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On the cohomology classes of planar polygon
spaces

Donald M. Davis

Abstract. We obtain an explicit formula for the Poincaré dual-
ity isomorphism Hn−3(M(`);Z2) → Z2 for the space of isometry
classes of n-gons with specified side lengths, if ` is monogenic in
the sense of Hausmann-Rodriguez. This has potential application
to topological complexity.

1. Main theorem

If ` = (`1, . . . , `n) is an n-tuple of positive real numbers, let M(`) denote the space

of isometry classes of oriented n-gons in the plane with the prescribed side lengths.

In [3], a complete description of H∗(M(`);Z2) was given in terms of generators and a

complicated set of relations. In [1], explicit calculations were made in H∗(M(`);Z2)

for length vectors ` satisfying certain conditions, enabling us to prove that, for these

`, the topological complexity of M(`) satisfied

2n− 6 ≤ TC(M(`)) ≤ 2n− 5. (1.1)

This is a result in topological robotics, as it specifies the number of motion planning

rules required for a certain n-armed robot.([2]) However, our result only applied to a

very restricted set of length vectors `.

The groups Hk(M(`);Z2) are spanned by monomials Rk−rVj1 · · ·Vjr for distinct

positive subscripts j ≤ n − 1. Here R and Vj are elements of H1(M(`);Z2). Since
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M(`) is an (n− 3)-manifold, there is a Poincaré duality isomorphism

φ : Hn−3(M(`);Z2)→ Z2. (1.2)

For the cases considered in [1], we obtained an explicit formula for φ(Rn−3−rVj1 · · ·Vjr).
The contribution of this paper is to extend that formula to a broader class of length

vectors. Note that it tells for each monomial whether it is 0 or the nonzero class,

hence the title.

In order to describe these length vectors, we review the notion of genetic code

introduced in [4]. Since permuting the length vectors does not affect the homeomor-

phism type of M(`), we may assume that `1 ≤ · · · ≤ `n. A subset S ⊂ {1, . . . , n} is

called short if
∑

i∈S `i <
∑

i 6∈S `i. We assume that ` is generic, which says that there

are no subsets S for which
∑

i∈S `i =
∑

i 6∈S `i. We define a partial order on sets of

integers by {s1, . . . , sk} ≤ T if there exist distinct t1, . . . , tk in T with si ≤ ti. The

genetic code of ` is the set of maximal elements in the set of short subsets for ` which

contain n. An element in the genetic code is called a gene.

One of the main theorems of [1] was that, with three exceptions, (1.1) holds if `

has a single gene of size 4. In order to prove this, we needed and obtained the explicit

formula for φ(Rn−3−rVj1 · · ·Vjr) for such length vectors.([1, Thm 4.1]) In this paper,

we extend this formula to all monogenic codes. We hope that this formula will enable

us to study the cohomological implications for topological complexity of these spaces.

The huge variety of genetic codes makes it seem unlikely that a formula such as ours

might be extended to all genetic codes.

In [1], we introduced the term gee to refer to a gene with the n omitted. This

is sensible since, for all genes G, n ∈ G. Also, most of the formulas do not involve

n. We say that a subgee is any set of positive integers which is less than or equal

to a gee. Thus the subgees are all sets S for which S ∪ {n} is short. We write the

elements of a gee in decreasing order. Only those {j1, . . . , jr} which are subgees can

have Rk−rVj1 · · ·Vjr 6= 0.([3, Cor 9.2])

Now we can state our theorem. It involves the following new definition.

Definition 1.3. Let Sk denote the set of k-tuples of nonnegative integers such

that, for all i, the sum of the first i components of the k-tuple is ≤ i.

For B = (b1, . . . , bk), let |B| =
∑
bi.
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Theorem 1.4. Suppose ` has a single gee, G = {g1, . . . , gk} with ai = gi−gi+1 > 0.

(gk+1 = 0.) If J is a set of distinct positive integers ≤ g1, let θ(J) = (θ1, . . . , θk),

where θi is the number of elements j ∈ J satisfying gi+1 < j ≤ gi. Then, for φ as in

(1.2),

φ(Rn−3−rVj1 · · ·Vjr) =
∑
B

k∏
i=1

(
ai+bi−2

bi

)
, (1.5)

where B ranges over all (b1, . . . , bk) for which |B| = k−r and B+θ({j1, . . . , jr}) ∈ Sk.

Note that J = {j1, . . . , jr} is a subgee if and only if θ(J) ∈ Sk. For example, if

two j’s are greater than g2, then θ(J) has first component greater than 1, so θ(J) is

not in Sk, and J cannot be ≤ G since it has two elements greater than the second

largest element of G. Thus (1.5) is only relevant when J is a subgee, but it yields 0

in other cases, anyway.

An important special case of the theorem appears in the following corollary.

Corollary 1.6. If J is a subgee with r = k, then φ(Rn−3−rVj1 · · ·Vjr) = 1.

The following elegant independent proof of this corollary was provided by the

referee.

Proof of Corollary 1.6. First note that Vj1 · · ·Vjk is nonzero, since this is

also true in H∗(M(`);Z2)/〈R〉, which is an exterior face ring. By Poincaré duality,

there must be an X =
∑

iXi ∈ Hn−3−k(M(`);Z2) with X · Vj1 · · ·Vjk = 1. If Xi

contains as a factor any Vt with t 6∈ {j1, . . . , jk}, then Xi · Vj1 · · ·Vjk = 0 since

{t, j1, . . . , jk} is not a subgee. Any factors Vt with t ∈ {j1, . . . , jk} can be replaced by

R, by the relation V 2
t = RVt. Thus each Xi with Xi · Vj1 · · ·Vjk 6= 0 can be replaced

by Rn−3−k, and the number of such Xi must be odd.

In working with our formula, it is useful to denote by YT any term Rn−3−rVj1 · · ·Vjr
for which θ({j1, . . . , jr}) = T . The reader can verify that the case k = 3 of Theorem

1.4 agrees with [1, Thm 4.1], when the latter is expressed as in Example 1.7. For

example, in φ(Y0,1,0), B = (0, 0, 2), (1, 0, 1), and (0, 1, 1) satisfy B+ (0, 1, 0) ∈ S3, but

B = (1, 1, 0) does not, since the sum of the first two entries of (1, 2, 0) is greater than

2. (Our method of subscripting Y here differs from that in [1].) This φ(Y0,1,0) refers

to φ(Rn−4Vj) for g3 < j ≤ g2.
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Example 1.7. If ` has a single gee {a1 + a2 + a3, a2 + a3, a3}, then, writing a′i for

ai − 1,

φ(YT ) = 1 if |T | = 3 and T ∈ S3
φ(Y0,2,0) = φ(Y1,1,0) = a′3

φ(Y1,0,1) = a′2 + a′3

φ(Y0,0,2) = φ(Y0,1,1) = a′1 + a′2 + a′3

φ(Y1,0,0) =
(
a3
2

)
+ a′2a

′
3

φ(Y0,1,0) =
(
a3
2

)
+ a′1a

′
3 + a′2a

′
3

φ(Y0,0,1) =
(
a2
2

)
+
(
a3
2

)
+ a′1a

′
2 + a′1a

′
3 + a′2a

′
3

φ(Y0,0,0) =
(
a3+1
3

)
+
(
a2
2

)
a′3 +

(
a3
2

)
(a′1 + a′2) + a′1a

′
2a
′
3.

2. Proof

In this section, we prove Theorem 1.4. As noted above, Hn−3(M(`);Z2) is spanned

by monomials Rn−3−rVj1 · · ·Vjr for which J = {j1, . . . , jr} ≤ G, i.e., J is a subgee.

Using [3, Cor 9.2] as interpreted in [1, Thm 2.1], a complete set of relations is given

by relations RI for each subgee I except the empty set. This relation RI says∑
J�∩I

Rn−3−|J |
∏
j∈J

Vj = 0, (2.1)

where the sum is taken over all subgees J disjoint from I. To prove our theorem, it

suffices to show that our proposed φ sends each relation RI to 0, since it will then be

the unique nonzero homomorphism (1.2).

Similarly to [1, (4.2)], the number of subgees J disjoint from I and satisfying

θ(J) = C = (c1, . . . , ck) is
k∏

i=1

(
ai−mi

ci

)
, if θ(I) = (m1, . . . ,mk). Note that mi ≤ ai

since mi is the size of a subset of ai integers. Since our φ applied to a term in (2.1)

is determined by θ(J), φ(RI) becomes∑
C

k∏
i=1

(
ai−mi

ci

)∑
B

k∏
i=1

(
ai+bi−2

bi

)
, (2.2)
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where |B| = k−|C| and B+C ∈ Sk. Letting T = B+C, this can be rewritten, with

the outer sum taken over all T ∈ Sk satisfying |T | = k, as∑
T

∑
B≤T

k∏
i=1

(
ai−mi

ti−bi

)(
ai+bi−2

bi

)
=

∑
T

k∏
i=1

∑
bi

(
ai−mi

ti−bi

)(
ai+bi−2

bi

)
≡

∑
T

k∏
i=1

∑
bi

(
ai−mi

ti−bi

)(
1−ai
bi

)
mod 2

=
∑
T

k∏
i=1

(
1−mi

ti

)
. (2.3)

Here we use that
(
a+b−2

b

)
= ±

(
1−a
b

)
, and the Vandermonde identity.

The sum (2.3) can be considered as a sum Σ1 over all k-tuples T of nonnegative

integers summing to k minus the sum Σ2 over those which are not in Sk. The sum

Σ1 equals
(
k−

∑
mi

k

)
, which is 0 unless

∑
mi = 0, but that case has been excluded.

(I 6= ∅.)
If tj, . . . , tk are nonnegative integers for which tj+· · ·+tk ≤ k−j, but tj′+· · ·+tk >

k − j′ for all j′ > j, let U(tj, . . . , tk) denote the set of k-tuples T indexing the sum

Σ2 which end with (tj, . . . , tk). Since tj + · · ·+ tk ≤ k− j is equivalent to saying that

the sum of the first j− 1 components is not ≤ j− 1, these sets U(tj, . . . , tk) partition

the set of T ’s which occur in Σ2. We show that the sum Σ2 restricted to any such set

U(tj, . . . , tk) is 0, which will complete the proof. We have∑
T∈U(tj ,...,tk)

k∏
i=1

(
1−mi

ti

)
=

k∏
i=j

(
1−mi

ti

)
·

∑
|T ′|=k−tj−···−tk

j−1∏
i=1

(
1−mi

ti

)
=

k∏
i=j

(
1−mi

ti

)
·
(
j−1−m1−···−mj−1

k−tj−···−tk

)
.
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In the second line, T ′ = (t1, . . . , tj−1). Since (m1, . . . ,mk) arises from a subgee,

m1 + · · ·+mj−1 ≤ j− 1. But k− tj −· · ·− tk ≥ j. Thus the final binomial coefficient

consists of a nonnegative integer atop a larger integer, and hence is 0.
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