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Using information about the rational cohomology ring of the space M(�1, . . . , �n) of 
oriented isometry classes of planar n-gons with the specified side lengths, we obtain 
bounds for the zero-divisor-cup-length (zcl) of these spaces, which provide lower 
bounds for their topological complexity (TC). In many cases our result about the 
cohomology ring is complete and we determine the precise zcl. We find that there 
will usually be a significant gap between the bounds for TC implied by zcl and 
dimensional considerations.
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1. Introduction

The topological complexity, TC(X), of a topological space X is, roughly, the number of rules required 
to specify how to move between any two points of X. A “rule” must be such that the choice of path varies 
continuously with the choice of endpoints. (See [3, §4].) Information about the cohomology ring of X can 
be used to give a lower bound for TC(X).

Let � = (�1, . . . , �n) be an n-tuple of positive real numbers. Let M(�) denote the space of oriented n-gons 
in the plane with successive side lengths �1, . . . , �n, where polygons are identified under translation and 
rotation. Thus

M(�) = {(z1, . . . , zn) ∈ (S1)n :
∑

�izi = 0}/SO(2).

If we think of the sides of the polygon as linked arms of a robot, then TC(M(�)) is the number of rules 
required to program the robot to move between any two configurations.
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Let [n] = {1, . . . , n} throughout. We say that � is generic if there is no subset S ⊂ [n] for which ∑
i∈S

�i =
∑
i/∈S

�i. For such �, M(�) is an orientable (n − 3)-manifold [3, Thm. 1.3] and hence, by [3, Cor. 4.15], 

satisfies

TC(M(�)) ≤ 2n− 5. (1.1)

A lower bound for topological complexity is obtained using the zero-divisor-cup-length of X, zcl(X), which 
is the maximum number of elements αi ∈ H∗(X × X) satisfying m(αi) = 0 and 

∏
i

αi �= 0. Here m :

H∗(X) ⊗ H∗(X) → H∗(X) denotes the cup product pairing with rational coefficients, and αi is called a 
zero divisor. Throughout the paper, all cohomology groups have coefficients in Q, unless specified to the 
contrary. In [4, Thm. 7], it was shown that

TC(X) ≥ zcl(X) + 1. (1.2)

In this paper, we obtain some new information about the rational cohomology ring H∗(M(�)) when � is 
generic to obtain lower bounds for zcl(M(�)) and hence for TC(M(�)). Frequently, our description of the 
cohomology ring is complete (64 out of 134 cases when n = 7), and we can give the best lower bound implied 
by ordinary cohomological methods. However, unlike the situation for isometry classes of polygons, i.e., when 
polygons are also identified under reflection, this lower bound is usually significantly less than 2n − 5.

Indeed, for the space of isometry classes of planar polygons,

M(�) = {(z1, . . . , zn) ∈ (S1)n :
∑

�izi = 0}/O(2),

the mod-2 cohomology ring was completely determined in [9], and in [1] and [2] we showed that for several 
large families of �,

2n− 6 ≤ TC(M(�)) ≤ 2n− 5,

the latter because M(�)) is also an (n − 3)-manifold when � is generic. Note that for motions in the plane, 
M(�) would seem to be a more relevant space than M(�). For the spaces M(�) considered here, rational 
cohomology often gives slightly stronger bounds than does mod-2 cohomology.

In Section 2, we describe what we can say about the rational cohomology ring H∗(M(�)). In Section 3, 
we obtain information about zcl(M(�)) and hence TC(M(�)). Theorems 3.1 and 3.2 give upper and lower 
bounds for zcl(M(�)). See Table 3.12 for a tabulation when n = 8. In Section 4, we give an example, due 
to the referee, in which there are what we call “exotic products” in the cohomology ring. The possibility of 
these prevents us from making stronger zcl estimates.

We thank the referee for pointing out a mistake in an earlier version, and for pointing out a number of 
illustrative examples. We also thank Nitu Kitchloo for some early suggestions.

2. The rational cohomology ring H∗(M(�))

We assume throughout that �1 ≤ · · · ≤ �n. It is well-understood [9, Prop. 2.2] that the homeomorphism 

type of M(�) is determined by which subsets S of [n] are short, which means that 
∑
i∈S

�i < 1
2

n∑
i=1

�i. For 
generic �, a subset which is not short is called long.

Define a partial order on the power set of [n] by S ≤ T if S = {s1, . . . , s�} and T ⊃ {t1, . . . , t�} with 
si ≤ ti for all i. This order will be used throughout the paper, applied also to multisets. As introduced 
in [10], the genetic code of � is the set of maximal elements (called genes) in the set of short subsets 
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of [n] which contain n. The homeomorphism type of M(�) is determined by the genetic code of �. Note 
that if � = (�1, . . . , �n), then all genes have largest element n. We introduce the new terminology that if 
{n, ir, . . . , i1} is a gene, then {ir, . . . , i1} is called a gee. (Gene without the n.) We define a subgee to be a 
set of positive integers which is ≤ a gee under the above ordering.

The following result was proved in [5, Thm. 6].

Theorem 2.1. The rational cohomology ring H∗(M(�)) contains a subalgebra generated by classes V1, . . . ,
Vn−1 ∈ H1(M(�)) whose only relations are that if S = {s1, . . . , sk} with s1 < · · · < sk, then VS := Vs1 · · ·Vsk

satisfies VS = 0 iff S is not a subgee of �.

In other words, the nonzero monomials in the Vi’s correspond exactly to the subgees. Of course, V 2
i = 0, 

since dim(Vi) is odd.
It is well-known (e.g. [7, Expl. 2.3]) that if the genetic code of � is 〈{n, n − 3, n − 4, . . . , 1}〉, then M(�)

is homeomorphic to (S1)n−3 � (S1)n−3. We will exclude this case from our analysis and use the following 
known result, in which, as always, � = (�1, . . . , �n).

Proposition 2.2. ([7, Rmk. 2.8]) If the genetic code of � does not equal 〈{n, n − 3, . . . , 1}〉, then all genes 
have cardinality less than n − 2, and M(�) is a connected (n − 3)-manifold.

From now on, let m = n − 3 denote the dimension of M(�), and let W∅ denote the orientation class of 
Hm(M(�)). We obtain

Theorem 2.3. A basis for H∗(M(�)) consists of the classes VS of Theorem 2.1 such that S is a subgee of �, 
together with classes WS ∈ Hm−|S|(M(�)), for exactly the same S’s, satisfying that

VSWS′ = δS,S′W∅ if |S′| = |S|.

Also VSVS′ = VS∪S′ if S and S′ are disjoint and S ∪S′ is a subgee of �, while VSVS′ = 0 otherwise. Finally, 
WSWS′ = 0 whenever |WS | + |WS′ | = m.

Proof. By [3, Thm. 1.7], for all i, the ith Betti number of M(�) equals the number of VS’s described in 
Theorem 2.1 of degree i plus the number of such VS’s of degree m − i. By Theorem 2.1, our classes VS

are linearly independent in H∗(M(�)) and all products VSVS′ are zero except those listed in our set. By 
Lemma 2.4, the nonsingularity of the Poincaré duality pairing implies that there are classes WS which pair 
with the classes VS and with each other in the claimed manner, and the Betti number result implies that 
there are no additional classes. �

The following elementary lemma was used in the preceding proof. This lemma is applied to U = Hi(M(�)), 
U ′ = Hm−i(M(�)), {u1, . . . , uk} the set of VS ’s in Hi(M(�)), and {u′

k+1, . . . , u
′
t} the set of VS ’s in 

Hm−i(M(�)).

Lemma 2.4. Suppose U and U ′ are t-dimensional vector spaces over Q and φ : U × U ′ → Q is a nonsin-
gular bilinear pairing. Suppose {u1, . . . , uk} ⊂ U is linearly independent, as is {u′

k+1, . . . , u
′
t} ⊂ U ′, and 

φ(ui, u
′
j) = 0 for 1 ≤ i ≤ k < j ≤ t. Then there exist bases {u1, . . . , ut} and {u′

1, . . . , u
′
t} of U and U ′

extending the given linearly-independent sets and satisfying φ(ui, u′
j) = δi,j.

Proof. For 1 ≤ i ≤ k, let ψi : U → Q be any homomorphism for which ψi(uj) = δi,j for 1 ≤ j ≤ k. 
By nonsingularity, there is u′

i ∈ U ′ such that φ(u, u′
i) = ψi(u) for all u ∈ U . To see that {u′

1, . . . , u
′
t} is 

linearly independent, assume 
∑

c�u
′
� = 0. Applying φ(ui, −) implies that ci = 0, 1 ≤ i ≤ k, while linear 

independence of {u′
k+1, . . . , u

′
t} then implies that ck+1 = · · · = ct = 0. Nonsingularity now implies that 
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there are classes ui for i > k such that φ(ui, u′
j) = δi,j for all j, and linear independence of the ui’s is 

immediate. �
Results similar to Theorem 2.3 and Proposition 2.5 below were also presented, in slightly different situ-

ations, in [8, Rmk. 10.3.20] and [6, Prop. A.2.4].
Let s denote the size of the largest gee of �. The only VS’s occur in gradings ≤ s, and so the only WS’s 

occur in grading ≥ m − s. If 2(m − s) ≤ m − 1 (i.e., m ≤ 2s − 1), then there can be nontrivial products of 
WS ’s, about which we apparently have little control.

The following simple result gives excellent information about products of V classes times W classes. In 
particular, if m ≥ 2s, the entire ring structure is determined! See Corollary 2.8. When m = 4, this is the 
case for 64 of the 134 equivalence classes of �’s, as listed in [11].

Proposition 2.5. Let ρi(T ) denote the number of elements of T which are greater than i. Modulo polynomials 
in V1, . . . , Vn−1,

ViWS ≡
{

(−1)ρi(T )WT if S = T � {i}
0 if i /∈ S.

(2.6)

In particular, if s is the maximal size of gees and m − |S| ≥ s, then

ViWS =
{

(−1)ρi(T )WT if S = T � {i}
0 if i /∈ S.

(2.7)

Proof. Write ViWS =
∑

αPVP +
∑

α′
QWQ with αP , α′

Q ∈ Q. If VT is any monomial in grading |S| −1, then

(−1)ρi(T )δS,T∪{i}W∅ = VTViWS =
∑
Q

α′
QδT,QW∅ = α′

TW∅,

as all monomials in the V ’s are 0 in grading m. The first result follows immediately.
The second part follows since |ViWS | = m − |S| + 1 and all polynomials in the V ’s are 0 in grading 

> s. �
Corollary 2.8. If m ≥ 2s, where s is the maximal gee size, then the complete structure of the algebra 
H∗(M(�)) is given by Theorem 2.3 and (2.7).

We offer the following illustrative example, in which we have complete information about the product 
structure. Here we begin using the notation introduced in [10] of writing genes (and gees) which are sets of 
1-digit numbers by just concatenating those digits.

Example 2.9. Suppose the genetic code of � is 〈9421, 95〉. Then a basis for H∗(M(�)) is:

0 1

1 V1, V2, V3, V4, V5

2 V1V2, V1V3, V1V4, V2V3, V2V4

3 V1V2V3, V1V2V4,W123,W124

4 W12,W13,W14,W23,W24

5 W1,W2,W3,W4,W5

6 W∅.
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The only nontrivial products of V ’s are those indicated. All products of W ’s are 0. The multiplication of Vi

by WS is given, up to sign, by removal of the subscript i, if i ∈ S, else 0.

In the above example, m = 6 and s = 3. It is quite possible that a similarly nice product structure might 
hold in various cases in which m < 2s. When it does not, we refer to nonzero products of W ’s or cases in 
which (2.7) does not hold as exotic products. In Section 4, we present an example, due to the referee, in 
which nontrivial exotic products occur.

One important class of examples in which s ≤ 2m and so Corollary 2.8 applies is the space M2k+1 of 
equilateral (2k+1)-gons. Here � = (1, . . . , 1) and the genetic code is 〈{2k+1, 2k, . . . , k+2}〉, and so s = k−1
and m = 2k − 2.

3. Zero-divisor-cup-length

In this section we study the zero-divisor-cup-length zcl(M(�)), where � = (�1, . . . , �n), � is generic, and its 
genetic code does not equal 〈{n, n − 3, . . . , 1}〉. We also discuss the implications for topological complexity. 
Recall that m = n − 3.

Our first result is an upper bound, which will sometimes be sharp. One sharp example is when the genetic 
code is 742.

Theorem 3.1. If s is the largest cardinality of the gees of �, then zcl(M(�)) ≤ 2s + 2.

Proof. For u ∈ H∗(M(�)), let u = u ⊗ 1 − 1 ⊗ u. We first consider products of the form 
∏

ui. A product of 
a Vi’s and b WS ’s has grading ≥ a + b(m − s). If a > 2s, then 

∏
Vi = 0, so we may assume that a ≤ 2s. If 

a + b ≥ 2s + 3, then b ≥ 3 and

a + b(m− s) ≥ 2s + 3 − b + b(m− s) = bm + 1 − (b− 2)(s + 1) ≥ bm + 1 − (b− 2)m = 2m + 1,

and so the product must be 0. We have used that s ≤ m − 1 by Proposition 2.2.
Now we consider the possibility of more general zero divisors. Let αj denote a zero divisor which contains 

a term A ⊗B in which the total number of V -factors (resp. W -factors) in AB is pj (resp. qj) with pj+qj ≥ 2. 
Its grading is ≥ pj + qj(m − s). A product of a Vi’s, b WS ’s, and c αj ’s, with a + b + c ≥ 2s + 3 will be 0 if 
a +

∑
pj > 2s, so we may assume a +

∑
pj ≤ 2s. This product, with c ≥ 1, has grading

≥ a + b(m− s) +
∑

pj + (m− s)
∑

qj

≥ a + b(m− s) +
∑

pj + (m− s)(2c−
∑

pj)

≥ a + (b + 2c)(m− s) + (m− s− 1)(a− 2s)

= (m− s− 1)(a + b + 2c− 2s) + a + b + 2c

≥ (3 + c)(m− s− 1) + 2s + 3 + c

= 2m + (c + 1)(m− s)

> 2m,

and hence is 0. �
Next we give our best result for lower bounds. Recall that the partial order described just before Theo-

rem 2.1 is applied also to multisets.
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Theorem 3.2.

a. If G and G′ are gees of �, not necessarily distinct, and there is an inequality of multisets G ∪G′ ≥ [k], 
then

zcl(M(�)) ≥
{
k + 2 k ≡ m (2)
k + 1 k �≡ m (2).

b. If there are no exotic products in H∗(M(�)), then (a) is sharp in the sense that if

k0 := max{k : ∃ gees G and G′ of � with G ∪G′ ≥ [k]},

then

zcl(M(�)) =
{
k0 + 2 k0 ≡ m (2)
k0 + 1 k0 �≡ m (2).

The result in (b) says that zcl is the smallest integer > k0 with the same parity as m.

Note that (b) holds if m ≥ 2s, where s denotes the maximum size of the gees of �. In the example M2k+1
mentioned at the end of Section 2, we obtain zcl = 2k, hence 2k + 1 ≤ TC(M2k+1) ≤ 4k − 3, so there is a 
big gap here.

Proof. Under the hypothesis of (a), there is a partition [k] = S � T with G ≥ S, and G′ ≥ T . Then the 
following product of k + 1 zero-divisors is nonzero:∏

i∈S

Vi ·WS ·
∏
j∈T

Vj .

Indeed, this product contains the nonzero term W∅ ⊗ VT , and this term cannot be cancelled by any other 
term in the expansion, since the only way to obtain W∅ is as VUWU for some set U . The stronger result 
when k ≡ m (mod 2) is obtained using ∏

i∈S

Vi ·WS ·
∏
j∈T

Vj ·WT ,

which is nonzero by Remark 3.8.
Part (a) implies ≥ in (b). We will prove ≤ by showing that, under the assumption that there are no 

exotic products, if there is a nonzero product of k+1 zero divisors with k ≡ m (mod 2), then there are gees 
G and G′ of � such that G ∪G′ ≥ [k]. This says that if zcl ≥ k + 1 with k ≡ m (mod 2), then k0 ≥ k. Thus 

if zcl ≥
{
k0 + 3 k0 ≡ m

k0 + 2 k0 �≡ m,
then k0 ≥ k0 + 2 (resp., k0 + 1), a contradiction.

We begin by considering the case when all the zero divisors are of the form Vi or WS . Since products 
of W ’s are 0, there cannot be more than two W ’s. The case of no W ’s is easiest and is omitted. Denote 
V S :=

∏
i∈S Vi. Note the distinction: WS = WS ⊗ 1 + 1 ⊗WS , whereas V S =

∏
i∈S(Vi ⊗ 1 + 1 ⊗ Vi), with 

the usual convention that the entries of S are listed in increasing order.
For the case of one W , assume V T1V T2WS �= 0 with T1 ⊂ S, T2 and S disjoint, and |T1 ∪ T2| ≥ k. Since 

WS �= 0, S ⊂ G for some gee G. The product expands, up to ± signs on terms, as∑
′

VT2VT ′ ⊗WS−T ′ + WS−T ′ ⊗ VT2VT ′ .

T ⊂T1
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For this to be nonzero, we must have VT2 �= 0, and so T2 ≤ G′ for some gee G′. Thus

[k] ≤ T1 ∪ T2 ≤ G ∪G′.

For the case of two W ’s, we may assume that

V E1V E2V E3WD1∪D3 WD2∪D3 �= 0, (3.3)

with D1, D2, and D3 disjoint, Ei ⊂ Di, and |E1 ∪E2 ∪E3| = k− 1 with k ≡ m mod 2. Note that we cannot 
have a factor V E4 with E4 disjoint from D1 ∪D2 ∪D3, since

WD1∪D3 WD2∪D3 = −WD1∪D3 ⊗WD2∪D3 ±WD2∪D3 ⊗WD1∪D3 ,

and the product of V E4 with this would be 0.
Since WDi∪D3 �= 0 for i = 1, 2, we have

Ei ∪ E3 ⊂ Di ∪D3 ≤ Gi

for gees Gi. Thus

G1 ∪G2 ≥ D1 ∪D2 ∪D3 ⊃ E1 ∪E2 ∪ E3 ≥ [k − 1],

and so G1 ∪G2 ≥ [k] unless each Di = Ei, 1 ≤ i ≤ 3. But in this case the LHS of (3.3) is 0 by Lemma 3.4, 
since |D1 ∪D2 ∪D3| �≡ m (mod 2) in this case. This completes the proof when all zero divisors are of the 
form Vi or WS .

Let R = H∗(M(�)). In Lemma 3.9, we show that any product P of z zero divisors can be written as ∑
αiPi, where αi ∈ R ⊗ R and Pi is a product of z factors of the form V i or WS . If P �= 0, then some Pi

must be nonzero, and so by the above argument there exist gees G and G′ as claimed. �
The following two lemmas were used in the preceding proof.

Lemma 3.4. If there are no exotic products in H∗(M(�)), and D1, D2, and D3 are pairwise disjoint subgees, 
then

V D1V D2V D3WD1∪D3 WD2∪D3 �= 0 iff |D1 ∪D2 ∪D3| ≡ m (mod 2).

Proof. The notation

〈S, T, e〉 := WS ⊗WT + (−1)eWT ⊗WS ,

with S and T disjoint, will be useful in this proof. We begin with the observation that if k /∈ S ∪ T , then

Vk〈S ∪ {k}, T, e〉 = ±〈S, T, e + |WT | + 1〉. (3.5)

Indeed, since |Vk| = 1, we have

(Vk ⊗ 1 − 1 ⊗ Vk)(WS∪{k} ⊗WT + (−1)eWT ⊗WS∪{k})

= VkWS∪{k} ⊗WT − (−1)|WT |(−1)eWT ⊗ VkWS∪{k}.

The ±, which is not important, is (−1)ρk(S) from Proposition 2.5. Similarly,
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V k〈S, T ∪ {k}, e〉 = ±〈S, T, e + |WS | + 1〉. (3.6)

Since products of W ’s are 0 by assumption, we have

WD1∪D3 WD2∪D3 = −〈D1 ∪D3, D2 ∪D3, |WD1∪D3 | · |WD2∪D3 |〉.

Now apply (3.6) |D2| times to this to eliminate the elements of D2, each time adding |WD1∪D3 | + 1 to the 
third component of 〈−, −, −〉, obtaining

V D2WD1∪D3 WD2∪D3 = ±〈D1 ∪D3, D3, |WD1∪D3 | · |WD2∪D3 | + |D2|(|WD1∪D3 | + 1)〉.

Let di = |Di| and note that |WDi
| = m − di. Now apply (3.5) d1 times, eliminating the elements of D1. We 

obtain that the expression in the lemma equals

±V D3 〈D3, D3, f〉 (3.7)

with

f = (m− d1 − d3)(m− d2 − d3) + d2(m− d1 − d3 + 1) + d1(m− d3 + 1) ≡ m + d1 + d2 + d3 (mod 2).

Thus (3.7) equals 0 if m + d1 + d2 + d3 is odd, while if m + d1 + d2 + d3 is even, it equals

±2V D3(WD3 ⊗WD3) = ±2(Wφ ⊗WD3 + other terms) �= 0. �
Remark 3.8. Note that the backwards implication in Lemma 3.4 is true without the assumption of no 
exotic products because the only additional terms will involve just products of V ’s, and these cannot cancel 
Wφ ⊗WD1 .

Lemma 3.9. If R = H∗(M(�)) has no exotic products, then every zero divisor of R⊗R is in the ideal spanned 
by elements of the form V i and WS.

Proof. The vector space R ⊗ R is spanned by monomials of three types: (1) WS ⊗WT ; (2) VS ⊗ VT ; and 
(3) VS ⊗WT and WT ⊗ VS . If a zero divisor is written as Z1 + Z2 + Z3, where Zi is of type i, then each 
Zi must be a zero divisor, since their images under multiplication m are, respectively 0, V ’s, and W ’s. We 
show that each type of zero divisor is in the claimed ideal.

(1) Every monomial WS ⊗WT is a zero divisor and can be written as −(WS ⊗ 1)(WT ⊗ 1 − 1 ⊗WT ).
(2) There are three types of zero divisors of this type. (a) One of the form ViVS ⊗ ViVT equals ±(ViVS ⊗

VT )(Vi⊗1 −1 ⊗Vi). (b) If VSVT = 0 in R, then VS⊗VT is a zero divisor and equals −(VS⊗1)(VT ⊗1 −1 ⊗VT ), 
and one easily shows VT ⊗ 1 − 1 ⊗ VT is in the ideal by induction on |T |. (c) If VS �= 0 and S = Si � Ti so 
that VSi

VTi
= (−1)εiVS , then 

∑
ciVSi

⊗ VTi
is a zero divisor if 

∑
(−1)εici = 0. We prove by induction on 

|S| that these zero divisors have the required form. WLOG, assume that 1 ∈ S. For every i with 1 ∈ Ti, let 
T̃i = Ti − {1}, and write

VSi
⊗ VTi

= ±(V1 ⊗ 1 − 1 ⊗ V1)VSi
⊗ VT̃i

± V1VSi
⊗ VT̃i

.

In this way, the given zero divisor can be written as a sum of terms of the desired form plus a sum of terms 
with V1 in the left factor of each. These latter terms can be written as V1 ⊗ 1 times a sum with smaller |S|, 
and this can be written in the desired form by the induction hypothesis.



D.M. Davis / Topology and its Applications 207 (2016) 43–53 51
Table 3.10
Special cases.
� Gen. code Space zcl TC
(1, 1, 1, 1, 1, 1, 1, 6) 〈8〉 S5 1 2
(0, 1, 1, 1, 1, 1, 1, 5) 〈81〉 S4 × T 1 3 4
(0, 0, 1, 1, 1, 1, 1, 4) 〈821〉 S3 × T 2 3 4
(0, 0, 0, 1, 1, 1, 1, 3) 〈8321〉 S2 × T 3 5 6
(0, 0, 0, 0, 1, 1, 1, 2) 〈84321〉 T 5 5 6

(3) There are zero divisors of the form∑
i

ciVSi
⊗WT∪Si

+
∑
j

djWT∪Sj
⊗ VSj

,

with Si and Sj disjoint from T , VSi
WT∪Si

= (−1)εiWT , WT∪Sj
VSj

= (−1)εjWT , and 
∑

(−1)εici +∑
(−1)εjdj = 0. We claim that each term VSi

⊗ WT∪Si
is equivalent, mod terms of the desired form, 

to 1 ⊗ WT , and similarly for WT∪Sj
⊗ VSj

. Thus the given zero divisor is equivalent, mod things of the 
desired form, to a multiple of WT ⊗ 1 − 1 ⊗WT .

The claim is proved by induction on |VSi
|, noting that if s is the smallest element of Si, then

VSi
⊗WT∪Si

= (Vs ⊗ 1 − 1 ⊗ Vs)(VSi−{s} ⊗WT∪Si
) ± VSi−{s} ⊗WT∪Si∪{s}. �

Our zcl results depend only on the gees and the parity of n, and not on the value of n. (Recall m = n −3.) 
However the possible gees depend on n. Of course, the numbers which occur in the gees must be less than n, 
but also, if G and G′ are gees (not necessarily distinct), then we cannot have [n − 1] − G′ ≤ G ∪ {n}, for 
then G ∪ {n} would be both short and long. Thus, for example, 8531 is an allowable gene, but 7531 is not, 
since 642 < 7531 but 7642 ≮ 8531.

There are 2469 equivalence classes of nonempty spaces M(�) with n = 8. Genes for these are listed 
in [11]. We perform an analysis of what we can say about the zcl and TC of these. Since n = 8, each 
satisfies TC(M(�)) ≤ 11 by (1.1). As we discuss below in more detail, for most of them we can assert that 
zcl(M(�)) ≥ 7, and so TC(M(�)) ≥ 8. For most of them we can only assert lower bounds for zcl, due to the 
possibility of exotic products. We emphasize that the following analysis pertains to the case n = 8.

As discussed in Proposition 2.2 and the paragraph which preceded it, there is only one � with a gee of 
size 5. This M(�) is homeomorphic to T 5 � T 5 with topological complexity 6. This is a truly special case, 
as it is the only disconnected M(�).

Other special cases which we wish to exclude from the analysis below are those in Table 3.10, which are 
completely understood by elementary means. Sides of “length 0” stand for sides of very small length. The 
identification as spaces is from [7, Prop. 2.1] and [10, Expl. 6.5], with T k a k-torus. The upper bound for 
TC follows from [3, Prop. 4.41 and Thm. 4.49], and the lower bound from Theorem 3.2(a) and (1.2). We 
thank the referee for suggesting this table.

There are 768 �’s whose largest gee has size 4. For all of them, we can deduce only zcl(M(�)) ≥ 7, using 
Theorem 3.2(a) and the following result.

Proposition 3.11. Suppose G and G′ are subsets of [7], not necessarily distinct, with neither strictly less than 
the other and with max(|G|, |G′|) = 4. Assume also that it is not the case that G = G′ = 4321, and it is not 
the case that [7] −G′ ≤ G ∪ {8}. Then G ∪G′ ≥ [5] but G ∪G′ �≥ [6].

Proof. The first conclusion follows easily from the observation that if G = 4321, then 5 ∈ G′. For the 
second, if G ∪ G′ ≥ [6] then applying ∪G′ to the false statement [7] − G′ ≤ G ∪ {8} would yield a true 
statement, and the ordering that we are using for multisets has a cancellation property for unions. �
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Table 3.12
Number of types of 8-gon spaces.

s zcl #
1 3 6
2 5 120
3 5, 6, 7 or 8 116
3 7 or 8 1453
4 7, 8, 9 or 10 768

There are 1569 �’s whose largest gee has size 3. By Theorem 3.1, these all satisfy zcl ≤ 8. For these, we 
again cannot rule out exotic products, so we cannot use Theorem 3.2(b) to get sharp zcl results. Of these, 
929 have a gee G ≥ 531, and this satisfies G ∪ G ≥ [5], hence zcl ≥ 7. In addition to these, there are 524 
with distinct gees satisfying G ∪ G′ ≥ [5]. Combining these with the 768 �’s with some |gee| = 4, we find 
that 2221 of the 2469 �’s with n = 8 satisfy zcl(M(�)) ≥ 7. There are another 116 �’s with largest gee of size 
3 for which we can only assert zcl ≥ 5. An example of a genetic code of this type is 〈8421, 843, 862, 871〉.

There are 120 �’s whose largest gee has size 2. For these, exotic products are not possible and we can 
assert the precise value of zcl. Of these, 85 have a gee G ≥ 42 and since G ∪G ≥ [4], they have zcl(M(�)) = 5. 
In addition to these, there are 10 having distinct gees satisfying G ∪ G′ ≥ [4] and so again zcl = 5. There 
are 25 others for which we only have G ∪G′ ≥ [3], but still zcl = 5. Finally, there are 6 �’s with largest gee 
of size 1. These satisfy zcl(M(�)) = 3.

In Table 3.12, we summarize what we can say about zcl when n = 8, omitting the six special cases 
described earlier. Keep in mind that

1 + zcl ≤ TC ≤ 11.

In the table, s denotes the size of the largest gee, and # denotes the number of distinct homeomorphism 
classes of 8-gons having the property.

For general m (= n − 3), the largest gees (with one exception) have size s = m − 1, and so Theorem 3.1
allows the possibility of zcl as large as 2m, which would imply TC = 2m + 1 by (1.1). However, this would 
require many nontrivial exotic products. By an argument similar to Proposition 3.11, all we can assert from 
Theorem 3.2(a) is zcl ≥ m +2 (when s = m − 1). If s ≤ [m/2], then we can determine the precise zcl, which 
can be as large as 2s +2, so we can obtain m +1 or m +2 as zcl, yielding a lower bound for TC only roughly 
half the upper bound given by (1.1).

4. An example with a nontrivial exotic product

The following example, provided by the referee, suggests that additional geometric information may be 
needed in finding exotic products and sharper zcl bounds.

Theorem 4.1. Let X = M(�) with genetic code 〈632〉. There are exotic products in H∗(X; Q). The (rational) 
zcl of X is 6, and TC(X) = 7.

Proof. The space X is homeomorphic to the connected sum of two 3-tori by [7, (2) in Expl. 2.11]. The 
length vector � could be taken to be (1, 1, 1, 3, 3, 4), although this is irrelevant to the proof. An elementary 
argument is presented in [8, Prop. 4.2.1] that there is a ring isomorphism in positive dimensions H∗(X) ≈
(H∗(T 3) ⊕ H∗(T 3))/(a1a2a3 − b1b2b3) with any coefficients. Here ai and bi are the generators of the first 
cohomology groups of the two 3-tori. We have a2

i = 0 = b2i and aibj = 0.
If there were no exotic products in its rational cohomology, then, by Theorem 3.2(b), since m = 3 and 

k0 = 3, zcl(X) would equal 5. However, in H∗(X ×X; Q), we have

a1a2a3b1b2b3 = a1a2a3 ⊗ b1b2b3 + b1b2b3 ⊗ a1a2a3.



D.M. Davis / Topology and its Applications 207 (2016) 43–53 53
Since a1a2a3 = b1b2b3, this equals 2 times the top class of H∗(X ×X; Q). Thus the rational zcl equals 6, 
and TC(X) = 7 by (1.1) and (1.2).

An isomorphism between the (a, b)- and (V, W )-presentations is given by Vi = ai + bi, W1,2 = a3, 
W1,3 = b2, W2,3 = a1, W1 = b2b3, W2 = a1a3, and W3 = b1b2. One can check that this satisfies Theorem 2.3, 
but has exotic products such as W1,2W2,3 = −W2 and V2W1,2 = −W1 + V2V3. �
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