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Abstract. We obtain an explicit formula for the best lower bound
for the higher topological complexity, TCkpRPnq, of real projective
space implied by mod 2 cohomology.

1. Main theorem

The notion of higher topological complexity, TCkpXq, of a topological space X was

introduced in [2]. It can be thought of as one less than the minimal number of rules

required to tell how to move consecutively between any k specified points of X. In [1],

the study of TCkpP
nq was initiated, where P n denotes real projective space. Using

Z2 coefficients for all cohomology groups, define zclkpXq to be the maximal number

of elements in kerp∆� : H�pXqbk Ñ H�pXqq with nonzero product. It is standard

that

TCkpXq ¥ zclkpXq.

In [1], it was shown that

zclkpP
nq � maxta1 � � � � � ak�1 : px1 � xkq

a1 � � � pxk�1 � xkq
ak�1 � 0u

in Z2rx1, . . . , xks{px
n�1
1 , . . . , xn�1

k q. In Theorem 1.2 we give an explicit formula for

zclkpP
nq, and hence a lower bound for TCkpP

nq.

Our main theorem, 1.2, requires some specialized notation.

Definition 1.1. If n �
°
εj2

j with εj P t0, 1u (so the numbers εj form the binary

expansion of n), let

Zipnq �
i̧

j�0

p1 � εjq2
j,
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and let

Spnq � ti : εi � εi�1 � 1 and εi�1 � 0u.

Thus Zipnq is the sum of the 2-powers ¤ 2i which correspond to the 0’s in the binary

expansion of n. Note that Zipnq � 2i�1� 1� pn mod 2i�1q. The i’s in Spnq are those

that begin a sequence of two or more consecutive 1’s in the binary expansion of n.

Also, νpnq � maxtt : 2t divides nu.

Theorem 1.2. For n ¥ 0 and k ¥ 3,

zclkpP
nq � kn�maxt2νpn�1q� 1, 2i�1� 1� k �Zipnq : i P Spnqu. (1.3)

It was shown in [1] that, if 2e ¤ n   2e�1, then zcl2pP
nq � 2e�1 � 1, which follows

immediately from our Theorem 1.6.

In Table 1, we tabulate zclkpP
nq for 1 ¤ n ¤ 17 and 2 ¤ k ¤ 8.

Table 1. Values of zclkpnq

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
zcl2pnq 1 3 3 7 7 7 7 15 15 15 15 15 15 15 15 31 31
zcl3pnq 2 6 6 12 14 14 14 24 26 30 30 30 30 30 30 48 50
zcl4pnq 3 8 9 16 19 21 21 32 35 40 41 45 45 45 45 64 67
zcl5pnq 4 10 12 20 24 28 28 40 44 50 52 60 60 60 60 80 84
zcl6pnq 5 12 15 24 29 35 35 48 53 60 63 72 75 75 75 96 101
zcl7pnq 6 14 18 28 34 42 42 56 62 70 74 84 90 90 90 112 118
zcl8pnq 7 16 21 32 39 48 49 64 71 80 85 96 103 105 105 128 135

The smallest value of n for which two values of i are significant in (1.3) is n �

102 � 26 � 25 � 22 � 21. With i � 2, we have 7 � k in the max, while with i � 6, we

have 127 � 25k. Hence

zclkpP
102q � 102k �

$'&'%
127 � 25k 2 ¤ k ¤ 5

7 � k 5 ¤ k ¤ 7

0 7 ¤ k.

For all k and n, TCkpP
nq ¤ kn for dimensional reasons ([1, Prop 2.2]). Thus we

obtain a sharp result TCkpP
nq � kn whenever zclkpP

nq � kn. Corollary 3.4 tells

exactly when this is true. Here is a simply-stated partial result.
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Proposition 1.4. If n is even, then TCkpP
nq � kn for k ¥ 2`�1 � 1, where ` is the

length of the longest string of consecutive 1’s in the binary expansion of n.

Proof. We use Theorem 1.2. We need to show that if i P Spnq begins a string of j

1’s with j ¤ `, then 2i�1 � 1 ¤ p2`�1 � 1qZipnq. If j   `, then Zipnq ¥ 2i�j � 1, and

the desired inequality reduces to 2i�1� 2i�j ¤ 2`�1�i�j � 2`�1, which is satisfied since

2`�1�i�j is strictly greater than both 2i�1 and 2i�j.

If j � `, then

Zipnq ¥ 1 �
¸
α

2i�1�αp`�1q,

where α ranges over all positive integers such that i� 1� αp`� 1q ¡ 0. This reflects

the fact that the binary expansion of n has a 0 starting in the 2i�` position and at

least every ` � 1 positions back from there, and also a 0 at the end since n is even.

The desired inequality follows easily from this.

Theorem 1.2 shows that zclkpP
nq   kn when n is odd. In the next proposition, we

give complete information about when zclkpnq � kn if k � 3 or 4.

Proposition 1.5. If k � 3 or 4, then zclkpP
nq � kn if and only if n is even and the

binary expansion of n has no consecutive 1’s.

Proposition 1.5 follows easily from Theorem 1.2 and the fact that if i P Spnq, then

Zipnq ¤ 2i�1 � 1.

The following recursive formula for zclkpP
nq, which is interesting in its own right,

is central to the proof of Theorem 1.2. It will be proved in Section 2.

Theorem 1.6. Let n � 2e � d with 0 ¤ d   2e, and k ¥ 2. If zkpnq � zclkpP
nq, then

zkpnq � minpzkpdq � k2e, pk � 1qp2e�1 � 1qq, with zkp0q � 0.

Equivalently, if gkpnq � kn� zclkpP
nq, then

gkpnq � maxpgkpdq, kn� pk � 1qp2e�1 � 1qq, with gkp0q � 0. (1.7)

We now use Theorem 1.6 to prove Theorem 1.2.

Proof of Theorem 1.2. We will prove that gkpnq of Theorem 1.6 satisfies

gkpnq � maxt2νpn�1q � 1, 2i�1 � 1 � kZipnq : i P Spnqu (1.8)
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if k ¥ 3, which is clearly equivalent to Theorem 1.2. The proof is by induction, using

the recursive formula (1.7) for gkpnq. Let n � 2e � d with 0 ¤ d   2e.

Case 1: d � 0. Then n � 2e and by (1.7) we have gkpnq � maxp0, k2e � pk �

1qp2e�1 � 1qq. If e � 0, this equals 1, while if e ¡ 0, it equals 0, since k ¥ 3. These

agree with the claimed answer 2νpn�1q � 1, since Sp2eq � H.

Case 2: 0   d   2e�1. Here νpn� 1q � νpd� 1q, Spnq � Spdq, and Zipnq � Zipdq

for any i P Spdq. Substituting (1.8) with n replaced by d into (1.7), we obtain

gkpnq � maxt2νpn�1q�1, 2i�1�1�kZipnq : i P Spnq, kn�pk�1qp2e�1�1qu.

We will be done once we show that kn � pk � 1qp2e�1 � 1q is ¤ one of the other

entries, and so may be omitted. If i is the largest element of Spnq, we will show that

kn� pk � 1qp2e�1 � 1q ¤ 2i�1 � 1 � kZipnq, i.e.,

kni ¤ pk � 1qp2e�1 � 2i�1q, (1.9)

where ni � n � p2i�1 � 1 � Zipnqq is the sum of the 2-powers in n which are greater

than 2i. The largest of these is 2e, and no two consecutive values of i appear in this

sum, hence ni ¤
°

2j, taken over j � e p2q and i� 2 ¤ j ¤ e. If k � 3, (1.9) is true

because the above description of ni implies that 3ni ¤ 2p2e�1� 2i�1q, while for larger

k, it is true since k
k�1

  3
2
. If Spnq is empty, then kn� pk� 1qp2e�1� 1q ¤ 2νpn�1q� 1

by a similar argument, since n ¤ 2e � 2e�2 � 2e�4 � � � � , so 3n ¤ 2p2e�1 � 1q, and

values of k ¡ 3 follow as before.

Case 3: d ¥ 2e�1. If e � 1 P Spdq, then it is replaced by e in Spnq, while other

elements of Spdq form the rest of Spnq. If e � 1 R Spdq, then Spnq � Spdq Y teu. If

i P Spnq � teu, then Zipnq � Zipdq, so its contribution to the set of elements whose

max equals gkpnq is 2i�1 � 1 � kZipnq, as desired. For i � e, the claimed term is

2e�1 � 1 � kZepnq � kn � pk � 1qp2e�1 � 1q, which is present by the induction from

(1.7). If e�1 P Spdq, then the i � e�1 term in the max for gkpdq is 2e�1�kZipnq and

contributes to gkpnq less than the term described in the preceding sentence, and hence

cannot contribute to the max. The 2νpn�1q � 1 term is obtained from the induction

since νpn� 1q � νpd� 1q.

The author wishes to thank Jesus González for many useful suggestions.
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2. Recursive formulas

In this section, we prove Theorem 1.6 and the following variant.

Theorem 2.1. Let n � 2e � d with 0 ¤ d   2e, and k ¥ 2. If hkpnq � zclkpP
nq �

pk � 1qn, then

hkpnq � minphkpdq � 2e, pk � 1qp2e�1 � 1� nqq, with hkp0q � 0. (2.2)

Proof of Theorems 1.6 and 2.1. It is elementary to check that the formulas for zk,

gk, and hk are equivalent to one another. We prove (2.2). We first look for nonzero

monomials in px1 � xkq
a1 � � � pxk�1 � xkq

ak�1 of the form xn1 � � � x
n
k�1x

`
k with ` ¤ n.

Letting ai � n� bi, the analogue of hkpnq for such monomials is given by

rhkpnq � maxt
k�1̧

i�1

bi :
�
n�b1
n

�
� � �

�
n�bk�1

n

�
is odd and

k�1̧

i�1

bi ¤ nu, (2.3)

since
°
bi is the exponent of xk. We will begin by provingrhkpnq � minprhkpdq � 2e, pk � 1qp2e�1 � 1 � nqq. (2.4)

For a nonzero integer m, let Zpmq (resp. P pmq) denote the set of 2-powers corre-

sponding to the 0’s (resp. 1’s) in the binary expansion of m, with Zp0q � P p0q � H.

By Lucas’s Theorem,
�
n�bi
n

�
is odd iff P pbiq � Zpnq. Note that the integers Zipnq

considered earlier are sums of elements of subsets of Zpnq.

For a multiset S, let }S} denote the sum of its elements, and let

φpS, nq � maxt}T } ¤ n : T � Su.

Note that }Zpnq} � 2lgpnq�1� 1�n, where lgpnq � tlog2pnqu, (lgp0q � �1). Let Zpnqj

denote the multiset consisting of j copies of Zpnq, and let

mjpnq � φpZpnqj, nq.

Then, from (2.3), we obtain the key equation rhkpnq � mk�1pnq. Thus (2.4) follows

from Lemma 2.5 below.

Lemma 2.5. If n � 2e � d with 0 ¤ d   2e, and j ¥ 1, then

mjpnq � minpmjpdq � 2e, jp2e�1 � 1 � nqq.
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Proof. The result is clear if j � 1 since 2e�1 � 1 � n   2e, so we assume j ¥ 2. Let

S � Zpdqj satisfy }S} � mjpdq.

First assume d   2e�1. Then 2e�1 P Zpnq. Let T � S Y t2e�1, 2e�1u. No other

subset of Zpnqj can have larger sum than T which is ¤ n due to maximality of }S}

and the fact that the 2-powers in Zpnqj �Zpdqj are larger than those in Zpdqj. Thus

mjpnq � mjpdq � 2e in this case, and this is ¤ jp2e�1 � 1 � nq � }Zpnqj}.

If, on the other hand, d ¥ 2e�1, then Zpdqj � Zpnqj. If }Zpnqj � S}   2e, then let

T � Zpnqj with }T } � jp2e�1 � 1� nq, as large as it could possibly be, and less than

mjpdq�2e. Otherwise, since any multiset of 2-powers whose sum is ¥ 2e has a subset

whose sum equals 2e, we can let T � S Y V , where V is a subset of Zpnqj � S with

}V } � 2e. As before, no subset of Zpnqj can have size greater than that.

Now we wish to consider more general monomials. We claim that for any multiset

S and positive integers m and n,

φpZpm� 1q Y S, nq ¤ φpZpmq Y S, nq � 1. (2.6)

This follows from the fact that subtracting 1 from m can affect Zpmq by adding 1,

or changing 1, 2, . . . , 2t�1 to 2t. These changes cannot add more than 1 to the largest

subset of size ¤ n. We show now that this implies that hkpnq � mk�1pnq � rhkpnq,
and hence (2.2) follows from (2.4).

Suppose that xn�ε11 � � � x
n�εk�1

k�1 x`k with εi ¥ 0 and ` ¤ n is a nonzero monomial in the

expansion of px1�xkq
n�b1 � � � pxk�1�xkq

n�bk�1 . We wish to show that
°
bi ¤ mk�1pnq.

It follows from (2.6) that

φ
�k�1¤
i�1

Zpn� εiq, n
�
¤ φpZpnqk�1, nq �

¸
εi � mk�1pnq �

¸
εi.

The odd binomial coefficients
�
n�bi
n�εi

�
imply that P pbi � εiq � Zpn� εiq. Thus

φ
�k�1¤
i�1

P pbi � εiq, n
�
¤ mk�1pnq �

¸
εi. (2.7)

Since }P pbi � εiq} � bi � εi and
°
pbi � εiq ¤ n, the left hand side of (2.7) equals°

pbi � εiq, hence
°
bi ¤ mk�1pnq, as desired.
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3. Examples and comparisons

In this section, we examine some special cases of our results (in Propositions 3.1

and 3.5) and make comparisons with some work in [1].

The numbers z3pnq � zcl3pP
nq are 1 less than a sequence which was listed by the

author as A290649 at [3] in August 2017. They can be characterized as in Proposition

3.1, the proof of which is a straightforward application of the recursive formula

z3p2
e � dq � minpz3pdq � 3 � 2e, 2p2e�1 � 1qq for 0 ¤ d   2e,

from Theorem 1.6.

Proposition 3.1. For n ¥ 0, zcl3pnq is the largest even integer z satisfying z ¤ 3n

and
�
z�1
n

�
� 1 p2q.

We have not found similar characterizations for zkpnq when k ¡ 3.

In [1, Thm 5.7], it is shown that our gkpnq in Theorem 1.6 is a decreasing function

of k, and achieves a stable value of 2νpn�1q � 1 for sufficiently large k. They defined

spnq to be the minimal value of k such that gkpnq � 2νpn�1q� 1. We obtain a formula

for the precise value of spnq in our next result.

Let S 1pnq denote the set of integers i such that the 2i position begins a string of

two or more consecutive 1’s in the binary expansion of n which stops prior to the 20

position. For example, S 1p187q � t5u since its binary expansion is 10111011.

Proposition 3.2. Let sp�q and S 1p�q be the functions just described. Then

spnq �

$'''&'''%
2 if n� 1 is a 2-power

3 if n� 1 is not a 2-power and S 1pnq � H

max
 R2i�1 � 2νpn�1q

Zipnq

V
: i P S 1pnq

(
otherwise.

Proof. It is shown in [1, Expl 5.8] that gkp2
v � 1q � 2v � 1 for all k ¥ 2, hence

sp2v � 1q � 2. This also follows readily from (1.7).

If the binary expansion of n has a string of i � 1 1’s at the end and no other

consecutive 1’s (so that Spnq � tiu in (1.3)), then Zipnq � 0. Thus by (1.8) gkpnq �

2i�1� 1 � 2νpn�1q� 1 for k ¥ 3. If n � 2i�1� 1, then spnq � 3, since g2pnq ¡ 2i�1� 1.
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Now assume S 1pnq is nonempty. By (1.8), spnq is the smallest k such that

2i�1 � 1 � kZipnq ¤ 2νpn�1q � 1 (3.3)

for all i P Spnq, which easily reduces to the claimed value. Note that if the string of

1’s beginning at position 2i goes all the way to the end, then (3.3) is satisfied; this

case is omitted from S 1pnq in the theorem, because it would yield 0{0.

The following corollary is immediate.

Corollary 3.4. If n is even and

k ¥ maxt3,

R
2i�1 � 1

Zipnq

V
: i P Spnqu,

then TCkpP
nq � kn. These are the only values of n and k for which zclkpP

nq � kn.

In [1, Def 5.10], a complicated formula was presented for numbers rpnq, and in [1,

Thm 5.11], it was proved that spnq ¤ rpnq. It was conjectured there that spnq � rpnq.

However, comparison of the formula for spnq established in Proposition 3.2 with their

formula for rpnq showed that there are many values of n for which spnq   rpnq. The

first is n � 50, where we prove sp50q � 5, whereas their rp50q equals 7. Apparently

their computer program did not notice that

px1 � x5q
63px2 � x5q

63px3 � x5q
62px4 � x5q

62

contains the nonzero monomial x501 x
50
2 x

50
3 x

50
4 x

50
5 , showing that our z5p50q � 250 and

g5p50q � 0, so sp50q ¤ 5.

In Table 2, we present a table of some values of sp�q, omitting sp2v � 1q � 2 and

sp2vq � 3 for v ¡ 0.

Table 2. Some values of spnq

n 5 6 9 10 11 12 13 14 17-21 22 23 24 25 26 27 28 29 30
spnq 3 7 3 3 3 5 7 15 3 7 3 5 5 7 7 11 15 31

In [1], there seems to be particular interest in TCkpP
3�2eq. We easily read off from

Theorem 1.2 the following result.
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Proposition 3.5. For k ¥ 2 and e ¥ 1, we have

zclkpP
3�2eq �

#
pk � 1qp2e�2 � 1q if pe � 1, k ¤ 6q or pe ¥ 2, k ¤ 4q

k � 3 � 2e otherwise.

This shows that the estimate sp3 � 2eq ¤ 5 for e ¥ 2 in [1] is sharp.
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