
K-THEORY AND IMMERSIONS OF SPATIAL POLYGON SPACES

DONALD M. DAVIS

Abstract. For ` a generic n-tuple of positive numbers, Np`q de-
notes the space of isometry classes of oriented n-gons in R3 with
side lengths specified by `. We determine the algebra KpNp`qq and
use this to obtain nonimmersions of the 2pn� 3q-manifold Np`q in
Euclidean space for several families of `. We also use obstruction
theory to tell exactly when Np`q immerses in R4n�14 for two fam-
ilies of `’s.

1. Introduction

If ` � p`1, . . . , `nq is an n-tuple of positive real numbers, Np`q denotes the space of

oriented n-gons in R3 with consecutive sides of the specified lengths, identified under

translation and rotation of R3. Edges of the polygon are allowed to intersect. A more

formal definition is

Np`q � tpz1, . . . , znq P pS
2qn :

ņ

i�1

`izi � 0u{SOp3q.

See [8], [9], or [11]. It is clear from this definition that the diffeomorphism type of

Np`q is not affected by changing the order of the `i’s.

Let rrnss � t1, . . . , nu. If there is no subset S � rrnss for which
¸
iPS

`i �
¸
iRS

`i, `

is said to be generic. If ` is generic, then Np`q is a 2pn � 3q-manifold. ([8, p.285])

Throughout this paper, ` is always assumed to be generic. Generic spatial polygon

spaces are classified in [9] by their genetic code, which is a collection of subsets of rrnss

determined by `, which we will define at the beginning of Section 2. The manifolds

Np`q and Np`1q are diffeomorphic if and only if they have the same genetic code. All

genetic codes for n ¤ 9 are listed in [10]. For example, there are 134 diffeomorphism

classes of nonempty spatial 7-gon spaces.
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Hausmann and Knutson determined the integral cohomology ring H�pNp`qq in [8].

We give our interpretation of this result, in terms of the genetic code, in Theorem 2.1.

Since H�pNp`qq is generated by elements of H2pNp`qq and is torsion-free, the Chern

character effectively determines the complex K-theory algebra KpNp`qq. However, a

general statement of this seems too complicated to be useful. In Theorems 2.8, 4.2,

and 3.1, we will give explicit results for the ring KpNp`qq when the genetic code of `

is ttn, kuu or ttn, k, 1uu, and in general modulo a certain ideal.

Our main goal is to obtain nonimmersion results for spatial polygon spaces in Eu-

clidean space. We use an old result, which we state later as Theorem 2.11, which tells

how K-theoretic Chern classes can yield lower bounds for the geometric dimension of

stable vector bundles. This result is applied to the stable normal bundle of Np`q, us-

ing a result of [8] about the cohomology Chern classes of the tangent bundle of Np`q.

We will obtain the following three nonimmersion results. Throughout the paper we

let m � n� 3, so that Np`q is a 2m-manifold. Also, αpmq denotes the number of 1’s

in the binary expansion of m.

Theorem 1.1. If the genetic code of ` is ttn, kuu with k   n, the 2m-manifold Np`q

cannot be immersed in R4m�2αpmq�1.

This is the same as the standard result that can be proved for CPm using complex

K-theory. For αpmq ¤ 8, these results for CPm are very close to optimal. (See [5].)

Note that CPm is a spatial polygon space with genetic code ttnuu.([7, Expl 2.6])

Theorem 1.2. If the genetic code of ` is ttn, k, 1uu with 1   k   n, the 2m-manifold

Np`q cannot be immersed in R4m�2αpmq�3. If k is odd, it cannot be immersed in

R4m�2αpmq�1.

The sets in the genetic code are called genes. In the following result, as always, n

is the length of `, and m � n� 3.

Theorem 1.3. Let s�1 be the size of the largest gene of `. Let M � maxpi�ν
�
m�i
i

�
:

i ¤ m� sq. Then the 2m-manifold Np`q cannot be immersed in R2m�2M�1.

Here and throughout, ν
�
n
k

�
denotes the exponent of 2 in the binomial coefficient. In

Table 1, we will tabulate some values for Theorem 1.3.



K-THEORY AND IMMERSIONS OF SPATIAL POLYGON SPACES 3

Existence of immersions is usually proved by obstruction theory. Recall that since

Np`q is a 2m-manifold, it certainly immerses in R4m�1. In Section 5, we prove the

following immersion result.

Theorem 1.4. Let n ¥ 5. If the genetic code of ` is ttn, kuu, then Np`q can be

immersed in R4m�2 if and only if it is not the case that m is a 2-power and k is even.

If the genetic code of ` is ttn, k, 1uu, then Np`q can always be immersed in R4m�2.

Remark 1.5. Optimal immersions: Combining Theorems 1.1, 1.2, and 1.4, we

find that when n � 3 is a 2-power, immersions of the 2m-manifold Nn,k in R4m�1

when k is even, and of both Nn,k and Nn,k,1 in R4m�2 when k is odd are optimal.

We thank Martin Bendersky and Jean-Claude Hausmann for helpful suggestions.

2. General results and proof of Theorem 1.1

In this section, we provide the background for all our proofs, and apply them to

prove Theorem 1.1.

We assume without loss of generality that `1 ¤ � � � ¤ `n. For a length vector `, a

subset S � rrnss is called short if
¸
iPS

`i  
¸
iRS

`i. A partial order is defined on the power

set of rrnss, based on inclusions of sets and sizes of numbers.([9, §4]) The genetic code of

` is defined to be the set of maximal elements under this ordering in the set of all short

subsets containing n. For example, the genetic code of ` � p1, . . . , 1loomoon
k

, 2, . . . , 2loomoon
n�k�1

, 2n�k�5q

is ttn, kuu, and the genetic code of ` � p1
2
, 1, . . . , 1loomoon

k�1

, 2, . . . , 2loomoon
n�k�1

, 2n� k � 6q is ttn, k, 1uu.

In [3], we defined a gee to be a gene without listing the n, and an element ¤ a gee

is called a subgee. So the subgees are just the subsets T of rrn� 1ss such that T Y tnu

is short. Our interpretation in [3] of the theorem of [8] is as follows.

Theorem 2.1. The integral cohomology ring H�pNp`qq is generated by degree-2 ele-

ments R and Vi, 1 ¤ i   n, with relations

a. For a subset S � rrn� 1ss, let VS �
¹
iPS

Vi. Then VS � 0 if S is

not a subgee.

b. For all i, RVi � V 2
i � 0.
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c. For each subgee T with |T | ¥ n� 2 � d, there is a relation RT

in H2dpNp`qq: ¸
S�XT

Rd�|S|VS � 0.

The following useful result is quickly deduced from [8].

Proposition 2.2. The total Chern class of the tangent bundle τpNp`qq satisfies

p1�RqcpτpNp`qqq �
n�1¹
i�1

p1� 2Vi �Rq.

Proof. Hausmann and Knudson utilize a space UP called the upper path space, and

in [8, Remark 7.5c] note that

cpτpUP qq � p1�Rq
n�1¹
i�1

p1�Vi�Rqp1�Viq and p1�Rq2cpτpNp`qqq � cpτpUP qq.

The result is immediate from this and the relation V 2
i �RVi � 0.

Note that Vi � 0 unless tiu is a subgee of `, which usually allows for cancellation of

a factor p1�Rq.

Corollary 2.3. There are complex line bundles LR and Li, 1 ¤ i ¤ n � 1, over

Np`q such that c1pLRq � R, c1pLiq � Vi, and the complex bundles LR ` τpNp`qq and
n�1à
i�1

L2
iLR are stably isomorphic.

Proof. Since c1 defines a bijection of complex line bundles over X with H2pX;Zq sat-

isfying c1pL1L2q � c1pL1q�c1pL2q, the two complex bundles in the corollary exist and

have the same total Chern class by Proposition 2.2, and hence have the same Chern

character. Since ch : KpXq b Q Ñ H�pX;Qq is an isomorphism, the stable bundles

are equal in KpXq mod torsion. Since H�pNp`qq is confined to even dimensions,

KpNp`qq has no torsion, and so the bundles are stably isomorphic.

If Vi � 0, then L2
iLR � LR.

Now we apply these results to Nn,k, which is defined to be Np`q when the genetic

code of ` is ttn, kuu. First we have the result for integral cohomology.
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Proposition 2.4. There is a ring isomorphism

H�pNn,kq � ZrR, V1, . . . , Vks{pViVj � 0 if i � j, V 2
i � �RVi, (2.5)

V m
1 � � � � � V m

k , R
m � p�1qmpk � 1qV m

i , R
m�1 � 0 � V m�1

i q,

with |R| � |Vi| � 2. Bases for the nonzero groups rH2jpNn,kq are given by tRj, V j
1 , . . . , V

j
k u,

1 ¤ j   m, and tV m
1 u.

Proof. The only nonempty subgees are tiu with 1 ¤ i ¤ k. Relations of type c only

occur in grading m. So, using relation b, a basis in grading less than m consists of

just the jth powers. In grading m, there is a relation Ri for each i from 1 to k of the

form

Rm �
¸
j�i

Rm�1Vj � 0,

or equivalently

Rm � p�1qm�1
¸
j�i

V m
j � 0.

This system clearly reduces to the claim in (2.5).

Next we deduce the additive structure of KpNn,kq.

Definition 2.6. For any `, let LR and Li be the complex line bundles over Np`q with

c1pLRq � R and c1pLiq � Vi. Let αi � rLi � 1s and β � rLR � 1s P rKpNp`qq.
Proposition 2.7. The abelian group rKpNn,kq is free with basis

tαj1 : 1 ¤ j ¤ mu Y tαj2, . . . , α
j
k, β

j : 1 ¤ j   mu.

Proof. We have chpαji q � V j
i and chpβjq � Rj, where � means mod terms of higher

degree. So the specified αji and βj are elements in rKpNn,kq on which the first com-

ponent of ch gives an isomorphism to a basis for H�pNn,kq. Standard methods imply

that for a space with only even-dimensional cohomology and no torsion, this implies

the claim.
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Indeed, let K2jpNn,kq denote the quotient of KpNn,kq by elements trivial on the

p2j � 1q-skeleton. A result in [1], along with collapsing of the Atiyah-Hirzebruch

spectral sequence, implies that

chj : K2jpNn,kq{K2j�2pNn,kq Ñ H2jpKn,kq

is an isomorphism. Now by downward induction the split short exact sequence

0 Ñ K2j�2pNn,kq Ñ K2jpNn,kq Ñ H2jpNn,kq Ñ 0

implies that each K2jpNn,kq is a free abelian group generated by powers ¥ j.

Theorem 2.8. The multiplicative relations in KpNn,kq are αiαj � 0 for i � j,

αiβ � �α2
i {p1� αiq, α

m
1 � � � � � αmk , βm � p�1qmpk � 1qαmi , βm�1 � 0 � αm�1

i .

Proof. Since ch is an isomorphism KpXq b Q Ñ H�pX;Qq and we have seen that

bases correspond, it suffices to show that ch sends asserted relations to 0. Using the

cohomology relations stated in (2.5), all are clear except the one for αiβ. Letting

V � Vi and noting that when multiplied by V , R acts like �V , we have

chpαiβq � peV�1qpeR�1q � peV�1qpe�V�1q � �peV�1q e
V �1
eV

� � peV �1q2

1�peV �1q
� chp

�a2i
1�αi

q.

Lemma 2.9. For any i, L2
iLR � 1 � 2αi � β � αiβ P rKpNp`qq.

Proof. Let V � Vi. Since R acts as �V when multiplied by V , we have in H�pNp`qq

p2V �Rqj � Rj�pp2V �V qj�p�V qjq �

#
2V j �Rj j odd

Rj j even.
(2.10)
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We obtain

chpL2
iLR � 1q �

¸
j¥1

p2V�Rqj

j!

� 2pV � V 3

3!
� V 5

5!
� � � � q � eR � 1

� peV � 1q � pe�V � 1q � eR � 1

� peV � 1q � peV � 1qp1� e�V � 1q � eR � 1

� 2peV � 1q � peV � 1qpe�V � 1q � peR � 1q

� chp2αi � αiβ � βq.

Hence we have equality in KpNp`qq.

To obtain nonimmersions, we use the following result, which we quote from [2,

Theorem 4.4], although earlier versions apparently exist.

Theorem 2.11. For complex bundles θ over finite complexes, there are natural classes

Γpθq P KpXq b Zr1
2
s satisfying Γpθ1 � θ2q � Γpθ1qΓpθ2q and ΓpLq � 1� L�1

2
if L is a

(complex) line bundle. If θ is a stably complex vector bundle over a finite complex X

which, as a real bundle, is stably isomorphic to a bundle of (real) dimension 2s � 1,

then 2sΓpθq P KpXq.

The components of ΓpXq are just divided versions of the K-theoretic Chern classes.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Let η be the normal bundle of an immersion of Nn,k in Rt

for some t. By Corollary 2.3, the tangent bundle of Nn,k is stably isomorphic to
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kà
i�1

L2
iLR ` pn� 2� kqLR, and hence, with Γp�q as in Theorem 2.11,

Γpηq � Γpτq�1 �
k¹
i�1

ΓpL2
iLRq

�1 � ΓpLRq
�pm�1�kq

�
k¹
i�1

p1� αi �
1
2
β � 1

2
αiβq

�1 � p1� 1
2
βq�pm�1�kq

�
k¹
i�1

p1� αiq
�1 � p1� 1

2
βq�pm�1q (2.12)

� p1� 1
2
βq�pm�1q �

°
i,j ci,jα

j
i ,

using the relations in Theorem 2.8 in the last step. Here ci,j is an element of Zp2q whose

value does not matter. These terms are independent by Proposition 2.7, and one of

the terms is
�
�m�1
m�1

�
βm�1{2m�1. The binomial coefficient here is p�1qm�1

�
2m�1
m�1

�
�

p�1qm�1 1
2

�
2m
m

�
, so its exponent of 2 is αpmq � 1. Thus 2m�αpmq�1 �

�
�m�1
m�1

�
βm�1{2m�1

is not integral, and so by Theorem 2.11, η is not stably equivalent to a bundle of

dimension 2pm� αpmq � 1q � 1. If a d-dimensional manifold immerses in Rd�c, then

its normal bundle is c-dimensional. Thus we obtain the theorem.

Exactly as we did for planar polygon spaces in [4], we can prove that the total

Stiefel-Whitney class of the tangent bundle of Np`q is p1 � Rqm�1 P H�pNp`q;Z2q

with |R| � 2, where m, as throughout this paper, is 3 less than the length of `.

Similarly to [4, Corollary 1.5], for each m from 16 to 31, Stiefel-Whitney classes give a

nonimmersion of Nn,k in R61. For these values of m, Theorem 1.1 gives nonimmersions

of Nn,k in Euclidean spaces of the following dimensions: 61, 63, 67, 69, 75, 77, 81, 83,

91, 93, 97, 99, 105, 107, 111, and 113.

3. Proof of Theorem 1.3

We can expand these results easily if we restrict to cases in which relations of type

c do not appear in H�pNp`qq. Let s denote the maximal size of a gee of `. In grading

¤ 2pm� sq, there are no type-c relations. In this range, a basis for H�pNp`qq consists

of all RiVS such that S is a subgee and i � |S| ¤ m � s. This includes the empty

subgee.
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Using the notation and methods used earlier, we have the following result.

Theorem 3.1. Let s equal the maximal size of a gee of `, and k the largest size-

1 subgee of `. The ring KpNp`qq is generated by α1, . . . , αk, and β. The quotient,

modulo pm� s� 1q-fold (or more) products of these, is

Zrα1, . . . , αk, βs{pαiβ �
α2
i

1�αi
,
±

iPT αi: T not a subgeeq.

A basis for this quotient consists of all βi
±

jPS αj such that S is a subgee and i�|S| ¤

m� s.

Proof. Since chpαji q � V j
i and chpβjq � Rj mod higher-degree classes, the Atiyah-

Hirzebruch argument in the proof of Proposition 2.7 implies that these stated classes

generate. The relations are exactly those which give a cohomology relation when ch is

applied. The first type of relation is obtained as in the proof of Theorem 2.8, and the

second type follows from type-a relations in cohomology. For every type-c relation in

cohomology, there is a unique K-theory relation mapping to it, and this relation will

involve only pm � s � 1q-fold (or more) products of the generators. Thus they will

not affect the quotient of KpNp`qq being considered.

Proof of Theorem 1.3. Corollary 2.3, Lemma 2.9, and (2.12) all apply exactly as in

the proof of Theorem 1.1, as does the argument about independence of pure β classes

from those involving any αi’s. The only difference from the situation of the previous

section is that all we can assert is that certain multiples of βi are nonzero for i ¤

m� s. Thus Γpηq contains independent terms 2�i
�
�m�1
i

�
βi for i ¤ m� s. Note that�

�m�1
i

�
� �

�
m�i
i

�
. If M is as in Theorem 1.3, then Γpηq contains an independent

term 2�Mβi, so 2M�1Γpηq is not integral. Therefore by Theorem 2.11, the dimension

of the normal bundle is greater than 2pM � 1q � 1, and so the manifold does not

immerse in this codimension.

The results implied by Stiefel-Whitney classes are exactly those in which an i

which determines M has
�
m�i
i

�
odd. In Table 1, we list the nonimmersion dimension

implied by Theorem 1.3 for 2m-dimensional Np`q having largest gee size s. Those
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having value ¤ 61 (except for the 55 in columns 7 and 8) are also implied by Stiefel-

Whitney classes, but 61 is the largest that Stiefel-Whitney classes can imply in any

of the tabulated cases.

Table 1. Nonimmersion dimensions implied by Theo-
rem 1.3

m{s 1 2 3 4 5 6 7 8
16 61 59 57 55 53 51 49 47
17 63 61 61 57 57 53 53 49
18 67 65 61 61 61 59 55 53
19 69 67 67 61 61 61 61 55
20 75 73 71 69 63 61 61 61
21 77 75 75 71 71 63 63 61
22 81 79 75 75 75 73 65 63
23 83 81 81 75 75 75 75 65
24 91 89 87 85 83 81 79 77
25 93 91 91 87 87 83 83 79
26 97 95 91 91 91 89 85 83
27 99 97 97 91 91 91 91 85
28 105 103 101 99 95 93 91 89
29 107 105 105 101 101 95 95 91
30 111 109 105 105 105 103 97 95
31 113 111 111 105 105 105 105 97

4. Proof of Theorem 1.2

For 1   k   n, let Nn,k,1 � Np`q when the genetic code of ` is ttn, k, 1uu. In this

section we determine the algebra KpNn,k,1q and use it to prove the nonimmersion

Theorem 1.2. Throughout we let m � n� 3. We begin with (integral) cohomology.

Theorem 4.1. Let N � Nn,k,1. The algebra H�pNq is generated by degree-2 classes

R, V1, . . . , Vk. In grading 2i with 2 ¤ i ¤ m � 2, the only relations are due to

RVi � �V 2
i , and ViVj � 0 if 2 ¤ i   j, so a basis is given by

tRi, V i
1 , . . . , V

i
k , V1V

i�1
2 , . . . , V1V

i�1
k u.

A basis for H2pm�1qpNq is tV m�1
1 , V m�1

k , V1V
m�2
2 , . . . , V1V

m�2
k u, with V m�1

2 � � � � �

V m�1
k and Rm�1 � p�1qm�1pk � 2qV m�1

k . In H2mpNq � Z, we have Rm � V m
2 �

� � � � V m
k � 0, V1V

m�1
2 � � � � � V1V

m�1
k a generator, and V m

1 � pk � 2qV1V
m�1
k .

Finally H ipNq � 0 if i ¡ 2m.
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Proof. This follows easily from Theorem 2.1. The type-c relations in H2pm�1qpNq are

Rm�1 � p�1qm�2
¸

j¥2,j�i

V m�1
j � 0. One can solve this system by row-reduction, but

it is easier just to verify that the relations stated in the theorem are consistent with

these. Similarly, in H2mpNq, one can check that the relations stated in the theorem

are consistent with the type-c relations R1,i, R1, and Ri, i ¡ 1:

Rm � p�1qm�1
¸

j¥2,j�i

V m
j � 0, Rm � p�1qm�1

ķ

j�2

V m
j � 0,

and

Rm � p�1qm�1
¸
j�i

V m
j � p�1qm�2

¸
j¥2,j�i

V1V
m�1
j � 0.

Theorem 4.2. The algebra KpNn,k,1q is generated by classes α1, . . . , αk, β with re-

lations αiβ � �α2
i {p1 � αiq, αiαj � 0 if 2 ¤ i   j, αm�1

2 � � � � � αm�1
k , and

βm�1 � p�1qm�1pk � 2qαm�1
k . A basis consists of

t1, αji p1 ¤ i ¤ k, 1 ¤ j ¤ m� 2q, β, . . . , βm�2, αm�1
1 , αm�1

k ,

α1α
j
i p2 ¤ i ¤ k, 1 ¤ j ¤ m� 2q, α1α

m�1
k u.

Proof. The generators are as defined previously, and the relations are easily estab-

lished by applying ch and using the cohomology relations. The stated K-theory rela-

tions imply the following additional relations: αt1α
j
i � α1α

j�t�1
i , αmi � 0 (2 ¤ i ¤ k),

βm � 0, and αm1 � pk � 2qα1α
m�1
k . These relations enable reduction of everything to

terms in our asserted basis, and the listed monomials are linearly independent since

applying ch to them yields linearly independent cohomology classes.

Remark 4.3. Although in the cases considered here the K-theory relations have

corresponded exactly to the cohomology relations (except for the αiβ relation), this

will not continue. We have studied the case in which the genetic code is ttn, k, 2uu.

In this case some K-theory relations contain an additional term. The complicated

details cause us not to include it in this paper.
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Proof of Theorem 1.2. The first part follows from Theorem 1.3, using i � m�2 if m is

even, and i � m�3 if m is odd. Standard techniques imply that ν
�
2m�2
m�2

�
� αpmq�1 if

m is even, and ν
�
2m�3
m�3

�
� αpmq�2 ifm is odd. In both cases i�ν

�
m�i
i

�
� m�αpmq�1.

We might hope to use 2�pm�1q
�
2m�1
m�1

�
βm�1 � 2αpmq�muβm�1 with u odd to show

that 2m�αpmq�1Γpηq is not integral and deduce a nonimmersion in R4m�2αpmq�1. If k

is even, the relation βm�1 � p�1qm�1pk � 2qαm�1
k prevents this from working. We

will show that it works when k is odd, but since βm�1 is not independent of αm�1
k ,

we must consider other terms. We have, similarly to (2.12),

Γpηq �
k¹
i�1

pp1� αiqp1�
1
2
βqq�1 � p1� 1

2
βq�pm�k�1q

� p1� α1q
�1p1� α2 � � � � � αkq

�1p1� 1
2
βq�pm�1q

� p1� α2 � � � � � αkq
�1
�
p1� 1

2
βq�pm�1q � α1

1�α1
p1� α1

2p1�α1q
q�pm�1q

�
�

�
1�

¸
t¡0,j¥2

αtj
��
p1� 1

2
βq�pm�1q � α1p1� α1q

mp1� 1
2
α1q

�pm�1q
�
.

The desired term, 2�pm�1q
�
�m�1
m�1

�
βm�1, is apparent, but we must consider possible

cancelling terms.

The terms αt1 and α1α
t
j are independent of βm�1 and so need not be considered,

but we must consider the coefficients of αm�1
j for 2 ¤ j ¤ k, since these terms are

related to βm�1. Since (as already used) β acts as �αj{p1 � αjq when multiplied by

αj, we obtain as possible cancelling terms¸
t¡0,j¥2

αtj
�
1�

αj

2p1�αjq

��pm�1q
�

¸
t¡0,j¥2

αtjp1�αjq
m�1{p1� 1

2
αjq

m�1. (4.4)

We will prove in Proposition 4.5 that the 2-exponent of the coefficient of xi in p1 �

xqm�1{p1 � 1
2
xqm�1 is ¥ αpmq � m for i ¤ m � 1. Thus the coefficient of αm�1

j in

the RHS of (4.4) has 2-exponent ¥ αpmq � m. Since all these αm�1
j are equal and

have the same coefficient, and there is an even number of them, this RHS contains

the term 2vαm�1
k with v ¡ αpmq � m. Since βm�1 is an odd multiple of αm�1

k , the

combination of all terms is an odd multiple of 2αpmq�m times the basis element αm�1
k ,

and so 2m�αpmq�1Γpηq is not integral, from which the result follows.

Proposition 4.5. For i ¤ m� 1, νprxis : pp1� 2xq{p1� xqqm�1q ¥ i� αpmq �m.
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Proof. The desired coefficient equals
¸
j

2j
�
m�1
j

��
�pm�1q
i�j

�
. A formula of Gould ([6,

(1.71)] is
¸

2j
�
x
j

��
y
i�j

�
�
¸�

x
j

��
x�y�j
i�j

�
, and so our coefficient equals¸

j

�
m�1
j

��
�j
i�j

�
� �

¸
p�1qj

�
m�1
j

��
i�1
i�j

�
� �prxis : p1� xqm�1p1� xqi�1q � �prxis : p1� x2qi�1p1� xqm�2�iq.

The evaluation of this coefficient varies slightly with the parity of m and i. We

consider here the case m � 2r and i � 2r � 2t, with t ¡ 0. Other parities lead to

very slight modifications.

Up to sign, the coefficient is
r�ţ

k�r�2t�1

p�1qk
�
2r�2t�1

k

��
2t�2

2r�2t�2k

�
�
�
2r
r

� r�ţ

k�r�2t�1

pr���pk�1qq�pr���p2r�2t�kqq
p2rq���p2r�2tq

�ck,

where ck � p�1qk
�

2t�2
2r�2t�2k

�
is an integer whose value is not relevant. For each value

of k, either r � t ¥ k � 1 or r � t ¥ 2r � 2t� k. Thus one of the two products in the

numerator of the fraction contains the product r � � � pr � tq. We use this to cancel all

but the 2 in each of the even factors in the denominator, leaving 2t�1 times an odd

number in the denominator. Thus every term T in the sum has νpT q ¥ �pt � 1q.

Since ν
�
2r
r

�
� αprq � αpmq, we obtain that the 2-exponent in our expression is

¥ αpmq � t� 1 ¥ αpmq � 2t � αpmq � pm� iq, as claimed.

Our proof shows that Proposition 4.5 can be strengthened quite a bit, but we settle

for what we need.

5. Obstruction theory: proof of Theorem 1.4

We adapt [12, Theorem 5.1] to our situation as follows.

Theorem 5.1. The 2m-manifold Np`q can be immersed in R4m�2 if and only if

a. m is even and there exists y P H2m�2pNp`q;Z2q such that

i�pSq2 y � w2pηqyq � ρ4pcmpηqq P H
2mpNp`q;Z4q, or

b. m is odd and ρ2pcmpηqq � 0 P H2mpNp`q;Z2q.
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Here cmpηq P H
2mpNp`q;Zq is the Chern class of the stable normal bundle η, and

i�, ρ4, and ρ2 are induced by coefficient homomorphisms Z2 ãÑ Z4, Z � Z4, and

Z � Z2.

Proof of Theorem 1.4. By Proposition 2.2, the total Chern class of the normal bundle

η for any Np`q is

k¹
i�1

p1� 2Vi �Rq�1 � p1�Rq�pm�1�kq. (5.2)

Using (2.10), we have

p1� 2Vi �Rq�1 �
¸
j¥0

p�1qjp2Vi �Rqj

�
¸
j¥0

p�1qjRj � 2
¸
j odd

p�1qjV j
i

� p1�Rq�1 � 2Vip1� V 2
i q

�1.

Now we specialize to Nn,k and Nn,k,1. Since ViVj � 0 for i � j in H�pNn,kq, and R

acts as �Vi when multiplied by Vi, we obtain in H�pNn,kq

k¹
i�1

p1� 2Vi �Rq�1 � p1�Rq�k � 2p1�Rq�pk�1q
ķ

i�1

Vip1� V 2
i q

�1

� p1�Rq�k � 2
ķ

i�1

Vip1� V 2
i q

�1p1� Viq
�pk�1q.

In H�pNn,k,1q, there are additional terms since V1Vj � 0, but they will be divisible by

4. Thus, from (5.2), in both Nn,k and Nn,k,1,

cmpηq � rp1�Rq�pm�1q�2
ķ

i�1

Vip1�V
2
i q

�1p1�Viq
�ms2m mod 4, (5.3)

where r�s2m denotes the component in grading 2m. (Recall |R| � |Vi| � 2.) If m is

odd, the coefficient of Rm in p1 � Rq�pm�1q is even, and so Theorem 5.1(b) implies

the immersion.

Now we restrict to even values of m. Mod 2, we have, with |V | � 2,

rV p1�V 2q�1p1�V q�ms2m � V rp1�V q�pm�2qs2pm�1q �
�
�pm�2q
m�1

�
V m �

�
2m
m�1

�
V m.

This coefficient is even when m is even, and so the second part of (5.3) is 0 mod 4.
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Since ν
�
�pm�1q

m

�
� ν

�
2m
m

�
� αpmq, we find that, mod 4, cmpηq equals 2Rm if m is

a 2-power, and is 0 otherwise, so we obtain the immersion when m is not a 2-power.

By Theorem 4.1, Rm � 0 in H2mpNn,k,1q and so we obtain the immersion in this case.

By Proposition 2.4, 2Rm � 0 P H2mpNn,k;Z4q iff k is even, and so we obtain the

immersion when m is a 2-power and k is odd. Now we evaluate the indeterminacy,

Sq2 y � w2pηqy, when m is a 2-power and k is even.

Note that H2mpNn,k;Z2q � Z2, so we just say whether terms are 0. We have

Sq2pV m�1
i q � 0 since m is even, and Sq2pRm�1q � 0 since m is even and k is even.

Also, w2pηq � pm�1qR, so w2pηqV
m�1
i � 0 since m is even, and w2pηqR

m�1 � 0 since

m is even and k is even. So the indeterminacy is 0 in all cases, and we obtain the

nonimmersion for Nn,k when m is a 2-power and k is even.
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