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DONALD M. DAVIS

Abstract. We determine precisely the largest v1-periodic homo-
topy groups of SU(2e) and SU(2e+1). This gives new results about
the largest actual homotopy groups of these spaces. Our proof re-
lies on results about 2-divisibility of restricted sums of binomial
coefficients times powers proved by the author in a companion pa-
per.

1. Main result

The 2-primary v1-periodic homotopy groups, v−1
1 πi(X), of a topological space X

are a localization of a first approximation to its 2-primary homotopy groups. They

are roughly the portion of π∗(X) detected by 2-local K-theory.([2]) If X is a sphere

or compact Lie group, each v1-periodic homotopy group of X is a direct summand of

some actual homotopy group of X.([6])

Let

Tj(k) =
∑

odd i

(
j
i

)
ik

denote one family of partial Stirling numbers. In [5], the author obtained several

results about ν(Tj(k)), where ν(n) denotes the exponent of 2 in n. Some of those will

be used in this paper, and will be restated as needed.

Let

e(k, n) = min(ν(Tj(k)) : j ≥ n).

It was proved in [1, 1.1] (see also [7, 1.4]) that v−1
1 π2k(SU(n)) is isomorphic to

Z/2e(k,n)−ε direct sum with possibly one or two Z/2’s. Here ε = 0 or 1, and ε = 0 if

n is odd or if k ≡ n− 1 mod 4, which are the only cases required here.
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Let

s(n) = n− 1 + ν([n/2]!).

It was proved in [8] that e(n− 1, n) ≥ s(n). Let

e(n) = max(e(k, n) : k ∈ Z).

Thus e(n) is what we might call the v1-periodic 2-exponent of SU(n). Then clearly

(1.1) s(n) ≤ e(n− 1, n) ≤ e(n),

and calculations suggest that both of these inequalities are usually quite close to being

equalities. In [4, p.22], a table is given comparing the numbers in (1.1) for n ≤ 38.

Our main theorem verifies a conjecture of [4] regarding the values in (1.1) when

n = 2e or 2e + 1.

Theorem 1.2.

a. If e ≥ 3, then e(k, 2e) ≤ 2e + 2e−1 − 1 with equality occurring

iff k ≡ 2e − 1 mod 22e−1+e−1.

b. If e ≥ 2, then e(k, 2e +1) ≤ 2e +2e−1 with equality occurring iff

k ≡ 2e + 22e−1+e−1 mod 22e−1+e.

Thus the values in (1.1) for n = 2e and 2e + 1 are as in Table 1.3.

Table 1.3. Comparison of values

n s(n) e(n− 1, n) e(n)
2e 2e + 2e−1 − 2 2e + 2e−1 − 1 2e + 2e−1 − 1

2e + 1 2e + 2e−1 − 1 2e + 2e−1 − 1 2e + 2e−1

Note that e(n) exceeds s(n) by 1 in both cases, but for different reasons. When

n = 2e, the largest value occurs for k = n− 1, but is 1 larger than the general bound

established in [8]. When n = 2e + 1, the general bound for e(n − 1, n) is sharp, but

a larger group occurs when n − 1 is altered in a specific way. The numbers e(n)

are interesting, as they give what are probably the largest 2-exponents in π∗(SU(n)),

and this is the first time that infinite families of these numbers have been computed

precisely.

The homotopy 2-exponent of a topological space X, denoted exp2(X), is the largest

k such that π∗(X) contains an element of order 2k. An immediate corollary of Theo-

rem 1.2 is
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Corollary 1.4. For ε ∈ {0, 1} and 2e + ε ≥ 5,

exp2(SU(2e + ε)) ≥ 2e + 2e−1 − 1 + ε.

This result is 1 stronger than the result noted in [8, Thm 1.1].

Theorem 1.2 is implied by the following two results. The first will be proved in

Section 2. The second is [5, Thm 1.1].

Theorem 1.5. Let e ≥ 3.

i. If ν(k) ≥ e− 1, then ν(T2e(k)) = 2e − 1.

ii. If j ≥ 2e and ν(k − (2e − 1)) ≥ 2e−1 + e − 1, then ν(Tj(k)) ≥
2e + 2e−1 − 1.

iii. If j ≥ 2e + 1 and ν(k − 2e) = 2e−1 + e − 1, then ν(Tj(k)) ≥
2e + 2e−1.

Theorem 1.6. ([5, 1.1]) Let e ≥ 2, n = 2e + 1 or 2e + 2, and 1 ≤ i ≤ 2e−1. There is

a 2-adic integer xi,n such that for all integers x

ν(Tn(2e−1x + 2e−1 + i)) = ν(x− xi,n) + n− 2.

Moreover

ν(xi,2e+1)

{
= i if i = 2e−2 or 2e−1

> i otherwise.

and

ν(xi,2e+2)





= i− 1 if 1 ≤ i ≤ 2e−2

= i if 2e−2 < i < 2e−1

> i if i = 2e−1.

Regarding small values of e: [7, §8] and [5, Table 1.3] make it clear that the results

stated in this section for Tn(−), e(−, n) and SU(n) are valid for small values of n ≥ 5

but not for n < 5.

Proof that Theorems 1.5 and 1.6 imply Theorem 1.2. For part (a): Let k ≡ 2e − 1

mod 22e−1+e−1. Theorem 1.5(ii) implies e(k, 2e) ≥ 2e+2e−1−1, and 1.6 with n = 2e+2,

i = 2e−1 − 1, and ν(x) ≥ 2e−1 implies that equality is obtained for such k.

To see that e(k, 2e) < 2e + 2e−1 − 1 if k 6≡ 2e − 1 mod 22e−1+e−1, we write k =

i + 2e−1x + 2e−1 with 1 ≤ i ≤ 2e−1. We must show that for each k there exists some

j ≥ 2e for which ν(Tj(k)) < 2e + 2e−1 − 1.
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• If i = 2e−1, we use 1.5(i).

• If i = 2e−2, we use 1.6 with n = 2e + 1 if ν(x) < 2e−2 and with

n = 2e + 2 if ν(x) ≥ 2e−2.

• For other values of i, we use 1.6 with n = 2e + 1 if ν(x) ≤ i

and with n = 2e + 2 if ν(x) > i, except in the excluded case

i = 2e−1 − 1 and ν(x) > i.

For part (b): Let k ≡ 2e +22e−1+e−1 mod 22e−1+e. Theorem 1.5(iii) implies e(k, 2e +

1) ≥ 2e + 2e−1, and 1.6 with n = 2e + 2, i = 2e−1, and ν(x) = 2e−1 implies that

equality is obtained for such k.

To see that e(k, 2e) < 2e + 2e−1 if k 6≡ 2e + 22e−1+e−1 mod 22e−1+e, we write k =

i + 2e−1x + 2e−1 with 1 ≤ i ≤ 2e−1.

• If i = 2e−1, we use 1.6 with n = 2e+1 unless ν(x) = 2e−1, which

case is excluded.

• If i = 2e−2, we use 1.6 with n = 2e + 2 if ν(x) = 2e−2 and with

n = 2e + 1 otherwise.

• If 1 ≤ i < 2e−2, we use 1.6 with n = 2e + 1 if ν(x) = i− 1 and

with n = 2e + 2 otherwise.

• If 2e−2 < i < 2e−1, we use 1.6 with n = 2e + 1 if ν(x) = i and

with n = 2e + 2 otherwise.

The proof does not make it transparent why the largest value of e(k, n) occurs

when k = n − 1 if n = 2e but not if n = 2e + 1. The following example may shed

some light. We consider the illustrative case e = 4. We wish to see why

• e(k, 16) ≤ 23 with equality iff k ≡ 15 mod 211, while

• e(k, 17) ≤ 24 with equality iff k ≡ 16 + 211 mod 212.

Tables 1.7 and 1.8 give relevant values of ν(Tj(k)).
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Table 1.7. Values of ν(Tj(k)) relevant to e(k, 16)

j
16 17 18 19

7 24 19 20 20
ν(k − 15) 8 25 20 21 21

9 26 21 22 22
10 27 22 ≥ 24 ≥ 24
11 ≥ 29 ≥ 24 23 23

≥ 12 28 23 23 23

Table 1.8. Values of ν(Tj(k)) relevant to e(k, 17)

j
17 18 19 20

8 20 21 22 23
ν(k − 16) 9 21 22 23 24

10 22 23 ≥ 25 ≥ 26
11 ≥ 24 24 24 25
12 23 ≥ 26 24 25

≥ 13 23 25 24 25

The values e(k, 16) and e(k, 17) are the smallest entry in a row, and are listed

in boldface. The tables only include values of k for which ν(k − (n − 1)) is rather

large, as these give the largest values of ν(Tj(k)). Larger values of j than those

tabulated will give larger values of ν(Tj(n)). Note how each column has the same

general form, leveling off after a jump. This reflects the ν(x − xi,n) in Theorem 1.6.

The prevalence of this behavior is the central theme of [5]. The phenomenon which

we wish to illuminate here is how the bold values increase steadily until they level off

in Table 1.7, while in Table 1.8 they jump to a larger value before leveling off. This

is a consequence of the synchronicity of where the jumps occur in columns 17 and 18

of the two tables.

2. Proof of Theorem 1.5

In this section, we prove Theorem 1.5. The proof uses the following results from

[5].
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Proposition 2.1. ([8, 3.4] or [5, 2.1]) For any nonnegative integers n and k,

ν
(∑

i

(
n

2i+1

)
ik

) ≥ ν([n/2]!).

The next result is a refinement of Proposition 2.1. Here and throughout, S(n, k)

denote Stirling numbers of the second kind.

Proposition 2.2. ([5, 2.3]) Mod 4

1
n!

∑
i

(
2n+ε
2i+b

)
ik ≡





S(k, n) + 2nS(k, n− 1) ε = 0, b = 0

(2n + 1)S(k, n) + 2(n + 1)S(k, n− 1) ε = 1, b = 0

2nS(k, n− 1) ε = 0, b = 1

S(k, n) + 2(n + 1)S(k, n− 1) ε = 1, b = 1.

Proposition 2.3. ([5, 2.7]) For n ≥ 3, j > 0, and p ∈ Z,

ν(
∑(

n
2i+1

)
(2i + 1)pij) ≥ max(ν([n

2
]!), n− α(n)− j)

with equality if n ∈ {2e + 1, 2e + 2} and j = 2e−1.

Other well-known facts that we will use are

(2.4) (−1)jj!S(k, j) =
∑(

j
2i

)
(2i)k − Tj(k)

and

(2.5) S(k + i, k) ≡ (
k+2i−1

k−1

)
mod 2.

We also use that ν(n!) = n − α(n), where α(n) denotes the binary digital sum of n,

and that
(

m
n

)
is odd iff, for all i, mi ≥ ni, where these denote the ith digit in the

binary expansions of m and n.

Proof of Theorem 1.5(i). Using (2.4), we have

T2e(2e−1t) ≡ −S(2e−1t, 2e)(2e)! mod 22e−1t,

and we may assume t ≥ 2 using the periodicity of ν(Tn(−)) established in [3, 3.12].

But S(2e−1t, 2e) ≡ (
2et−2e+1+2e−1

2e−1

) ≡ 1 mod 2. Since ν(2e!) = 2e − 1 < 2e−1t, we are

done.

Proof of parts (ii) and (iii) of Theorem 1.5. These parts follow from (a) and (b) be-

low by letting p = 2e + ε− 1 in (b), and adding.
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(a) Let ε ∈ {0, 1} and n ≥ 2e + ε.

ν(Tn(2e + ε− 1))

{
= 2e + 2e−1 − 1 if ε = 1 and n = 2e + 1

≥ 2e + 2e−1 + ε− 1 otherwise.

(b) Let p ∈ Z, n ≥ 2e, and ν(m) ≥ 2e−1 + e− 1. Then

ν

(∑ (
n

2i+1

)
(2i+1)p

(
(2i+1)m−1

))




= 2e + 2e−1 − 1 if n = 2e + 1 and

ν(m) = 2e−1 + e− 1

≥ 2e + 2e−1 otherwise.

First we prove (a). Using (2.4) and the fact that S(k, j) = 0 if k < j, it suffices to

prove

ν
(∑ (

n
2i

)
i2

e+ε−1
)
{

= 2e−1 − 1 if ε = 1 and n = 2e + 1

≥ 2e−1 otherwise,

and this is implied by Proposition 2.1 if n ≥ 2e + 4. For ε = 0 and 2e ≤ n ≤ 2e + 3,

by Proposition 2.2

ν(
∑ (

n
2i

)
i2

e−1) ≥ 2e−1 − 1 + min(1, ν(S(2e − 1, 2e−1 + δ)))

with δ ∈ {0, 1}. The Stirling number here is easily seen to be even by (2.5).

Similarly ν(
∑ (

2e+1
2i

)
i2

e
) = 2e−1 − 1 since S(2e, 2e−1) is odd, and if n− 2e ∈ {2, 3},

then ν
(∑ (

n
2i

)
i2

e) ≥ 2e−1 since S(2e, 2e−1 + 1) is even.

Now we prove part (b). The sum equals
∑

j>0 Tj, where

Tj = 2j
(

m
j

) ∑
i

(
n

2i+1

)
(2i + 1)pij.

We show that ν(Tj) = 2e + 2e−1− 1 if n = 2e + 1, j = 2e−1, and ν(m) = 2e−1 + e− 1,

while in all other cases, ν(Tj) ≥ 2e + 2e−1. If j ≥ 2e + 2e−1, we use the 2j-factor.

Otherwise, ν(
(

m
j

)
) = ν(m)− ν(j), and we use the first part of the max in Proposition

2.3 if ν(j) ≥ e− 1, and the second part of the max otherwise.
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