On the zero-divisor-cup-length of spaces of oriented isometry classes of planar polygons

Donald M. Davis
Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA

A R T I C L E I N F O

Article history:

Received 29 December 2015
Received in revised form 26 April 2016
Accepted 26 April 2016
Available online xxxx

MSC:

57R19
55R80
58D29

Keywords:
Topological complexity
Planar polygon spaces
Zero-divisor-cup-length

Abstract

Using information about the rational cohomology ring of the space $M\left(\ell_{1}, \ldots, \ell_{n}\right)$ of oriented isometry classes of planar n-gons with the specified side lengths, we obtain bounds for the zero-divisor-cup-length (zcl) of these spaces, which provide lower bounds for their topological complexity (TC). In many cases our result about the cohomology ring is complete and we determine the precise zcl. We find that there will usually be a significant gap between the bounds for TC implied by zcl and dimensional considerations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The topological complexity, $\operatorname{TC}(X)$, of a topological space X is, roughly, the number of rules required to specify how to move between any two points of X. A "rule" must be such that the choice of path varies continuously with the choice of endpoints. (See [3, §4].) Information about the cohomology ring of X can be used to give a lower bound for $\mathrm{TC}(X)$.

Let $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$ be an n-tuple of positive real numbers. Let $M(\ell)$ denote the space of oriented n-gons in the plane with successive side lengths $\ell_{1}, \ldots, \ell_{n}$, where polygons are identified under translation and rotation. Thus

$$
M(\ell)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / S O(2)
$$

If we think of the sides of the polygon as linked arms of a robot, then $\mathrm{TC}(M(\ell))$ is the number of rules required to program the robot to move between any two configurations.

[^0]Let $[n]=\{1, \ldots, n\}$ throughout. We say that ℓ is generic if there is no subset $S \subset[n]$ for which $\sum_{i \in S} \ell_{i}=\sum_{i \notin S} \ell_{i}$. For such $\ell, M(\ell)$ is an orientable ($n-3$)-manifold [3, Thm. 1.3] and hence, by [3, Cor. 4.15], satisfies

$$
\begin{equation*}
\mathrm{TC}(M(\ell)) \leq 2 n-5 \tag{1.1}
\end{equation*}
$$

A lower bound for topological complexity is obtained using the zero-divisor-cup-length of $X, \operatorname{zcl}(X)$, which is the maximum number of elements $\alpha_{i} \in H^{*}(X \times X)$ satisfying $m\left(\alpha_{i}\right)=0$ and $\prod_{i} \alpha_{i} \neq 0$. Here m : $H^{*}(X) \otimes H^{*}(X) \rightarrow H^{*}(X)$ denotes the cup product pairing with rational coefficients, and α_{i} is called a zero divisor. Throughout the paper, all cohomology groups have coefficients in \mathbb{Q}, unless specified to the contrary. In [4, Thm. 7], it was shown that

$$
\begin{equation*}
\mathrm{TC}(X) \geq \operatorname{zcl}(X)+1 \tag{1.2}
\end{equation*}
$$

In this paper, we obtain some new information about the rational cohomology $\operatorname{ring} H^{*}(M(\ell))$ when ℓ is generic to obtain lower bounds for $\operatorname{zcl}(M(\ell))$ and hence for $\operatorname{TC}(M(\ell))$. Frequently, our description of the cohomology ring is complete (64 out of 134 cases when $n=7$), and we can give the best lower bound implied by ordinary cohomological methods. However, unlike the situation for isometry classes of polygons, i.e., when polygons are also identified under reflection, this lower bound is usually significantly less than $2 n-5$.

Indeed, for the space of isometry classes of planar polygons,

$$
\bar{M}(\ell)=\left\{\left(z_{1}, \ldots, z_{n}\right) \in\left(S^{1}\right)^{n}: \sum \ell_{i} z_{i}=0\right\} / O(2),
$$

the mod-2 cohomology ring was completely determined in [9], and in [1] and [2] we showed that for several large families of ℓ,

$$
2 n-6 \leq \mathrm{TC}(\bar{M}(\ell)) \leq 2 n-5
$$

the latter because $\bar{M}(\ell))$ is also an $(n-3)$-manifold when ℓ is generic. Note that for motions in the plane, $M(\ell)$ would seem to be a more relevant space than $\bar{M}(\ell)$. For the spaces $M(\ell)$ considered here, rational cohomology often gives slightly stronger bounds than does mod- 2 cohomology.

In Section 2, we describe what we can say about the rational cohomology ring $H^{*}(M(\ell))$. In Section 3, we obtain information about $\operatorname{zcl}(M(\ell))$ and hence $\operatorname{TC}(M(\ell))$. Theorems 3.1 and 3.2 give upper and lower bounds for $\operatorname{zcl}(M(\ell))$. See Table 3.12 for a tabulation when $n=8$. In Section 4, we give an example, due to the referee, in which there are what we call "exotic products" in the cohomology ring. The possibility of these prevents us from making stronger zcl estimates.

We thank the referee for pointing out a mistake in an earlier version, and for pointing out a number of illustrative examples. We also thank Nitu Kitchloo for some early suggestions.

2. The rational cohomology ring $H^{*}(M(\ell))$

We assume throughout that $\ell_{1} \leq \cdots \leq \ell_{n}$. It is well-understood [9, Prop. 2.2] that the homeomorphism type of $M(\ell)$ is determined by which subsets S of $[n]$ are short, which means that $\sum_{i \in S} \ell_{i}<\frac{1}{2} \sum_{i=1}^{n} \ell_{i}$. For
generic ℓ, a subset which is not short is called long.

Define a partial order on the power set of $[n]$ by $S \leq T$ if $S=\left\{s_{1}, \ldots, s_{\ell}\right\}$ and $T \supset\left\{t_{1}, \ldots, t_{\ell}\right\}$ with $s_{i} \leq t_{i}$ for all i. This order will be used throughout the paper, applied also to multisets. As introduced in [10], the genetic code of ℓ is the set of maximal elements (called genes) in the set of short subsets
of $[n]$ which contain n. The homeomorphism type of $M(\ell)$ is determined by the genetic code of ℓ. Note that if $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$, then all genes have largest element n. We introduce the new terminology that if $\left\{n, i_{r}, \ldots, i_{1}\right\}$ is a gene, then $\left\{i_{r}, \ldots, i_{1}\right\}$ is called a gee. (Gene without the n.) We define a subgee to be a set of positive integers which is \leq a gee under the above ordering.

The following result was proved in [5, Thm. 6].
Theorem 2.1. The rational cohomology ring $H^{*}(M(\ell))$ contains a subalgebra generated by classes V_{1}, \ldots, $V_{n-1} \in H^{1}(M(\ell))$ whose only relations are that if $S=\left\{s_{1}, \ldots, s_{k}\right\}$ with $s_{1}<\cdots<s_{k}$, then $V_{S}:=V_{s_{1}} \cdots V_{s_{k}}$ satisfies $V_{S}=0$ iff S is not a subgee of ℓ.

In other words, the nonzero monomials in the V_{i} 's correspond exactly to the subgees. Of course, $V_{i}^{2}=0$, since $\operatorname{dim}\left(V_{i}\right)$ is odd.

It is well-known (e.g. [7, Expl. 2.3]) that if the genetic code of ℓ is $\langle\{n, n-3, n-4, \ldots, 1\}\rangle$, then $M(\ell)$ is homeomorphic to $\left(S^{1}\right)^{n-3} \sqcup\left(S^{1}\right)^{n-3}$. We will exclude this case from our analysis and use the following known result, in which, as always, $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right)$.

Proposition 2.2. ([^, Rmk. 2.8]) If the genetic code of ℓ does not equal $\langle\{n, n-3, \ldots, 1\}\rangle$, then all genes have cardinality less than $n-2$, and $M(\ell)$ is a connected $(n-3)$-manifold.

From now on, let $m=n-3$ denote the dimension of $M(\ell)$, and let W_{\emptyset} denote the orientation class of $H^{m}(M(\ell))$. We obtain

Theorem 2.3. A basis for $H^{*}(M(\ell))$ consists of the classes V_{S} of Theorem 2.1 such that S is a subgee of ℓ, together with classes $W_{S} \in H^{m-|S|}(M(\ell))$, for exactly the same S 's, satisfying that

$$
V_{S} W_{S^{\prime}}=\delta_{S, S^{\prime}} W_{\emptyset} \quad \text { if }\left|S^{\prime}\right|=|S|
$$

Also $V_{S} V_{S^{\prime}}=V_{S \cup S^{\prime}}$ if S and S^{\prime} are disjoint and $S \cup S^{\prime}$ is a subgee of ℓ, while $V_{S} V_{S^{\prime}}=0$ otherwise. Finally, $W_{S} W_{S^{\prime}}=0$ whenever $\left|W_{S}\right|+\left|W_{S^{\prime}}\right|=m$.

Proof. By [3, Thm. 1.7], for all i, the i th Betti number of $M(\ell)$ equals the number of V_{S} 's described in Theorem 2.1 of degree i plus the number of such V_{S} 's of degree $m-i$. By Theorem 2.1, our classes V_{S} are linearly independent in $H^{*}(M(\ell))$ and all products $V_{S} V_{S^{\prime}}$ are zero except those listed in our set. By Lemma 2.4, the nonsingularity of the Poincare duality pairing implies that there are classes W_{S} which pair with the classes V_{S} and with each other in the claimed manner, and the Betti number result implies that there are no additional classes.

The following elementary lemma was used in the preceding proof. This lemma is applied to $U=H^{i}(M(\ell))$, $U^{\prime}=H^{m-i}(M(\ell)),\left\{u_{1}, \ldots, u_{k}\right\}$ the set of V_{S}^{\prime} 's in $H^{i}(M(\ell))$, and $\left\{u_{k+1}^{\prime}, \ldots, u_{t}^{\prime}\right\}$ the set of V_{S} 's in $H^{m-i}(M(\ell))$.

Lemma 2.4. Suppose U and U^{\prime} are t-dimensional vector spaces over \mathbb{Q} and $\phi: U \times U^{\prime} \rightarrow \mathbb{Q}$ is a nonsingular bilinear pairing. Suppose $\left\{u_{1}, \ldots, u_{k}\right\} \subset U$ is linearly independent, as is $\left\{u_{k+1}^{\prime}, \ldots, u_{t}^{\prime}\right\} \subset U^{\prime}$, and $\phi\left(u_{i}, u_{j}^{\prime}\right)=0$ for $1 \leq i \leq k<j \leq t$. Then there exist bases $\left\{u_{1}, \ldots, u_{t}\right\}$ and $\left\{u_{1}^{\prime}, \ldots, u_{t}^{\prime}\right\}$ of U and U^{\prime} extending the given linearly-independent sets and satisfying $\phi\left(u_{i}, u_{j}^{\prime}\right)=\delta_{i, j}$.

Proof. For $1 \leq i \leq k$, let $\psi_{i}: U \rightarrow \mathbb{Q}$ be any homomorphism for which $\psi_{i}\left(u_{j}\right)=\delta_{i, j}$ for $1 \leq j \leq k$. By nonsingularity, there is $u_{i}^{\prime} \in U^{\prime}$ such that $\phi\left(u, u_{i}^{\prime}\right)=\psi_{i}(u)$ for all $u \in U$. To see that $\left\{u_{1}^{\prime}, \ldots, u_{t}^{\prime}\right\}$ is linearly independent, assume $\sum c_{\ell} u_{\ell}^{\prime}=0$. Applying $\phi\left(u_{i},-\right)$ implies that $c_{i}=0,1 \leq i \leq k$, while linear independence of $\left\{u_{k+1}^{\prime}, \ldots, u_{t}^{\prime}\right\}$ then implies that $c_{k+1}=\cdots=c_{t}=0$. Nonsingularity now implies that
there are classes u_{i} for $i>k$ such that $\phi\left(u_{i}, u_{j}^{\prime}\right)=\delta_{i, j}$ for all j, and linear independence of the u_{i} 's is immediate.

Results similar to Theorem 2.3 and Proposition 2.5 below were also presented, in slightly different situations, in [8, Rmk. 10.3.20] and [6, Prop. A.2.4].

Let s denote the size of the largest gee of ℓ. The only V_{S} 's occur in gradings $\leq s$, and so the only W_{S} 's occur in grading $\geq m-s$. If $2(m-s) \leq m-1$ (i.e., $m \leq 2 s-1$), then there can be nontrivial products of W_{S} 's, about which we apparently have little control.

The following simple result gives excellent information about products of V classes times W classes. In particular, if $m \geq 2 s$, the entire ring structure is determined! See Corollary 2.8. When $m=4$, this is the case for 64 of the 134 equivalence classes of ℓ 's, as listed in [11].

Proposition 2.5. Let $\rho_{i}(T)$ denote the number of elements of T which are greater than i. Modulo polynomials in V_{1}, \ldots, V_{n-1},

$$
V_{i} W_{S} \equiv \begin{cases}(-1)^{\rho_{i}(T)} W_{T} & \text { if } S=T \sqcup\{i\} \tag{2.6}\\ 0 & \text { if } i \notin S .\end{cases}
$$

In particular, if s is the maximal size of gees and $m-|S| \geq s$, then

$$
V_{i} W_{S}= \begin{cases}(-1)^{\rho_{i}(T)} W_{T} & \text { if } S=T \sqcup\{i\} \tag{2.7}\\ 0 & \text { if } i \notin S .\end{cases}
$$

Proof. Write $V_{i} W_{S}=\sum \alpha_{P} V_{P}+\sum \alpha_{Q}^{\prime} W_{Q}$ with $\alpha_{P}, \alpha_{Q}^{\prime} \in \mathbb{Q}$. If V_{T} is any monomial in grading $|S|-1$, then

$$
(-1)^{\rho_{i}(T)} \delta_{S, T \cup\{i\}} W_{\emptyset}=V_{T} V_{i} W_{S}=\sum_{Q} \alpha_{Q}^{\prime} \delta_{T, Q} W_{\emptyset}=\alpha_{T}^{\prime} W_{\emptyset},
$$

as all monomials in the V 's are 0 in grading m. The first result follows immediately.
The second part follows since $\left|V_{i} W_{S}\right|=m-|S|+1$ and all polynomials in the V 's are 0 in grading $>s$.

Corollary 2.8. If $m \geq 2 s$, where s is the maximal gee size, then the complete structure of the algebra $H^{*}(M(\ell))$ is given by Theorem 2.3 and (2.7).

We offer the following illustrative example, in which we have complete information about the product structure. Here we begin using the notation introduced in [10] of writing genes (and gees) which are sets of 1-digit numbers by just concatenating those digits.

Example 2.9. Suppose the genetic code of ℓ is $\langle 9421,95\rangle$. Then a basis for $H^{*}(M(\ell))$ is:

0	1
1	$V_{1}, V_{2}, V_{3}, V_{4}, V_{5}$
2	$V_{1} V_{2}, V_{1} V_{3}, V_{1} V_{4}, V_{2} V_{3}, V_{2} V_{4}$
3	$V_{1} V_{2} V_{3}, V_{1} V_{2} V_{4}, W_{123}, W_{124}$
4	$W_{12}, W_{13}, W_{14}, W_{23}, W_{24}$
5	$W_{1}, W_{2}, W_{3}, W_{4}, W_{5}$
6	W_{\emptyset}.

The only nontrivial products of V 's are those indicated. All products of W^{\prime} 's are 0 . The multiplication of V_{i} by W_{S} is given, up to sign, by removal of the subscript i, if $i \in S$, else 0 .

In the above example, $m=6$ and $s=3$. It is quite possible that a similarly nice product structure might hold in various cases in which $m<2 s$. When it does not, we refer to nonzero products of W 's or cases in which (2.7) does not hold as exotic products. In Section 4, we present an example, due to the referee, in which nontrivial exotic products occur.

One important class of examples in which $s \leq 2 m$ and so Corollary 2.8 applies is the space $M_{2 k+1}$ of equilateral $(2 k+1)$-gons. Here $\ell=(1, \ldots, 1)$ and the genetic code is $\langle\{2 k+1,2 k, \ldots, k+2\}\rangle$, and so $s=k-1$ and $m=2 k-2$.

3. Zero-divisor-cup-length

In this section we study the zero-divisor-cup-length $\operatorname{zcl}(M(\ell))$, where $\ell=\left(\ell_{1}, \ldots, \ell_{n}\right), \ell$ is generic, and its genetic code does not equal $\langle\{n, n-3, \ldots, 1\}\rangle$. We also discuss the implications for topological complexity. Recall that $m=n-3$.

Our first result is an upper bound, which will sometimes be sharp. One sharp example is when the genetic code is 742 .

Theorem 3.1. If s is the largest cardinality of the gees of ℓ, then $\operatorname{zcl}(M(\ell)) \leq 2 s+2$.

Proof. For $u \in H^{*}(M(\ell))$, let $\bar{u}=u \otimes 1-1 \otimes u$. We first consider products of the form $\prod \overline{u_{i}}$. A product of $a \overline{V_{i}}$'s and $b \overline{W_{S}}$'s has grading $\geq a+b(m-s)$. If $a>2 s$, then $\prod \overline{V_{i}}=0$, so we may assume that $a \leq 2 s$. If $a+b \geq 2 s+3$, then $b \geq 3$ and

$$
a+b(m-s) \geq 2 s+3-b+b(m-s)=b m+1-(b-2)(s+1) \geq b m+1-(b-2) m=2 m+1,
$$

and so the product must be 0 . We have used that $s \leq m-1$ by Proposition 2.2.
Now we consider the possibility of more general zero divisors. Let α_{j} denote a zero divisor which contains a term $A \otimes B$ in which the total number of V-factors (resp. W-factors) in $A B$ is p_{j} (resp. q_{j}) with $p_{j}+q_{j} \geq 2$. Its grading is $\geq p_{j}+q_{j}(m-s)$. A product of $a \overline{V_{i}}$'s, $b \overline{W_{S}}$'s, and $c \alpha_{j}$'s, with $a+b+c \geq 2 s+3$ will be 0 if $a+\sum p_{j}>2 s$, so we may assume $a+\sum p_{j} \leq 2 s$. This product, with $c \geq 1$, has grading

$$
\begin{aligned}
& \geq a+b(m-s)+\sum p_{j}+(m-s) \sum q_{j} \\
& \geq a+b(m-s)+\sum p_{j}+(m-s)\left(2 c-\sum p_{j}\right) \\
& \geq a+(b+2 c)(m-s)+(m-s-1)(a-2 s) \\
& =(m-s-1)(a+b+2 c-2 s)+a+b+2 c \\
& \geq(3+c)(m-s-1)+2 s+3+c \\
& =2 m+(c+1)(m-s) \\
& >2 m,
\end{aligned}
$$

and hence is 0 .
Next we give our best result for lower bounds. Recall that the partial order described just before Theorem 2.1 is applied also to multisets.

Theorem 3.2.

a. If G and G^{\prime} are gees of ℓ, not necessarily distinct, and there is an inequality of multisets $G \cup G^{\prime} \geq[k]$, then

$$
\operatorname{zcl}(M(\ell)) \geq \begin{cases}k+2 & k \equiv m(2) \\ k+1 & k \not \equiv m(2)\end{cases}
$$

b. If there are no exotic products in $H^{*}(M(\ell))$, then (a) is sharp in the sense that if

$$
k_{0}:=\max \left\{k: \exists \text { gees } G \text { and } G^{\prime} \text { of } \ell \text { with } G \cup G^{\prime} \geq[k]\right\}
$$

then

$$
\operatorname{zcl}(M(\ell))= \begin{cases}k_{0}+2 & k_{0} \equiv m(2) \\ k_{0}+1 & k_{0} \not \equiv m(2)\end{cases}
$$

The result in (b) says that zcl is the smallest integer $>k_{0}$ with the same parity as m.
Note that (b) holds if $m \geq 2 s$, where s denotes the maximum size of the gees of ℓ. In the example $M_{2 k+1}$ mentioned at the end of Section 2 , we obtain $\mathrm{zcl}=2 k$, hence $2 k+1 \leq \mathrm{TC}\left(M_{2 k+1}\right) \leq 4 k-3$, so there is a big gap here.

Proof. Under the hypothesis of (a), there is a partition $[k]=S \sqcup T$ with $G \geq S$, and $G^{\prime} \geq T$. Then the following product of $k+1$ zero-divisors is nonzero:

$$
\prod_{i \in S} \overline{V_{i}} \cdot \overline{W_{S}} \cdot \prod_{j \in T} \overline{V_{j}}
$$

Indeed, this product contains the nonzero term $W_{\emptyset} \otimes V_{T}$, and this term cannot be cancelled by any other term in the expansion, since the only way to obtain W_{\emptyset} is as $V_{U} W_{U}$ for some set U. The stronger result when $k \equiv m(\bmod 2)$ is obtained using

$$
\prod_{i \in S} \overline{V_{i}} \cdot \overline{W_{S}} \cdot \prod_{j \in T} \overline{V_{j}} \cdot \overline{W_{T}}
$$

which is nonzero by Remark 3.8.
Part (a) implies \geq in (b). We will prove \leq by showing that, under the assumption that there are no exotic products, if there is a nonzero product of $k+1$ zero divisors with $k \equiv m(\bmod 2)$, then there are gees G and G^{\prime} of ℓ such that $G \cup G^{\prime} \geq[k]$. This says that if $\mathrm{zcl} \geq k+1$ with $k \equiv m(\bmod 2)$, then $k_{0} \geq k$. Thus if $\mathrm{zcl} \geq\left\{\begin{array}{ll}k_{0}+3 & k_{0} \equiv m \\ k_{0}+2 & k_{0} \not \equiv m,\end{array}\right.$ then $k_{0} \geq k_{0}+2$ (resp., $k_{0}+1$), a contradiction.

We begin by considering the case when all the zero divisors are of the form $\overline{V_{i}}$ or $\overline{W_{S}}$. Since products of W 's are 0 , there cannot be more than two \bar{W} 's. The case of no \bar{W} 's is easiest and is omitted. Denote $\bar{V}_{S}:=\prod_{i \in S} \overline{V_{i}}$. Note the distinction: $\overline{W_{S}}=W_{S} \otimes 1+1 \otimes W_{S}$, whereas $\bar{V}_{S}=\prod_{i \in S}\left(V_{i} \otimes 1+1 \otimes V_{i}\right)$, with the usual convention that the entries of S are listed in increasing order.

For the case of one \bar{W}, assume $\bar{V}_{T_{1}} \bar{V}_{T_{2}} \overline{W_{S}} \neq 0$ with $T_{1} \subset S, T_{2}$ and S disjoint, and $\left|T_{1} \cup T_{2}\right| \geq k$. Since $W_{S} \neq 0, S \subset G$ for some gee G. The product expands, up to \pm signs on terms, as

$$
\sum_{T^{\prime} \subset T_{1}} V_{T_{2}} V_{T^{\prime}} \otimes W_{S-T^{\prime}}+W_{S-T^{\prime}} \otimes V_{T_{2}} V_{T^{\prime}}
$$

For this to be nonzero, we must have $V_{T_{2}} \neq 0$, and so $T_{2} \leq G^{\prime}$ for some gee G^{\prime}. Thus

$$
[k] \leq T_{1} \cup T_{2} \leq G \cup G^{\prime} .
$$

For the case of two \bar{W} 's, we may assume that

$$
\begin{equation*}
\bar{V}_{E_{1}} \bar{V}_{E_{2}} \bar{V}_{E_{3}} \overline{W_{D_{1} \cup D_{3}}} \overline{W_{D_{2} \cup D_{3}}} \neq 0, \tag{3.3}
\end{equation*}
$$

with D_{1}, D_{2}, and D_{3} disjoint, $E_{i} \subset D_{i}$, and $\left|E_{1} \cup E_{2} \cup E_{3}\right|=k-1$ with $k \equiv m \bmod 2$. Note that we cannot have a factor $\bar{V}_{E_{4}}$ with E_{4} disjoint from $D_{1} \cup D_{2} \cup D_{3}$, since

$$
\overline{W_{D_{1} \cup D_{3}}} \overline{W_{D_{2} \cup D_{3}}}=-W_{D_{1} \cup D_{3}} \otimes W_{D_{2} \cup D_{3}} \pm W_{D_{2} \cup D_{3}} \otimes W_{D_{1} \cup D_{3}},
$$

and the product of $\bar{V}_{E_{4}}$ with this would be 0 .
Since $W_{D_{i} \cup D_{3}} \neq 0$ for $i=1,2$, we have

$$
E_{i} \cup E_{3} \subset D_{i} \cup D_{3} \leq G_{i}
$$

for gees G_{i}. Thus

$$
G_{1} \cup G_{2} \geq D_{1} \cup D_{2} \cup D_{3} \supset E_{1} \cup E_{2} \cup E_{3} \geq[k-1],
$$

and so $G_{1} \cup G_{2} \geq[k]$ unless each $D_{i}=E_{i}, 1 \leq i \leq 3$. But in this case the LHS of (3.3) is 0 by Lemma 3.4, since $\left|D_{1} \cup D_{2} \cup D_{3}\right| \not \equiv m(\bmod 2)$ in this case. This completes the proof when all zero divisors are of the form $\overline{V_{i}}$ or $\overline{W_{S}}$.

Let $R=H^{*}(M(\ell))$. In Lemma 3.9, we show that any product P of z zero divisors can be written as $\sum \alpha_{i} P_{i}$, where $\alpha_{i} \in R \otimes R$ and P_{i} is a product of z factors of the form \bar{V}_{i} or $\overline{W_{S}}$. If $P \neq 0$, then some P_{i} must be nonzero, and so by the above argument there exist gees G and G^{\prime} as claimed.

The following two lemmas were used in the preceding proof.
Lemma 3.4. If there are no exotic products in $H^{*}(M(\ell))$, and D_{1}, D_{2}, and D_{3} are pairwise disjoint subgees, then

$$
\bar{V}_{D_{1}} \bar{V}_{D_{2}} \bar{V}_{D_{3}} \overline{W_{D_{1} \cup D_{3}}} \overline{W_{D_{2} \cup D_{3}}} \neq 0 \text { iff }\left|D_{1} \cup D_{2} \cup D_{3}\right| \equiv m \quad(\bmod 2) .
$$

Proof. The notation

$$
\langle S, T, e\rangle:=W_{S} \otimes W_{T}+(-1)^{e} W_{T} \otimes W_{S},
$$

with S and T disjoint, will be useful in this proof. We begin with the observation that if $k \notin S \cup T$, then

$$
\begin{equation*}
\overline{V_{k}}\langle S \cup\{k\}, T, e\rangle= \pm\langle S, T, e+| W_{T}|+1\rangle . \tag{3.5}
\end{equation*}
$$

Indeed, since $\left|V_{k}\right|=1$, we have

$$
\begin{aligned}
& \left(V_{k} \otimes 1-1 \otimes V_{k}\right)\left(W_{S \cup\{k\}} \otimes W_{T}+(-1)^{e} W_{T} \otimes W_{S \cup\{k\}}\right) \\
= & V_{k} W_{S \cup\{k\}} \otimes W_{T}-(-1)^{\left|W_{T}\right|}(-1)^{e} W_{T} \otimes V_{k} W_{S \cup\{k\}} .
\end{aligned}
$$

The \pm, which is not important, is $(-1)^{\rho_{k}(S)}$ from Proposition 2.5. Similarly,

$$
\begin{equation*}
\bar{V}_{k}\langle S, T \cup\{k\}, e\rangle= \pm\langle S, T, e+| W_{S}|+1\rangle . \tag{3.6}
\end{equation*}
$$

Since products of W 's are 0 by assumption, we have

$$
\overline{W_{D_{1} \cup D_{3}}} \overline{W_{D_{2} \cup D_{3}}}=-\left\langle D_{1} \cup D_{3}, D_{2} \cup D_{3},\right| W_{D_{1} \cup D_{3}}|\cdot| W_{D_{2} \cup D_{3}}| \rangle .
$$

Now apply (3.6) $\left|D_{2}\right|$ times to this to eliminate the elements of D_{2}, each time adding $\left|W_{D_{1} \cup D_{3}}\right|+1$ to the third component of $\langle-,-,-\rangle$, obtaining

$$
\bar{V}_{D_{2}} \overline{W_{D_{1} \cup D_{3}}} \overline{W_{D_{2} \cup D_{3}}}= \pm\left\langle D_{1} \cup D_{3}, D_{3},\right| W_{D_{1} \cup D_{3}}|\cdot| W_{D_{2} \cup D_{3}}\left|+\left|D_{2}\right|\left(\left|W_{D_{1} \cup D_{3}}\right|+1\right)\right\rangle .
$$

Let $d_{i}=\left|D_{i}\right|$ and note that $\left|W_{D_{i}}\right|=m-d_{i}$. Now apply (3.5) d_{1} times, eliminating the elements of D_{1}. We obtain that the expression in the lemma equals

$$
\begin{equation*}
\pm \bar{V}_{D_{3}}\left\langle D_{3}, D_{3}, f\right\rangle \tag{3.7}
\end{equation*}
$$

with

$$
f=\left(m-d_{1}-d_{3}\right)\left(m-d_{2}-d_{3}\right)+d_{2}\left(m-d_{1}-d_{3}+1\right)+d_{1}\left(m-d_{3}+1\right) \equiv m+d_{1}+d_{2}+d_{3} \quad(\bmod 2) .
$$

Thus (3.7) equals 0 if $m+d_{1}+d_{2}+d_{3}$ is odd, while if $m+d_{1}+d_{2}+d_{3}$ is even, it equals

$$
\pm 2 \bar{V}_{D_{3}}\left(W_{D_{3}} \otimes W_{D_{3}}\right)= \pm 2\left(W_{\phi} \otimes W_{D_{3}}+\text { other terms }\right) \neq 0
$$

Remark 3.8. Note that the backwards implication in Lemma 3.4 is true without the assumption of no exotic products because the only additional terms will involve just products of V 's, and these cannot cancel $W_{\phi} \otimes W_{D_{1}}$.

Lemma 3.9. If $R=H^{*}(M(\ell))$ has no exotic products, then every zero divisor of $R \otimes R$ is in the ideal spanned by elements of the form \bar{V}_{i} and $\overline{W_{S}}$.

Proof. The vector space $R \otimes R$ is spanned by monomials of three types: (1) $W_{S} \otimes W_{T}$; (2) $V_{S} \otimes V_{T}$; and (3) $V_{S} \otimes W_{T}$ and $W_{T} \otimes V_{S}$. If a zero divisor is written as $Z_{1}+Z_{2}+Z_{3}$, where Z_{i} is of type i, then each Z_{i} must be a zero divisor, since their images under multiplication m are, respectively $0, V$'s, and W 's. We show that each type of zero divisor is in the claimed ideal.
(1) Every monomial $W_{S} \otimes W_{T}$ is a zero divisor and can be written as $-\left(W_{S} \otimes 1\right)\left(W_{T} \otimes 1-1 \otimes W_{T}\right)$.
(2) There are three types of zero divisors of this type. (a) One of the form $V_{i} V_{S} \otimes V_{i} V_{T}$ equals $\pm\left(V_{i} V_{S} \otimes\right.$ $\left.V_{T}\right)\left(V_{i} \otimes 1-1 \otimes V_{i}\right)$. (b) If $V_{S} V_{T}=0$ in R, then $V_{S} \otimes V_{T}$ is a zero divisor and equals $-\left(V_{S} \otimes 1\right)\left(V_{T} \otimes 1-1 \otimes V_{T}\right)$, and one easily shows $V_{T} \otimes 1-1 \otimes V_{T}$ is in the ideal by induction on $|T|$. (c) If $V_{S} \neq 0$ and $S=S_{i} \sqcup T_{i}$ so that $V_{S_{i}} V_{T_{i}}=(-1)^{\varepsilon_{i}} V_{S}$, then $\sum c_{i} V_{S_{i}} \otimes V_{T_{i}}$ is a zero divisor if $\sum(-1)^{\varepsilon_{i}} c_{i}=0$. We prove by induction on $|S|$ that these zero divisors have the required form. WLOG, assume that $1 \in S$. For every i with $1 \in T_{i}$, let $\widetilde{T}_{i}=T_{i}-\{1\}$, and write

$$
V_{S_{i}} \otimes V_{T_{i}}= \pm\left(V_{1} \otimes 1-1 \otimes V_{1}\right) V_{S_{i}} \otimes V_{\widetilde{T}_{i}} \pm V_{1} V_{S_{i}} \otimes V_{\widetilde{T}_{i}} .
$$

In this way, the given zero divisor can be written as a sum of terms of the desired form plus a sum of terms with V_{1} in the left factor of each. These latter terms can be written as $V_{1} \otimes 1$ times a sum with smaller $|S|$, and this can be written in the desired form by the induction hypothesis.

Table 3.10
Special cases.

ℓ	Gen. code	Space	zcl	TC
$(1,1,1,1,1,1,1,6)$	$\langle 8\rangle$	S^{5}	1	2
$(0,1,1,1,1,1,1,5)$	$\langle 81\rangle$	$S^{4} \times T^{1}$	3	4
$(0,0,1,1,1,1,1,4)$	$\langle 821\rangle$	$S^{3} \times T^{2}$	3	4
$(0,0,0,1,1,1,1,3)$	$\langle 8321\rangle$	$S^{2} \times T^{3}$	5	6
$(0,0,0,0,1,1,1,2)$	$\langle 84321\rangle$	T^{5}	5	6

(3) There are zero divisors of the form

$$
\sum_{i} c_{i} V_{S_{i}} \otimes W_{T \cup S_{i}}+\sum_{j} d_{j} W_{T \cup S_{j}} \otimes V_{S_{j}}
$$

with S_{i} and S_{j} disjoint from $T, V_{S_{i}} W_{T \cup S_{i}}=(-1)^{\varepsilon_{i}} W_{T}, W_{T \cup S_{j}} V_{S_{j}}=(-1)^{\varepsilon_{j}} W_{T}$, and $\sum(-1)^{\varepsilon_{i}} c_{i}+$ $\sum(-1)^{\varepsilon_{j}} d_{j}=0$. We claim that each term $V_{S_{i}} \otimes W_{T \cup S_{i}}$ is equivalent, mod terms of the desired form, to $1 \otimes W_{T}$, and similarly for $W_{T \cup S_{j}} \otimes V_{S_{j}}$. Thus the given zero divisor is equivalent, mod things of the desired form, to a multiple of $W_{T} \otimes 1-1 \otimes W_{T}$.

The claim is proved by induction on $\left|V_{S_{i}}\right|$, noting that if s is the smallest element of S_{i}, then

$$
V_{S_{i}} \otimes W_{T \cup S_{i}}=\left(V_{s} \otimes 1-1 \otimes V_{s}\right)\left(V_{S_{i}-\{s\}} \otimes W_{T \cup S_{i}}\right) \pm V_{S_{i}-\{s\}} \otimes W_{T \cup S_{i} \cup\{s\}}
$$

Our zcl results depend only on the gees and the parity of n, and not on the value of n. (Recall $m=n-3$.) However the possible gees depend on n. Of course, the numbers which occur in the gees must be less than n, but also, if G and G^{\prime} are gees (not necessarily distinct), then we cannot have [n-1]-G'$\leq G \cup\{n\}$, for then $G \cup\{n\}$ would be both short and long. Thus, for example, 8531 is an allowable gene, but 7531 is not, since $642<7531$ but $7642 \nless 8531$.

There are 2469 equivalence classes of nonempty spaces $M(\ell)$ with $n=8$. Genes for these are listed in [11]. We perform an analysis of what we can say about the zcl and TC of these. Since $n=8$, each satisfies $\mathrm{TC}(M(\ell)) \leq 11$ by (1.1). As we discuss below in more detail, for most of them we can assert that $\operatorname{zcl}(M(\ell)) \geq 7$, and so $\mathrm{TC}(M(\ell)) \geq 8$. For most of them we can only assert lower bounds for zcl, due to the possibility of exotic products. We emphasize that the following analysis pertains to the case $n=8$.

As discussed in Proposition 2.2 and the paragraph which preceded it, there is only one ℓ with a gee of size 5 . This $M(\ell)$ is homeomorphic to $T^{5} \sqcup T^{5}$ with topological complexity 6 . This is a truly special case, as it is the only disconnected $M(\ell)$.

Other special cases which we wish to exclude from the analysis below are those in Table 3.10, which are completely understood by elementary means. Sides of "length 0 " stand for sides of very small length. The identification as spaces is from [7, Prop. 2.1] and [10, Expl. 6.5], with T^{k} a k-torus. The upper bound for TC follows from [3, Prop. 4.41 and Thm. 4.49], and the lower bound from Theorem 3.2(a) and (1.2). We thank the referee for suggesting this table.

There are 768 ''s whose largest gee has size 4 . For all of them, we can deduce only $\operatorname{zcl}(M(\ell)) \geq 7$, using Theorem 3.2(a) and the following result.

Proposition 3.11. Suppose G and G^{\prime} are subsets of [7], not necessarily distinct, with neither strictly less than the other and with $\max \left(|G|,\left|G^{\prime}\right|\right)=4$. Assume also that it is not the case that $G=G^{\prime}=4321$, and it is not the case that $[7]-G^{\prime} \leq G \cup\{8\}$. Then $G \cup G^{\prime} \geq[5]$ but $G \cup G^{\prime} \nsupseteq[6]$.

Proof. The first conclusion follows easily from the observation that if $G=4321$, then $5 \in G^{\prime}$. For the second, if $G \cup G^{\prime} \geq[6]$ then applying $\cup G^{\prime}$ to the false statement [7] - $G^{\prime} \leq G \cup\{8\}$ would yield a true statement, and the ordering that we are using for multisets has a cancellation property for unions.

Table 3.12
Number of types of 8-gon spaces.

s	zcl	$\#$
1	3	6
2	5	120
3	$5,6,7$ or 8	116
3	7 or 8	1453
4	$7,8,9$ or 10	768

There are 1569ℓ 's whose largest gee has size 3 . By Theorem 3.1, these all satisfy $\mathrm{zcl} \leq 8$. For these, we again cannot rule out exotic products, so we cannot use Theorem 3.2(b) to get sharp zcl results. Of these, 929 have a gee $G \geq 531$, and this satisfies $G \cup G \geq$ [5], hence zcl ≥ 7. In addition to these, there are 524 with distinct gees satisfying $G \cup G^{\prime} \geq[5]$. Combining these with the 768ℓ 's with some |gee $=4$, we find that 2221 of the 2469ℓ 's with $n=8$ satisfy $\operatorname{zcl}(M(\ell)) \geq 7$. There are another 116ℓ 's with largest gee of size 3 for which we can only assert $\mathrm{zcl} \geq 5$. An example of a genetic code of this type is $\langle 8421,843,862,871\rangle$.

There are 120ℓ 's whose largest gee has size 2 . For these, exotic products are not possible and we can assert the precise value of zcl. Of these, 85 have a gee $G \geq 42$ and since $G \cup G \geq[4]$, they have $\mathrm{zcl}(M(\ell))=5$. In addition to these, there are 10 having distinct gees satisfying $G \cup G^{\prime} \geq[4]$ and so again zcl $=5$. There are 25 others for which we only have $G \cup G^{\prime} \geq[3]$, but still zcl $=5$. Finally, there are 6ℓ 's with largest gee of size 1 . These satisfy $\operatorname{zcl}(M(\ell))=3$.

In Table 3.12, we summarize what we can say about zcl when $n=8$, omitting the six special cases described earlier. Keep in mind that

$$
1+\mathrm{zcl} \leq \mathrm{TC} \leq 11
$$

In the table, s denotes the size of the largest gee, and \# denotes the number of distinct homeomorphism classes of 8 -gons having the property.

For general $m(=n-3)$, the largest gees (with one exception) have size $s=m-1$, and so Theorem 3.1 allows the possibility of zcl as large as $2 m$, which would imply $\mathrm{TC}=2 m+1$ by (1.1). However, this would require many nontrivial exotic products. By an argument similar to Proposition 3.11, all we can assert from Theorem 3.2(a) is $\mathrm{zcl} \geq m+2$ (when $s=m-1$). If $s \leq[m / 2]$, then we can determine the precise zcl , which can be as large as $2 s+2$, so we can obtain $m+1$ or $m+2$ as zcl, yielding a lower bound for TC only roughly half the upper bound given by (1.1).

4. An example with a nontrivial exotic product

The following example, provided by the referee, suggests that additional geometric information may be needed in finding exotic products and sharper zcl bounds.

Theorem 4.1. Let $X=M(\ell)$ with genetic code $\langle 632\rangle$. There are exotic products in $H^{*}(X ; \mathbb{Q})$. The (rational) $z c l$ of X is 6 , and $\mathrm{TC}(X)=7$.

Proof. The space X is homeomorphic to the connected sum of two 3 -tori by [7, (2) in Expl. 2.11]. The length vector ℓ could be taken to be ($1,1,1,3,3,4$), although this is irrelevant to the proof. An elementary argument is presented in [8, Prop. 4.2.1] that there is a ring isomorphism in positive dimensions $H^{*}(X) \approx$ $\left(H^{*}\left(T^{3}\right) \oplus H^{*}\left(T^{3}\right)\right) /\left(a_{1} a_{2} a_{3}-b_{1} b_{2} b_{3}\right)$ with any coefficients. Here a_{i} and b_{i} are the generators of the first cohomology groups of the two 3 -tori. We have $a_{i}^{2}=0=b_{i}^{2}$ and $a_{i} b_{j}=0$.

If there were no exotic products in its rational cohomology, then, by Theorem 3.2(b), since $m=3$ and $k_{0}=3, \operatorname{zcl}(X)$ would equal 5 . However, in $H^{*}(X \times X ; \mathbb{Q})$, we have

$$
\bar{a}_{1} \bar{a}_{2} \bar{a}_{3} \bar{b}_{1} \bar{b}_{2} \bar{b}_{3}=a_{1} a_{2} a_{3} \otimes b_{1} b_{2} b_{3}+b_{1} b_{2} b_{3} \otimes a_{1} a_{2} a_{3} .
$$

Since $a_{1} a_{2} a_{3}=b_{1} b_{2} b_{3}$, this equals 2 times the top class of $H^{*}(X \times X ; \mathbb{Q})$. Thus the rational zcl equals 6 , and $\mathrm{TC}(X)=7$ by (1.1) and (1.2).

An isomorphism between the (a, b) - and (V, W)-presentations is given by $V_{i}=a_{i}+b_{i}, W_{1,2}=a_{3}$, $W_{1,3}=b_{2}, W_{2,3}=a_{1}, W_{1}=b_{2} b_{3}, W_{2}=a_{1} a_{3}$, and $W_{3}=b_{1} b_{2}$. One can check that this satisfies Theorem 2.3, but has exotic products such as $W_{1,2} W_{2,3}=-W_{2}$ and $V_{2} W_{1,2}=-W_{1}+V_{2} V_{3}$.

References

[1] D.M. Davis, Topological complexity of some planar polygon spaces, Bol. Soc. Mat. Mexicana (2016), http://dx.doi.org/ 10.1007/s40590-016-0093-y, in press.
[2] D.M. Davis, Topological complexity of planar polygon spaces with small genetic code, Forum Math. (2016), in press.
[3] M. Farber, Invitation to Topological Robotics, European Math. Society, 2008.
[4] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003) 211-221.
[5] M. Farber, J.-C. Hausmann, D. Schütz, On the conjecture of Kevin Walker, J. Topol. Anal. 1 (2009) 65-86.
[6] V. Fromm, The topology of spaces of polygons, thesis, Durham Univ., 2011.
[7] J.-C. Hausmann, Geometric descriptions of polygon and chain spaces, Contemp. Math. 438 (2007) 47-57.
[8] J.-C. Hausmann, Mod Two Homology and Cohomology, Springer Universitext, 2014.
[9] J.-C. Hausmann, A. Knutson, The cohomology rings of polygon spaces, Ann. Inst. Fourier (Grenoble) 48 (1998) 281-321.
[10] J.-C. Hausmann, E. Rodriguez, The space of clouds in Euclidean space, Exp. Math. 13 (2004) 31-47.
[11] J.-C. Hausmann, E. Rodriguez, addendum to [10], www.unige.ch/math/folks/hausmann/polygones/.

[^0]: E-mail address: dmd1@lehigh.edu.
 http://dx.doi.org/10.1016/j.topol.2016.04.018
 0166-8641/© 2016 Elsevier B.V. All rights reserved.

