamiltonian being the sum of
individual degrees of freedom, the integral is equal to the 3N-th power of the integral
with respect to one degree of freedom.

+ 0o +00
j e_ﬁpZ/Zmdp — Z_er e_dex _ 2mm
And: — bl B
3N
N 2mm
3
The free energyis: F = —kTln Q = —NkT ;lnT n ln% 4 In e(27;‘r;lk)2

using Stirling formula: In N!=NInN-N
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3
3 %4 e(2mmk)2
F=—NkT |=InT+In—+ In

From the free energy : 2 N h3

. doF NkT
one can compute the pressure via : p = —

—_— = — F: - pdV - SdT
av N |74

Remember that the partition function in isobaric-isothermal (NPT) Ensemble is :

3N

1 2Tm +oo
— —-BPV — —BPV /N
A(P,B,N) jQ(V,ﬁ,N)e dV PV / 3 jo e Vidvy

=[] @

3
. . 5 k5/2(2mm)2
The Gibbs energyis: G = —kTInA(P,B,N) = —NkT ElnT —InP +In 3
oG NkT
One recovers the volume via : V=-— <ﬁ> =5 G=-VdP - SdT
T,N
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