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We prove thatRP2e−1 can be immersed inR2e+1−e−7 providede≥ 7. If e≥ 14,
this is 1 better than previously known immersions. Our method is primarily an
induction on geometric dimension, with compatibility of liftings being a central
issue.
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1 Statement of result and background

Our main result is the following immersion theorem for real projective spaces.

Theorem 1.1 If e≥ 7, thenRP2e−1 can be immersed inR2e+1−e−7.

This improves, in these cases, by 1 dimension upon the result of Milgram [8], who
proved, by constructing bilinear maps, that ifn≡ 7 mod 8, thenRPn can be immersed
in R2n−α(n)−4, whereα(n) denotes the number of 1s in the binary expansion ofn.
In [2, Theorem 1.2], the first and fourth authors used obstruction theory to prove that
if n ≡ 7 mod 8, thenRPn can be immersed inR2n−D , whereD = 14, 16, 17, 18 if
α(n) = 7, 8, 9,≥ 10. That result, withn = 2e− 1, is stronger than ours fore≤ 12. If
e≥ 13, then our result improves on the result of [2] by e− 13 dimensions. Thus1.1
improves on all known results by 1 dimension ife≥ 14.

In [6], James proved thatRP2e−1 cannot be immersed inR2e+1−2e−δ where δ =
3, 2, 2, 4 for e≡ 0, 1, 2, 3 mod 4. In [5], Gitler and Mahowald announced an immersion
result for RP2e−1 in dimension 1 greater than that of James’ nonimmersion, which
would have been optimal. However, a mistake in the argument of [5] was pointed out
by Crabb and Steer. The approach of our paper was initiated by Mahowald around
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1970 in an unpublished attempt to prove an optimal immersion ofRP2e−1. In order to
improve our result to this extent, we would need to show compatibility of our liftings
with liftings given by the Radon-Hurwitz theorem ([4]).

2 Outline of proof

In this section we outline the proof of1.1. In subsequent sections, we will fill in details.

If θ is a vector bundle over a compact connected spaceX, we define the geometric
dimension ofθ , denoted gd(θ), to be the fiber dimension ofθ minus the maximum
number of linearly independent sections ofθ . Equivalently, if dim(θ) = n, then gd(θ)
equals the smallest integerk such that the mapX

θ−→ BO(n) which classifiesθ factors
throughBO(k). The following lemma is standard (See eg Sanderson [9, Theorem 4.2]).
Here and throughout,ξn denotes the Hopf line bundle overRPn. We will often write
Pn instead ofRPn, and will denote the stunted spacePn/Pk−1 asPn

k .

Lemma 2.1 Let φ(n) denote the number of positive integersi satisfying i ≤ n and
i ≡ 0, 1, 2, 4 mod 8. Supposen > 8. Then RPn can be immersed inRn+k if and
only if gd((2φ(n) − n− 1)ξn) ≤ k.

Thus1.1will follow from the following result, to the proof of which the remainder of
this paper will be devoted.

Theorem 2.2 If e≥ 7, thengd((22e−1−1 − 2e)ξ2e−1) ≤ 2e− e− 6.

The bulk of the work toward proving2.2will be a determination of upper bounds for
gd(2eξn) for all n≡ 7 mod 8 by induction one, starting withe = 7. A similar method
could be employed for alln, but we restrict ton ≡ 7 mod 8 to simplify the already
formidable arithmetic. We letAk = RP8k+7, and denote gd(mξ8k+7) by gd(m, k).

The classifying map for 2eξ8k+7 will be viewed as the following composite.

(2.3) Ak
d−→ (Ak × Ak)

(8k+7) ↪→
⋃

j

Aj × Ak−j
f×f−→ BO2e−1 × BO2e−1 → BO2e.

Hered is a cellular map homotopic to the diagonal map,X(n) denotes then–skeleton of
X, andf classifies 2e−1ξ . We writeBOm for BO(m) for later notational convenience.

As a first step, we would like to use (2.3) to deduce that

gd(2e, k) ≤ max{gd(2e−1, j) + gd(2e−1, k− j) : 0≤ j ≤ k}.
In order to make this deduction, we need to know that the liftings of the various
2e−1ξ8j+7 to variousBOm have been made compatibly.
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Definition 2.4 If θ is a vector bundle over a filtered spaceX0 ⊂ · · · ⊂ Xk , we say that

gd(θ|Xi) ≤ di compatibly fori ≤ k

if there is a commutative diagram
X0 −−−−→ X1 −−−−→ · · · −−−−→ Xky

y
y

BOd0 −−−−→ BOd1 −−−−→ · · · −−−−→ BOdk −−−−→ BOdim(θ)

where the mapXk → BOdim(θ) classifiesθ , and the horizontal maps are the usual
inclusions.

Remark 2.5 In our filtered spaces, we always assume that the inclusions are cofibra-
tions.

Remark 2.6 Isomorphism classes ofn–dimensional vector bundles overX correspond
to homotopy classes of maps ofX into BOn. Thus one would initially say that
the diagram in2.4 commutes up to homotopy. However, by2.7, we may interpret
this diagram, and other homotopy commutative diagrams that occur later, as being
strictly commutative. To apply the lemma, we will often, at the outset, replace maps
BOn → BOn+k by homotopy equivalent fibrations.

Lemma 2.7 If
A

f−−−−→ E

i

y
yp

X −−−−→
g

B

commutes up to homotopy andp is a fibration, thenf is homotopic to a mapf ′ such
that p ◦ f ′ = g ◦ i .

Proof Let H : A× I → B be a homotopy fromp ◦ f to g ◦ i . By the definition of
fibration, there exists̃H : A× I → E such thatp ◦ H̃ = H and H̃|A× 0 = f . Then
H̃|A× 1 is our desiredf ′ .

If X0 ⊂ · · · ⊂ Xk andY0 ⊂ · · · ⊂ Yk are filtered spaces, we define, for 0≤ i ≤ k,

(X× Y)i :=
i⋃

j=0

Xj × Yi−j .

Then (X×Y)0 ⊂ · · · ⊂ (X×Y)k is clearly a filtered space. We will prove the following
general result in Section3.



4 Donald M. Davis, Giora Dula, Jeśus Gonźalez and Mark Mahowald

Proposition 2.8 Supposegd(θ|Xi) ≤ di compatibly for i ≤ k and gd(η|Yi) ≤ d′i
compatibly for i ≤ k. For 0 ≤ j ≤ k, let ej = max(di + d′j−i : 0 ≤ i ≤ j). Then
gd(θ×η|(X×Y)j) ≤ ej compatibly forj ≤ k. Moreover, ifX = Y andθ = η , then the
maps(X×X)j

f−→ BOej can be chosen to satisfyf ◦T = f , whereT : X×X → X×X
interchanges factors.

We will begin an induction by deriving in4.1some compatible bounds for gd(128, i).
Proposition2.8 will, after restriction under the diagonal map, allow us to prove
gd((

∑
2ei )ξn) ≤ max{∑ gd(2ei ξmi ) :

∑
mi = n}. These bounds are not yet strong

enough to yield new immersion results. We must improve the bounds by taking
advantage of paired obstructions. The following result will be proved in Section3.

Proposition 2.9 Let BOn[ρ] denote the pullback ofBOn and the(ρ − 1)-connected
coverBO[ρ] over BO, and lets = min(ρ + 2m− 1, 4m− 1).

(1) There are equivalencesc′1 andc′2 such that the following diagram commutes.

BO2m[ρ](s) q1−−−−→ (BO2m[ρ]/BO2m−1[ρ])(s) c′1−−−−→ S2m

p2

y p′2

y i

y

BO2m+1[ρ](s) q2−−−−→ (BO2m+1[ρ]/BO2m−1[ρ])(s) c′2−−−−→ ΣP2m
2m−1.

Preparatory to the next two parts, we expand this diagram as follows, with
ci = c′i ◦ qi and(X, A) a finite CW pair.

A
f1−−−−→ BO2m−1[ρ](s)

j

y p1

y
X BO2m[ρ](s) c1−−−−→ S2m

p2

y i

y
BO2m+1[ρ](s) c2−−−−→ ΣP2m

2m−1.

(2) Supposedim(X) < s, and we are givenX
f−→BO2m[ρ](s) such thatf ◦ j = p1◦ f1

andc1 ◦ f factors asX → X/A
g−→ S2m with [g] divisible by 2 in [X/A, S2m] .1

Thenp2 ◦ f lifts to a mapX
`−→ BO2m−1[ρ](s) whose restriction toA equalsf1.

(3) Suppose, on the other hand,dim(X) ≤ s, and we are givenX
f ′−→ BO2m+1[ρ](s)

such thatf ′ ◦ j = p2 ◦ p1 ◦ f1 and c2 ◦ f ′ factors asX → X/A
g′−→ ΣP2m

2m−1
with [Σg′] divisible by 2 in the stable group[ΣX/A,Σ2P2m

2m−1] . Then f ′ is
homotopic relA to a map which lifts toBO2m[ρ](s) .

1Note that [X/A, S2m] is in the stable range, from which it gets its group structure.
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In Section4, we will implement2.8and2.9to prove that the last part of the following
important result follows by induction one from the first five parts and its validity when
e = 7, while in Section5, we will establish the first five parts.

Theorem 2.10 There is a functiong(e, k) defined fore≥ 7 andk ≥ 0 satisfying the
following.

(1) If k ≥ 2e−3, theng(e, k) = 2e.

(2) For all e, g(e, 0) = g(e, 1) = 0, and, if 2≤ k ≤ 2e, theng(e, k) ≥ 4k + 4.

(3) If 0≤ ` ≤ k/2, theng(e+ 1, k) ≥ g(e, `) + g(e, k− `)− 1.

(4) If, for some` with 0≤ ` ≤ k/2, we haveg(e+1, k) = g(e, `)+g(e, k− `)−1,
then, for all` with 0≤ ` ≤ (k−1)/2, we haveg(e, `)+g(e, k−1−`) < g(e+1, k)
and, if alsok is even, theng(e+ 1, k) ≥ 2g(e, k/2) + 1.

(5) For all e andk, g(e, k) ≥ g(e, k− 1).

(6) gd(2e, k) ≤ g(e, k) compatibly for allk.

The functiong will be defined in (5.1) and 5.5. In Table 1, we list its values for
small values of the parameters. We prefer not to tabulate the valuesg(e, k) = 2e when
k > 2e−3.

In Section6, we apply the basic induction argument,2.8, and the results for gd(2eξ)
in 2.10to prove the following result by induction ont . This clearly implies2.2 and
hence1.1.

Proposition 2.11 For e≥ 7 andt ≥ 0, gd((2e+2e+1+ · · ·+2e+t)ξ2e−1) ≤ 2e−e−6.

3 Proof of general lifting results

In this section, we prove2.8 and2.9. For the first one, we find it more convenient to
work with sections rather than geometric dimension.

Theorem 3.1 Let X0 ⊂ · · · ⊂ Xk and Y0 ⊂ · · · ⊂ Yk be filtered spaces, and letθ

(resp.η ) be a vector bundle overXk (resp.Yk). Suppose givenm0 (resp.n0) sections
of θ on Xk (resp. η on Yk), of which the firstmi (resp. ni ) are linearly independent
(l.i.) on Xi (resp.Yi ) for 0≤ i ≤ k. Let

pj = min(mi + nj−i : 0≤ i ≤ j).
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k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 0 16 19 32 35 48 51 64 67 80 83 96 99 112 115 128
8 0 15 18 32 34 47 50 64 66 79 82 96 98 111 114 128

e 9 0 14 17 31 33 46 49 64 66 78 81 95 97 110 113 128
10 0 13 16 30 32 45 48 63 65 77 80 94 96 109 112 128
11 0 12 16 29 31 44 47 62 64 76 79 93 95 108 111 127
12 0 12 16 28 30 43 46 61 63 75 78 92 94 107 110 126
13 0 12 16 27 29 42 45 60 62 74 77 91 93 106 109 125
14 0 12 16 26 28 41 44 59 61 73 76 90 92 105 108 124

k
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

8 130 143 146 160 162 175 178 192 194 207 210 224 226 239 242 256
9 130 142 145 159 161 174 177 192 194 206 209 223 225 238 241 256

e 10 130 141 144 158 160 173 176 191 193 205 208 222 224 237 240 256
11 129 140 143 157 159 172 175 190 192 204 207 221 223 236 239 256
12 128 139 142 156 158 171 174 189 191 203 206 220 222 235 238 255
13 127 138 141 155 157 170 173 188 190 202 205 219 221 234 237 254
14 126 137 140 154 156 169 172 187 189 201 204 218 220 233 236 253

Table 1:Values ofg(e, k) whene≤ 14 andk ≤ 32.

Let

Wj =
j⋃

i=0

Xi × Yj−i .

Then there arep0 sections ofθ×η on Wk of which the firstpj are linearly independent
on Wj for 0≤ j ≤ k. Moreover, if`+ i ≥ j andm` +ni ≥ pj , then the firstpj sections
are l.i. onX` × Yi .

Note that we havem0 ≥ · · · ≥ mk , n0 ≥ · · · ≥ nk , andp0 ≥ · · · ≥ pk .

The following result will be used in the final step of the proof of3.1.

Lemma 3.2 Supposeθ is an n–dimensional trivial vector bundle over a spaceX
with l.i. sectionst1, . . . , tn. Supposes1, . . . , sr are l.i. sections ofθ , each of which
is a linear combination with constant coefficients of theti . Then there is a set
s1, . . . , sr , s′r+1, . . . , s′n of linearly independent sections ofθ , with all these sections
being linear combinations with constant coefficients of theti .
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Proof Because of the constant-coefficient assumption, this is just a consequence of
the result for vector spaces, that a basis for a subspace can be extended to a basis for
the whole space.

Note that the assumption about constant coefficients was required. For example, the
sections(x) = (x, x) of S2 × R3 cannot be extended to a set of three l.i. sections.

Proof of 3.1 Let r1, . . . , rm0 be the given sections ofθ on Xk , and s1, . . . , sn0 the
given sections ofη on Yk . These are considered as sections ofθ × η by using 0 on
the other component. Clearly{r1, . . . , rm0, s1, . . . , sn0} is a set ofp0 sections onWk

which is linearly independent onW0. The proof will proceed by findingp1 linear
combinations, always with constant coefficients, of these sections which are l.i. onW1,
thenp2 linear combinations of these new sections which are l.i. onW2, etc, until going
into the last stage we havepk−1 sections which are l.i. onWk−1, and we findpk linear
combinations of them which are l.i. onWk . Now we apply the lemma repeatedly,
starting with the lastpk sections. At the first step, we extend this set to a set ofpk−1

sections l.i. onWk−1, and continue until going into the last stage, where we havep1

sections which are combinations of the originalp0 sections and satisfy the conclusion
of the theorem for 1≤ i ≤ k. We apply the lemma one last time to extend the set of
p1 sections to the desired set ofp0 sections.

Here is an explicit algorithm for the sections described in the first half of the preceding
paragraph. We may assume without loss of generality thatm0 ≥ n0.

For j from 0 to k,

• For i from 1 to pj − n0 (resp.pj −m0), let r (j)
i = r i (resp.s(j)

i = si ). (Note that
if n0 ≥ pj , then nothing happens at this step.)

• For i from max(1, pj − n0 + 1) to min(m0, pj), let both r (j)
i and s(j)

pj+1−i equal

r (j−1)
i + s(j−1)

pj+1−i .

• Then the sectionsr (j)
i and s(j)

i constructed in the two previous steps give the
sections which are l.i. onWj . (Each section constructed in the second step can
be counted as anr or ans, but is only counted once.)

We must show that these have the required linear independence. Before doing so,
we illustrate with an example, computed byMaple. Let k = 4, [m0, . . . , m4] =
[11, 6, 4, 1, 0] and [n0, . . . , n4] = [10, 8, 3, 2, 0]. Then [p0, . . . , p4] = [21, 16, 14, 9, 7].
The 16 sections l.i. onW1 are

r1, . . . , r6, r7 + s10, r8 + s9, r9 + s8, r10 + s7, r11 + s6, s5, . . . , s1.



8 Donald M. Davis, Giora Dula, Jeśus Gonźalez and Mark Mahowald

The 14 sections l.i. onW2 are

r1, r2, r3, r4, r5 + r7 + s10, r6 + r8 + s9, r7 + r9 + s10 + s8, r8 + r10 + s9 + s7,

r9 + r11 + s8 + s6, r10 + s7 + s5, r11 + s6 + s4, s3, s2, s1.

The 9 sections l.i. onW3 are

r1 + r6 + r8 + s9, r2 + r7 + r9 + s10 + s8, r3 + r8 + r10 + s9 + s7,

r4 + r9 + r11 + s8 + s6, r5 + r7 + r10 + s10 + s7 + s5,

r6 + r8 + r11 + s9 + s6 + s4, r7 + r9 + s10 + s8 + s3, r8 + r10 + s9 + s7 + s2,

r9 + r11 + s8 + s6 + s1.

The 7 sections l.i. onW4 are

r1 + r3 + r6 + 2r8 + r10 + 2s9 + s7,

r2 + r4 + r7 + 2r9 + r11 + s10 + 2s8 + s6,

r3 + r5 + r7 + r8 + 2r10 + s10 + s9 + 2s7 + s5,

r4 + r6 + r8 + r9 + 2r11 + s9 + s8 + 2s6 + s4,

r5 + 2r7 + r9 + r10 + 2s10 + s8 + s7 + s5 + s3,

r6 + 2r8 + r10 + r11 + 2s9 + s7 + s6 + s4 + s2,

r7 + 2r9 + r11 + s10 + 2s8 + s6 + s3 + s1.

Now we continue with the proof. The property described in the first paragraph of the
proof, that the sections claimed to be l.i. onWj are linear combinations with constant
coefficients of those onWj−1, is clear from their inductive definition.

Next we easily show that ifi > pj − n0, then

r (j)
i = s(j)

pj+1−i = r i +
∑

`>i

c`r` + spj+1−i +
∑

`>pj+1−i

d`s̀

with c` and d` integers. The point here is that the additional terms have subscript
greater thani or pj + 1− i . The proof is immediate from the inductive formula

r (j)
i = r (j−1)

i + s(j−1)
pj+1−i

and the fact thatpj ≤ pj−1. Indeed, fromr (j−1)
i we obtain termsr≥i ands≥pj−1+1−i ,

and froms(j−1)
pj+1−i we obtain termss≥pj+1−i andr≥pj−1−pj+i .

Finally we show that the asserted sections are l.i. onWj . Let x ∈ X` ×Yj−` . Note that
{r1(x), . . . , rm`

(x)} is l.i., as is{s1(x), . . . , snj−`
(x)}, and thatpj ≤ m` + nj−` . If we

form a matrix with columns labeled

r1, . . . , rm0, sn0, . . . , s1,
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and rows which express the sections, ordered as

(3.3) r (j)
1 , . . . , r (j)

min(m0,pj ), s(j)
pj−m0

, . . . , s(j)
1 ,

in terms of the column labels, then, by the previous paragraph, the number of columns
is ≥ (usually strictly greater than) the number of rows, the entry in position (i, i) is 1
for i ≤ min(m0, pj), and all entries to the left of these 1s are zero. Ifi > min(m0, pj),
then all entries in ther -portion of row i are zero. Moreover an analogous statement
is true if the order of the rows and of the columns are both reversed. Thus there are
1s on the diagonal running up from the lower right corner of the original matrix (for
min(n0, pj) positions) and zeros to their right.

If a linear combination of our sections applied tox is 0, then the triangular form of
the matrix implies that the firstm` coefficients are 0, while the triangular form looking
up from the lower right corner implies that the lastnj−` coefficients are 0. Since
pj ≤ m` + nj−` , this implies that all coefficients are 0, hence the desired independence.

The same argument works for the last statement of the proposition. Fork satisfying
j ≤ k ≤ ` + i , replaceWk by Wk ∪ (X` ×Yi). Then everything goes through as above.

Proof of 2.8 Let D = dim(θ) and D′ = dim(η). Then di , d′i , ei , and (X × Y)i of
2.8 correspond toD − mi , D′ − ni , D + D′ − pi , and Wi of 3.1, respectively. The
compatible gd bounds may be interpreted as vector bundlesθi overXi of dimensiondi

and isomorphismsθ|Xi ≈ θi ⊕ (D− di) andθi |Xi−1 ≈ θi−1 ⊕ (di − di−1). The trivial
subbundles yield, for alli , D− di l.i. sections ofθ on Xi such that the restrictions of
the sections onXi to Xi−1 are a subset of the sections onXi−1. Each of the sections on
X0 has a largestXi for which it is one of the given l.i. sections. By Atiyah [1, Section
1.4.1], this section onXi can be extended overXk (although probably not as part of a
linearly independent set). Analogous statements are true for sections ofη|Yi .

By 3.1, there areD+D′−e0 l.i. sections ofθ×η on W0 of which the firstD+D′−ei

are l.i. onWi . Taking orthogonal complements of the spans of the sections yields the
desired compatible bundles onWi of dimensionei , yielding the first part of2.8.

For the second part, first note that in the algorithm in the proof of3.1, if the r ’s and
s’s are equal, then the set of sections constructed on eachWi is invariant under the
interchange mapT . Thus the same will be true of the orthogonal complement of their
span.
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Proof of 2.9

(1) Let F1 = S2m−1 denote the fiber ofBO2m−1[ρ] → BO2m[ρ]. There is a relative
Serre spectral sequence for

(3.4) (CF1, F1) → (BO2m[ρ], BO2m−1[ρ]) → BO2m[ρ].

The fibrationV2m → BO2m[ρ] → BO[ρ] shows that the bottom class ofBO2m[ρ]
is in dimension≥ min(ρ, 2m). The spectral sequence of (3.4) shows that
H∗(S2m) → H∗(BO2m[ρ]/BO2m−1[ρ]) has cokernel beginning in dimension≥
s+ 1, and so the map is ans–equivalence. Thus the inclusion of thes–skeleton
of BO2m[ρ]/BO2m−1[ρ] factors throughS2m to yield the mapc′1, which is an
equivalence.
The second map is obtained similarly. A map

ΣP2m
2m−1

`−→ BO2m+1[ρ]/BO2m−1[ρ]

is obtained as the inclusion of a skeleton ofCF2/F2, whereF2 = V2m+1,2 is the
fiber of BO2m−1[ρ] → BO2m+1[ρ]. The relative Serre spectral sequence of

(3.5) (CF2, F2) → (BO2m+1[ρ], BO2m−1[ρ]) → BO2m+1[ρ]

implies that coker(̀∗) begins in dimension≥ s+ 1, determined by

H2m(CF2, F2)⊗ Hmin(ρ,2m+1)(BO2m+1[ρ])

and the first “product" class inH4m(ΣV2m+1,2). The obtaining ofc′2 now follows
exactly as forc′1.

(2) Let Q := BO2m+1[ρ]/BO2m−1[ρ] and E := fiber(BO2m+1[ρ] → Q). The
commutative diagram of fibrations

V2m+1,2 −−−−→ BO2m−1[ρ] −−−−→ BO2m+1[ρ]y
y

y
ΩQ −−−−→ E −−−−→ BO2m+1[ρ]

implies the quotientE/BO2m−1[ρ] has the same connectivity asΩQ/V2m+1,2,
which is 1 less than that determined from (3.5); that is,E/BO2m−1[ρ] is (s−1)–
connected. Thus, since dim(X) < s, the vertical maps in

BO2m−1[ρ](s) −−−−→ BO2m+1[ρ](s) −−−−→ ΣP2m
2m−1y

y
y

E −−−−→ BO2m+1[ρ] −−−−→ Q
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are equivalences in the range relevant for maps fromX, A, andX/A. Since the
bottom row is a fibration, we may consider the top row to be one, too, as far as
X is concerned.
Sinceg is divisible by 2, and 2π2m(ΣP2m

2m−1) = 0, we deduce that the composite

X/A
g−→ S2m i−→ ΣP2m

2m−1

represents the 0 element of [X/A, ΣP2m
2m−1]; ie the map is null-homotopic rel

∗. There is a commutative diagram as in (3.6) with the left sequence a cofiber
sequence and the right sequence a fiber sequence in the range of dim(X).

(3.6)

A
f1−−−−→ BO2m−1[ρ](s)

j1

y j2

y
X

p2◦f−−−−→ BO2m+1[ρ](s)

q
y

y
X/A

i◦g−−−−→ ΣP2m
2m−1

We have just seen that there is a basepoint-preserving homotopy

H : X/A× I → ΣP2m
2m−1

from i ◦ g to a constant map. There is a commutative diagram
X× 0∪ A× I −→ BO2m+1[ρ]y

y
X× I

q×I−−−−→ X/A× I
H−−−−→ ΣP2m

2m−1

where the top map isp2 ◦ f on X × 0 and j2 ◦ f1 on eachA× {t}. By the
Relative Homotopy Lifting Property of a fibration, there exists a mapH̃ : X×
I → BO2m+1[ρ] making both triangles commute. Whent = 1, it maps into
BO2m−1[ρ], since it projects to the constant map at the basepoint ofΣP2m

2m−1.

(3) We use the fact that 2· 1ΣP2m
2m−1

factors as

ΣP2m
2m−1

col−→ S2m+1 η−→ S2m ↪→ ΣP2m
2m−1

to deduce that the composite

ΣX/A
Σg′−→ Σ2P2m

2m−1
col−→ S2m+2

is null-homotopic since [Σg′] is divisible by 2. Note that we needed to suspend
once since if dim(X) = 4m− 1, then [X/A, ΣP2m

2m−1] might not have a group
structure. Since

[X/A, S2m+1]
Σ−→ [Σ(X/A), S2m+2]
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is bijective, we deduce thatX/A
col◦g′−→ S2m+1 is null-homotopic.

An argument similar to the one in the beginning of the proof of (2) shows that
BO2m[ρ] → BO2m+1[ρ] → S2m+1 is a fibration through dimension min(ρ +
2m− 1, 4m) ≥ s. Since dim(X) ≤ s, the lifting follows as in the proof of (2).

4 Inductive determination of a bound for gd(2e, k)

In this section, we prove that part (6) of2.10follows from its first five parts, together
with its validity for e = 7. We begin by proving the validity whene = 7. The following
result is stronger than the required liftings fore = 7; i.e., we havem(k) ≤ g(7, k) and
the inequality is strict ifk is even with 4≤ k ≤ 14. The reason for beginning our
induction with liftings weaker than the best results that we are able to prove is to fit
them into a simple formula that works for all values ofe. Here and throughout we use
the standard notation thatν(−) denotes the exponent of 2 in an integer.

Theorem 4.1 Let

m(k) =





0 k = 0, 1

16 k = 2

8k− 5 k odd, 3≤ k ≤ 15

8k + ν(k)− 4 k even, 4≤ k ≤ 16.

There are compatible liftings of128ξ8k+7 to BOm(k) for k ≥ 0.

Proof Let Hk denote the Hopf bundle over quaternionic projective spaceHPk . Let
m′(k) = 13 if k = 2, and otherwisem′(k) = m(k). We will use [3, Theorem 1.1b] to
prove

(4.2) there are compatible liftings of 32H2k+1 to BOm′(k) for 2≤ k ≤ 16.

Three things are required to prove this. First we need that, fork ≤ 15 and alli ≤ 2k+1
satisfying also 4i − 1≥ m′(k),

ν
(32

i

) ≥ ν(|π4i−1(Pm′(k) ∧ bo)|).
This is easily verified usingν

(32
i

)
= 5− ν(i) and, for 1≤ ε ≤ 3,

(4.3) ν(|π4i−1(P4a+ε ∧ bo)|) =





4− ε i = a + 1

4 i = a + 2

8− ε i = a + 3.
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For example, ifk is odd, we havem′(k) = 8k−5. Thena = 2k−2 andε = 3 in (4.3),
and fori = 〈2k−1, 2k, 2k+1〉, we haveν

(32
i

)
= 〈5, 4, 5〉 andν(|π4i−1(P8k−5∧bo)|) =

〈1, 4, 5〉.
Secondly, we need thatπ4i−1(Pm′(k)) → π4i−1(Pm′(k) ∧ bo) is injective for i ≤ 2k + 1.
This is obtained from Tables 8.4, 8.8, 8.14, 8.15, and 8.16 of [7]. These show that
for m′(k) ≡ 〈3, 7, 13, 14, 15〉 mod 16 and 4i − 1≤ m′(k) + 〈8, 4, 6, 5, 4〉, the asserted
injectivity is true. Now the liftings follow from [3, Theorem 1.1b]. Ifk = 16, the
lifting follows for dimensional reasons.

The third thing we need is compatibility. We must show that

HP2k−1 −−−−→ BOm′(k−1)y
y

HP2k+1 −−−−→ BOm′(k)

commutes fork ≥ 3. The two composites agree stably, and so their obstructions to
being homotopic lie inH∗(HP2k−1; π∗(Vm′(k))). If k is even, then 8k− 4 < m′(k) so
the groups are 0. Ifk is odd, the result follows sinceπ8k−4(V8k−5) = 0.

We precede the compatible liftings of (4.2) by the canonical mapsRP8k+7 → HP2k+1,
obtaining compatible liftings of 128ξ8k+7 to BOm(k) for k ≥ 2. The bundle 128ξ15

is trivial. To insure compatibility of the liftings onRP15 and RP23, we note that
the obstructions to compatibility lie inH∗(RP15; π∗(V16)) = 0. This is why we use
m(k) = 16, rather than 13.

Now we prove the induction step. Let

ρ(4a + b) = 8a + 2b if 0 ≤ b≤ 3.

It satisfies that 2kξn is nontrivial if and only ifn ≥ ρ(k). Let ρ = ρ(e− 1). Assume
that we have obtained compatible liftings of 2e−1ξ8k+7 to BOg(e−1,k)[ρ] for all k. For
0≤ k ≤ 2e−3, define

g1(e, k) := max{g(e− 1, i) + g(e− 1, k− i) : max(0, k− 2e−4) ≤ i ≤ [k/2]}.
Note that by2.10.(3),

(4.4) g(e, k) ≥ g1(e, k)− 1.

RecallAk = P8k+7, and let

(A× A)k =
k⋃

i=0

Ai × Ak−i .
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Then by2.8there are compatible symmetric liftings`k of 2e−1ξ × 2e−1ξ on (A× A)k

to BOg1(e,k)[ρ] for all k. We precede by compatible mapsdk : Ak → (A×A)k , cellular

maps homotopic to the diagonal. The compositesAk
`k◦dk−→ BOg1(e,k)[ρ] are compatible

liftings of 2eξ8k+7 for all k.

By decreasing induction onk starting withk = 2e−3, we will construct compatible
factorizations throughBOg(e,k)[ρ] of the maps̀ k ◦ dk . Assume inductively that, for all
j > k, compatible factorizations, up to homotopy relAk , of `j ◦ dj throughBOg(e,j)[ρ]
have been attained. Ifg(e, k) ≥ g1(e, k), then no factorization of̀k ◦ dk is required,
and so our induction onk is extended. So we may assumeg(e, k) = g1(e, k)− 1.

Let h = [k/2]. By 2.10.(4),

(4.5) g1(e, k− 1)≤ g(e, k)− 1.

By (4.5), 2.10.(4), and the last part of3.1 (which is required for compatibility of the
lifts of (A× A)k−1 and Ah × Ah to BOg(e,k)−1), we have the commutative diagram
below, similar to (3.6).

Ak−1
d′−−−−→ (A× A)k−1 ∪ Ah × Ah −−−−→ BOg(e,k)−1[ρ](8k+7)

y
y

y
Ak (A× A)k BOg(e,k)[ρ](8k+7)

∥∥∥
∥∥∥

y
Ak

dk−−−−→ (A× A)k
`k−−−−→ BOg(e,k)+1[ρ](8k+7)

y
y c

y

Ak/Ak−1
d−−−−→ (A× A)k/((A× A)k−1 ∪ Ah × Ah)

`−−−−→ C,

whereC = Sg(e,k)+1 if g(e, k) is odd, andC = ΣPg(e,k)
g(e,k)−1 if g(e, k) is even. The maps

labeledd are cellular maps homotopic to the diagonal. The mapc is obtained similarly
to the first paragraph of the proof of2.9. Since dim(Ak) = 8k + 7, the application of
2.9requires that

8k + 7≤ min(ρ + g(e, k)− 1, 2g(e, k)− 1).

The second follows from2.10.(2), while the first follows fromρ ≥ 2e− 2 and
g(e, k) ≥ 8k− e+ 2 sincee≥ 8.

The quotient (A× A)k/(Ah × Ah) equalsB∨ T(B), whereT reverses the order of the
factors, andB is the union of all cellsei × ej with i < j . By the symmetry property
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of `k , `|T(B) = (`|B) ◦ T . SinceT ◦ d ' d, we conclude that̀ ◦ d is divisible by 2.
Indeed, withrB denoting the retraction ontoB,

[` ◦ d] = [(`|B) ◦ rB ◦ d] + [(`|T(B)) ◦ rT(B) ◦ d]

and we have

[(`|T(B)) ◦ rT(B) ◦ d] = [(`|T(B)) ◦ T ◦ rB ◦ d] = [(`|B) ◦ rB ◦ d].

Thus, by2.9, `k ◦ dk is homotopic relAk−1 to a map which lifts toBOg(e,k)[ρ]. Note
that the lifting intoBOg(e,k)−1[ρ] was not needed ifg(e, k) is odd. We have extended
our inductive lifting hypothesis, and so have proved that there are compatible liftings
of Ak to BOg(e,k)[ρ] for all k. This extends the induction one and proves2.10.(6),
assuming the first five parts of2.10.

5 The function g(e, k)

In this section, we define the functiong(e, k) which has been used in the previous
sections, and prove the first five parts of2.10, its numerical properties which were
already used to prove2.10.(6), its important geometrical property.

We find it convenient to deal with the complementary functionG defined by

(5.1) G(e, k) = 8k− g(e, k).

It has relatively small values, in which patterns are more readily apparent. This function
G will be defined using several auxiliary functions.

We define a functionS for k ≥ 2 by
(5.2)

S(k) = 8k− 13[k+1
2 ] + 2α(k) + 2 min(3, ν(k− 1)) +





−1 k ≡ 0 (2)

2 k ≡ 1 (8) andα(k) 6= 2

4 otherwise.

ThenS(k) = 8k− s(k), wheres(k) is the stable value ofg(e, k) whene is sufficiently
large. The first values ofS are given by

k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
S(k) 4 8 7 13 12 16 13 21 18 22 21 27 26 30 25 33 30 34
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It will occasionally be useful to setS(1) = 8, consistent withg(e, 1) = 0.

Values ofk ≡ 1 mod 8 receive special treatment. They are excluded in the domain of
some of our functions. For example, fork 6≡ 1 mod 8 withk ≥ 2, we defineV(k) by

V(k) = α(k)−
{

2 k ≡ 3 (4)

1 k 6≡ 3 (4).

The reasons for defining some of these functions will be presented shortly.

We also define functionsν ′ andR as follows.

ν ′(k) =

{
ν(k) k even

−4 k odd,

and, fork 6≡ 1 mod 8,

(5.3) R(k) = S(k) + ν ′(k)− V(k).

The first few values ofR are given as follows.

k 2 3 4 5 6 7 8 10 11 12 13 14 15 16 18 19
R(k) 5 4 9 8 12 11 16 18 17 22 21 25 24 29 30 29

It will also be useful to introduce the notation〈n〉 = max(0, n). We will frequently use
the simple fact that for any numberX,

(5.4) X + 〈−X〉 ≥ 0.

Now we can define our functionG. An integerk is decomposableif it can be written
as k = k0 + · · · + kr with r ≥ 1 andν(ki) > R(ki−1) for 1 ≤ i ≤ r . Because each
ki must be preceded in the binary expansion ofk by a long string of 0’s, it is clear
that a decomposable integer has a unique maximal decomposition. The sum in (5.6)
is taken over allki , i ≥ 1, in a maximal decomposition ofk. The first values ofk
admitting a decomposition are 35, 66, and 67, withk0 = 3, 2, 3, respectively. A simple
decomposition is a maximal decomposition withr = 1. The first value ofk admitting
a multiple decomposition is 255 + 35 with k0 = 3 andk1 = 32.

Definition 5.5 If 2≤ k ≤ 2e−3 and(e, k) 6= (7, 9), we define

G(e, k) =

{
min(S(k), G′(e, k)) k 6≡ 1 (8)

min(S(k), 6 + G′(e, k− 1)) k ≡ 1 (8),



Immersions of RP2
e−1 17

where, fork 6≡ 1 mod 8,

(5.6) G′(e, k) = 〈e− 6− ν ′(k)〉 −
∑

ki

〈min(ν(ki), e− 6)− R(ki−1)〉.

The exceptional value isG(7, 9) = 5, not 6 as the formula would give.

The terms in the sum in (5.6) will sometimes be calleddeviations. We do not define
G(e, 0), G(e, 1), or G(e, k) for k > 2e−3; instead we just define the complementary
function g by g(e, 0) = g(e, 1) = 0 andg(e, k) = 2e−3 for k > 2e−3, and observe
that the crucial properties (3) and (4) in Theorem2.10are easily seen to be satisfied
whenever these extreme values are involved.

Next we provide some general discussion of what led to the rather complicated formula
for g(e, k). First we describe what led to the basic formulag(e, k) ≈ 8k−〈e−6−ν ′(k)〉,
modified whenk ≡ 1 mod 8. We began with the initial valuesm(k) of 4.1 for g(7, k)
and used a computer program implementing properties (3) and (4) of2.10 to obtain
bounds forg(e, k) for largere. Except perhaps for the first few entries in ak-column,
the values 8k− (e− 6− ν ′(k)) whenk 6≡ 1 mod 8, andg(e, 8` + 1) = g(e, 8`) + 2,
were apparent until issues of stabilization, which we will discuss shortly, became
involved. However, there was no apparent regular pattern for the first few entries
in eachk-column. The formula 8k− 〈e− 6− ν ′(k)〉 was achieved after additional
computer experimentation as the simplest general formula satisfyingg(7, k) ≥ m(k)
and consistency with2.10.

Next we explain whereS(k) came from. It is related to the conditiong(e, k) ≥ 4k+ 4,
which says that our lifting methods only work in the stable range. In an earlier version
of this paper, we used the triviality of 2φ(n)ξn to give 0 as the value ofg(e, k) when
e > 4k + 3, but we were unable to prove that this could be done compatibly with
our other liftings; i.e. that the liftings which we obtain inductively can be done so
that their restrictions to appropriate skeleta are trivial. By forcingg(7, 2) = 16, we
could, as noted in the proof of4.1, guarantee that our liftings restrict to a trivial
bundle onP15, the casek = 1. For reasons of stability, we forcedg(e, 2) ≥ 12 and
g(e, 3) ≥ 16. Forcingg(e, 4) ≥ 20 is not strong enough, since, withg(15, 2) = 12
and g(15, 4) = 25, we could not obtaing(16, 4) = 24 consistently with property (4)
of 2.10. Thusg(e, 4) = 25 for e ≥ 15; i.e. s(4) = 25. This translates to our value
S(4) = 8 · 4− s(4) = 7.

To be consistent with2.10, our functionSmust satisfy the inequalities of the following
proposition, the proof of which is straightforward, although somewhat tedious, and is
omitted.
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Proposition 5.7 The functionS defined in(5.2) satisfies

S(i + j) ≤ S(i) + S(j) + 1

and
S(2i) ≤ 2S(i)− 1,

with equality in the first ifi = 2t and2≤ j ≤ 2t − 1 or j = 2t + 1, and equality holds
in the second ifi = 2t . ThusS may be defined byS(2) = 4, S(3) = 8, and

S(k) = min(S(i) + S(k− i) + 1, 2≤ i < k/2, 2S(k/2)− 1).

To be consistent with property (3) of2.10, our functionG must satisfy the property
stated in the next theorem, the proof of which will occupy much of this section.

Theorem 5.8 If e≥ 8, and2≤ i, j ≤ 2e−4, then

(5.9) G(e− 1, i) + G(e− 1, j) + 1−G(e, i + j) ≥ 0.

The stabilization given byS(k) and the requirement (5.9) are what lead to the compli-
cated sum in (5.6). The first example of this is forG(11, 3)+G(11, 32)+1−G(12, 35).
SinceG′(11, 3) = 9 > S(3) = 8, we haveG(11, 3) = 8. AlsoG(11, 32) = 11−6−5 =
0, and〈12− 6− ν ′(35)〉 = 10. Thus we must subtract 1 from〈12− 6− ν ′(35)〉 in
G(12, 35) in order that (5.9) will hold. This is accounted for by the decomposition of
35 with k1 = 3. The valueR(3) = 4 is the amount thatν(k− 3) must exceed in order
that the decomposition affects the value ofG(e, k).

Note that 11 is the smallest value ofe for which G(e, 3) 6= 〈e− 6− ν ′(3)〉. This is
obtained by solving

e− 6− ν ′(3) = S(3) + 1,

obtaininge = 11. We wantR(3) to be 1 less than the value oft which satisfies

G(11, 3) + G(11, 2t) + 1− 〈12− 6− ν ′(2t + 3)〉 = −1.

HereG(11, 3)− 〈12− 6− ν ′(2t + 3)〉 necessarily equals−2: 1 from 12− 11, and 1
from G(11, 3) = G′(11, 3)− 1. Thus we needt to satisfy 0= G(11, 2t) = 11− 6− t ,
and so

R(3) = t − 1 = (S(3) + ν ′(3) + 6)− 6 = S(3) + ν ′(3),

consistent with (5.3), sinceV(3) = 0.

The wayV arises can be seen by comparing the requirements, fort ≥ 5,

G(e, 2t + 5)≤ G(e− 1, 2) + G(e− 1, 2t + 3) + 1



Immersions of RP2
e−1 19

and

G(e, 2t + 5)≤ G(e− 1, 5) + G(e− 1, 2t) + 1.

The first reduces to, fore moderately large,

G(e, 2t + 5)≤ S(2) + e− 6− t + S(3) = e+ 6− t,

while the second becomes

G(e, 2t + 5)≤ S(5) + e− 6− t = e+ 7− t.

We must use the first condition becauseS(2) + S(3) < S(5). The valueV(5) = 1
measures this. OurV(k) satisfies that it is the largestr such thatk = i0 + · · ·+ ir with

S(i0 + · · ·+ it) = S(i0 + · · ·+ it−1) + S(it) + 1

for 1≤ t ≤ r .

This concludes our discussion of the rationale behind the definition ofG except for
one more brief comment. It was certainly to be expected that these modifications to
the G-formula, given by the summands in (5.6), would be cumulative. It was nota
priori clear whetherR(ki−1) or R(k0 + · · ·+ki−1) would be the appropriate part of that
formula. The answer will become apparent in Subcase 2d of the proof of5.11.

The following proposition will be needed shortly. The functionS′ below will often be
encountered in the guise ofS′(k) = R(k)− ν ′(k).

Proposition 5.10 Let S′(k) = S(k)− V(k). If i, j, i + j 6≡ 1 mod 8, then

S′(i) + S′(j) ≥ S′(i + j).

Moreover, if i < 2ν(j) , then equality is obtained.

Proof One easily verifies that

S′(k) = 8k− 13[k+1
2 ] + α(k) +





0 k ≡ 0 (2)

8 k ≡ 3 (4)

9 k ≡ 5 (8).

For 1≤ m ≤ 4, let φm denote themth part of the above formula forS′(k), and let
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ψm(i, j) = φm(i) + φm(j)− φm(i + j). Then

ψm(i, j) =





0 m = 1

0 m = 2, ij even

−13 m = 2, ij odd

ν
(i+j

i

)
m = 3

≥ 16 m = 4, ij odd

−1 m = 4, i + j ≡ 5 (8) andi or j ≡ 3 (4)

≥ 0 m = 4, otherwise.

Since
(i+j

i

)
is even if i + j ≡ 5 (8) andi ≡ 3 (4), the inequality follows.

For the second part, one easily sees that, ifi < 2ν(j) , thenψm(i, j) = 0 for 1≤ m≤ 4.
Whenm = 4, it is true becausei ≡ i + j mod 8 (orν(j) = 2 andi = 2 or 3).

We now begin the lengthy proof of5.8. In order to keep the number of cases and
subcases within reason, we split the theorem into two parts. Most of the work will go
into proving the following result.

Theorem 5.11 If e≥ 8, 2≤ i, j ≤ 2e−4, and i, j, i + j 6≡ 1 mod 8, then(5.9) holds.

Proof We divide into cases depending upon whetherS(i) and/or decompositions are
involved.

Case 1: Neither i nor j decomposes,G(e− 1, i) 6= S(i), andG(e− 1, j) 6= S(j). In this
case, the LHS of (5.9) becomes

(5.12) ≥ 〈e− 7− ν ′(i)〉+ 〈e− 7− ν ′(j)〉+ 1− 〈e− 6− ν ′(i + j)〉.
By considering separately the four subcases (a)i and j odd, (b) i odd, j even, (c)
ν(j) > ν(i) > 0, and (d)ν(i) = ν(j) > 0, one easily shows that (5.12) is ≥ 0 in each
subcase. Note that ifi + j decomposes, then the LHS of (5.9) is greater than (5.12),
and so we need not worry about this possibility here.

Case 2: G(e− 1, i) = S(i) and i does not decompose.

Subcase 2a: Also, G(e−1, j) = S(j). Then the LHS of (5.9) is≥ S(i)+S(j)+1−S(i+
j) ≥ 0, by5.7. The remaining subcases of Case 2 now assume thatG(e− 1, j) < S(j).
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Subcase 2b: j does not decompose, andν(j) ≤ ν(i). Thenν ′(i + j) ≥ ν ′(j), and so
the LHS of (5.9) is

≥ S(i) + 〈e− 7− ν ′(j)〉+ 1− 〈e− 6− ν ′(i + j)〉 ≥ S(i) > 0.

Subcase 2c: j does not decompose, andν(j) > ν(i). We allow for the possibility that
i might serve as the bottom part of a decomposition ofi + j . This will be true ifν(j) is
sufficiently large. Because of our〈−〉-notation, our analysis is valid regardless. This
time ν ′(i) = ν ′(i + j), and so the LHS of (5.9) is

≥ S(i) + 〈e− 7− ν(j)〉+ 1− 〈e− 6− ν ′(i)〉+ 〈min(ν(j), e− 6)−S(i)− ν ′(i) + V(i)〉.
If ν(j) ≤ e− 7, this is≥ V(i) ≥ 0. If ν(j) ≥ e− 6, it simplifies to

(5.13) ≥ V(i) + 1 + e− 6− ν ′(i)− 〈e− 6− ν ′(i)〉.
Sincej ≤ 2e−4 andν(i) < ν(j), we haveν ′(i) ≤ e− 5, and so (5.13) is ≥ V(i) ≥ 0.

Subcase 2d: j admits a decomposition. We consider a 2-stage decompositionj =
j0 + j1 + 2tA with A odd andν(j1) > R(j0). It will be clear that the argument here can
be adapted to a longer decomposition. LettingD ≥ 0 denote any amount added for a
decomposition ofi + j , the LHS of (5.9) becomes, using5.10,

S(i) + (e− 7− ν ′(j))− (ν(j1)− R(j0))

−(min(t, e− 7)− R(j1)) + 1− 〈e− 6− ν ′(i + j)〉+ D(5.14)

= S′(i) + V(i) + S′(j0) + S′(j1) + ν ′(i + j)−min(t, e− 7) + D

≥ V(i) + S′(i + j0 + j1) + ν ′(i + j)−min(t, e− 7) + D

= V(i) + R(i + j0 + j1)− ν ′(i + j0 + j1) + ν ′(i + j)−min(t, e− 7) + D.(5.15)

We will discuss later the removal of the〈−〉 at the first step.

We will show below that

(5.16) V(i)− ν ′(i + j0 + j1) + ν ′(i + j) > 0.

Assuming this, the only way that (5.15) could be negative is if min(t, e− 7) > R(i +
j0 + j1). But if this is the case, then (i + j0 + j1) + 2tA is a decomposition ofi + j ,
which makesD ≥ min(t, e− 6)− R(i + j0 + j1). If i + j0 + j1 decomposes further,
that only adds more toD. Thus, assuming (5.16), we obtain that (5.15) is ≥ 0.

We now prove (5.16). The only way it could possibly be negative is ifi = 2tB− j0− j1
with B even. Then the LHS of (5.16) becomes

≥ α(2tB− j0 − j1)− 2− (t + ν(B)) + t

= α(B− 1) + t − α(j0 + j1 − 1)− 2− ν(B)

> 0
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sinceα(B− 1)≥ ν(B) and t ≥ R(j0 + j1) >> α(j0 + j1 − 1).

Regarding the removal of〈−〉 above: ifν ′(i + j) > e− 6, then (5.14) becomes

≥ S(i) + e− 7− ν ′(j)− ν(j1) + R(j0)−min(t, e− 7) + R(j1) + 1

= S(i) + (e− 7−min(t, e− 7)) + (R(j1)− ν(j1)) + (R(j0)− ν ′(j0)) + 1

> 0

because each of its terms is nonnegative.

Case 3: G(e− 1, i) = S(i) and i decomposes. Although the decomposition ofi does
not affect the value ofS(i), it could affect the value ofG(e, i + j) by affecting the
decomposition ofi + j . In the analogues of Subcases 2a and 2b, the decomposition of
i + j was not needed, and so a decomposition ofi cannot affect the validity.

Subcase 3a: j does not decompose andν(j) > ν(i).

Subsubcase 3ai: i admits a simple decomposition. Leti = i0 + 2tα with α odd and
t > R(i0). If ν(j) ≥ t , then, consideringi0 + (2tα) + j as a possible decomposition of
i + j , the LHS of (5.9) becomes

≥ S(i) + 〈e− 7− ν(j)〉+ 1− 〈e− 6− ν ′(i)〉
+〈min(t, e− 6)− R(i0)〉+ 〈min(ν(j), e− 6)− R(2tα)〉.

This exceeds the amount analyzed in Subcase 2c by

(5.17) t − R(i0)− R(2tα) + R(i0 + 2tα).

Since, in the notation of5.10, S′ = R− ν ′ , and ν ′(i0) = ν ′(i0 + 2tα), then (5.17)
equalsS′(i0 + 2tα)− S′(i0)− S′(2tα) = 0 by5.10.

If, on the other hand,ν(j) < t , then we don’t needi + j to be decomposable, since the
LHS of (5.9)

≥ S(i) + 〈e− 7− ν(j)〉+ 1− 〈e− 6− ν ′(i)〉 = S(i) + ν ′(i)− ν(j) > 0,

sinceS(i) > t + 4 > ν(j) + 4. (The+4 is included because of the possibility that
ν ′(i) = −4.)

Subsubcase 3aii: i admits a multiple decomposition. Ifν(j) ≤ S(i) + ν ′(i), then, as
in the preceding paragraph, we do not need a decomposition ofi + j in order to satisfy
(5.9). If, on the other hand,ν(j) > S(i) + ν ′(i), then the result follows as in the first
paragraph of Subcase 3ai, using additivity ofS′ on disjoint decompositions.
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Subcase 3b: i and j both decompose exactly once. Leti = i0 + 2mβ with β odd and
m > R(i0), and j = j0 + 2tα with α odd andt > R(j0).

If m > t , then we can consideri + j as (i0 + j0) + 2tα + 2mβ . It is possible that
〈m−R(2tα)〉 might contribute toG(e, i + j), but even if it does, we do not need it. The
situation is similar to Subcase 2d. Using the〈t − R(j0)〉 and 〈t − R(i0 + j0)〉 parts of
G(e− 1, j) andG(e, i + j), respectively, the LHS of (5.9) simplifies to

≥ S(i)− ν ′(j0) + ν ′(i0 + j0) + R(j0)− R(i0 + j0),

which is very positive. (It would be≥ V(i0) by 5.10 if S(i) were replaced by the
much smaller numberS(i0).) Keeping in mind that 2e−3 ≥ i + j , we will usually omit,
from now on, explicit consideration of the possibility thate− 6 < ν(ki−1) in (5.6).
In Subcase 4d, there is a detailed discussion of a delicate case in which we consider
carefully what happens whene− 6 is larger than the relevant 2-exponent .

If m = t , then a very similar argument works. Because the decomposition ofi + j now
is (i0 + j0) + 2pγ with p > t , and this exponent appears with a+ sign in−G(e, i + j),
the LHS of (5.9) is even larger than it was whenm > t .

Now supposem < t . We use (i0 + j0 + 2mβ) + 2tα as our trial decomposition ofi + j .
If it is not a true decomposition, then the〈−〉 will take care of it.

The LHS of (5.9) becomes

≥ S(i) + (e− 7− ν ′(j0))− (t − R(j0)) + 1

−(e− 6− ν ′(i0 + j0)) + 〈t − R(i0 + j0 + 2mβ)〉
≥ S(i)− ν ′(j0) + R(j0) + ν ′(i0 + j0)− R(i + j0)

= V(i) + S′(i) + S′(j0)− S′(i + j0)

≥ V(i).

Subcase 3c: At least one ofi andj decomposes more than once. The argument is very
similar to that of Subcase 3b. The only reason for separating them is to use 3b as a
warmup for 3c. Leti = i0 + · · ·+ ir and j = j0 + · · ·+ js be maximal decompositions.

If ν(js) ≤ ν(ir ), then the LHS of (5.9) is, without using any decomposition ofi + j ,

≥ S(i)− ν ′(j)−
s∑

k=1

(ν(jk)− R(jk−1)) + ν ′(i + j)

≥ S(i) +
s−1∑

k=0

(R(jk)− ν ′(jk))− ν(js)

≥ S(i)− ν(ir )

>> 0.
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If ν(ir ) < ν(js), first suppose the only decomposition ofi + j is the simple decompo-
sition K + js with K = i + j0 + · · ·+ js−1. Then the LHS of (5.9) is

≥ S(i)− ν ′(j)−
s∑

k=1

(ν(jk)− R(jk−1)) + ν ′(i + j) + ν(js)− R(K)

= R(i) + V(i)− ν ′(i) +
s−1∑

k=0

(R(jk)− ν ′(jk)) + ν ′(K)− R(K)

≥ V(i)

by 5.10.

If i + j decomposes more finely, say asA + B + js, then −R(K) is replaced by
−R(B) + ν(B) − R(A). But these are equal by the second part of5.10, noting that
ν ′(A + B) = ν ′(A).

Case 4: S(−) not involved,i decomposes,j doesn’t. Recalli, j ≤ 2e−4. We assume
that i admits a decomposition asi0+ i1+ i2. The nature of our argument will show that
the conclusion will also be true for longer decompositions. The LHS of (5.9) becomes

(5.18) e− 6− ν ′(i0)− ν(i1) + R(i0)− ν(i2) + R(i1) + 〈e− 7− ν ′(j)〉+ Y,

whereY = −G(e, i + j). We use (5.4) often in what follows.

Subcase 4a: ν(j) < ν(i). Then, using a decompositioni + j = (i0 + j + i1) + (i2), we
obtain

(5.19) Y ≥ −(e− 6− ν ′(j)) + 〈ν(i2)− R(i0 + j + i1)〉.
If there is an additional decomposition ofi+ j as (i0+ j)+(i1)+(i2), then by the second
part of5.10, R(i0 + j + i1) = R(i0 + j) + R(i1)− ν(i1), and so the same expression is
obtained. Then (5.18) is

(5.20) ≥ (e− 7− R(i0 + j + i1)) + (R(i0)− ν ′(i0)) + (R(i1)− ν(i1)) > 0,

since if the〈−〉 in (5.19) is > 0, then

e− 7≥ ν(i2)− 2≥ R(i0 + j + i1)− 2,

but the (R− ν)-expressions are> 2. If the 〈−〉 in (5.19) is 0, then the first part of
(5.20) is replaced by (e− 7− ν(i2)) ≥ −2.

Subcase 4b: ν(i) ≤ ν(j) < R(i0). In this case, which is very similar to 4a,

Y ≥ −(e− 6− ν ′(i)) + 〈ν(i2)− R(i0 + j + i1)〉,
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because if there is an additional decomposition ofi + j as (i0 + j) + (i1) + (i2), then
R(i0 + j + i1) = R(i0 + j) + R(i1) − ν(i1), and so the expression forY is unchanged.
Then (5.18) is

≥ (S′(i0) + S′(i1) + S′(j)− S′(i0 + i1 + j)) + (e− 7− R(j)) > 0.

In the remaining subcases, we deal with a maximum possible decomposition ofi +
j , realizing, as in 4a and 4b, that if the decomposition must be amalgamated, the
expression is not changed.

Subcase 4c: R(i0) ≤ ν(j) < ν(i1). Then

Y ≥ −(e− 6− ν ′(i)) + 〈ν(j)− R(i0)〉+ 〈ν(i1)− R(j)〉+ 〈ν(i2)− R(i1)〉,
and so (5.18) is

≥ (e− 7− ν(i1)) + 〈ν(i1)− R(j)〉 > 0.

Subcase 4d: ν(i1) ≤ ν(j) < ν(i2). Then

Y ≥ −(e− 6− ν ′(i)) + 〈ν(i1)− R(i0)〉+ 〈ν(j)− R(i1)〉+ 〈ν(i2)− R(j)〉,
and so (5.18) is

(5.21) ≥ (e− 7− ν(i2)) + 〈ν(i2)− R(j)〉 > 0.

As noted in Subcase 3b, we are usually not paying explicit attention to the possibility
that e− 6 ≤ ν(i2) (in the situation in this subcase, 4d). Here it does warrant our
attention. We might havei2 = 2e−5, 2e−6, or 3 · 2e−6, and then it would seem that
(5.21) might not be valid.

If i2 = 2e−5, then〈ν(i2)−R(i1)〉 in the above analysis is replaced by〈e− 7−R(i1)〉.
This decrease of 2 compensates for the fact thate−7−ν(i2) = −2 in (5.21). Similarly,
if ν(i2) = e− 6, then〈ν(i2)−R(i1)〉 is replaced by〈e− 7−R(i1)〉, compensating for
e− 7− ν(i2) = −1.

Subcase 4e: ν(i2) < ν(j). Then

Y ≥ −(e− 6− ν ′(i)) + 〈ν(i1)− R(i0)〉+ 〈ν(i2)− R(i1)〉+ 〈ν(j)− R(i2)〉,
and so (5.18) is

≥ 〈e− 7− ν(j)〉+ 〈ν(j)− R(i2)〉 > 0.

Case 5: S(−) not involved, bothi and j decompose. We consider here a typical
example in which bothi and j decompose twice. It should be clear that the general
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case will work out in the same way. We assume thati = i0 + i1 + i2 andj = j0 + j1 + j2
are decompositions. Then

G(e− 1, i) + G(e− 1, j) + 1 = e− 6− ν ′(i0)− ν(i1) + R(i0)− ν(i2) + R(i1)

+e− 7− ν ′(j0)− ν(j1) + R(j0)− ν(j2) + R(j1)

We assume without much loss of generality thatν(j2) > ν(i2) andν(i0) < ν(j0).

Subcase 5a: ν(j2) < R(i0 + i1 + i2 + j0 + j1). We use no decomposition ofi + j . We
obtain that

G(e− 1, i) + G(e− 1, j) + 1−G(e, i + j)

≥ R(i0) + S′(i1)− ν(i2) + e− 7 + S′(j0) + S′(j1)− ν(j2)

= S′(i0) + S′(i1) + S′(i2) + S′(j0) + S′(j1) + ν ′(i0)− R(i2) + e− 7− ν(j2)

≥ R(i0 + i1 + i2 + j0 + j1)− R(i2) + e− 7− ν(j2)

>> 0,

sincee− 7− ν(j2) ≥ −2 while R(i0 + i1 + i2 + j0 + j1)− R(i2) >> 0.

Subcase 5b: ν(j2) > R(i0 + i1 + i2 + j0 + j1). We use a decomposition ofi + j as
(i0 + i1 + i2 + j0 + j1) + (j2). We discuss afterward the usual argument regarding what
happens if it decomposes more finely. Similarly to Subcase 5a, we obtain

G(e− 1, i) + G(e− 1, j) + 1−G(e, i + j)

≥ S′(i0) + S′(i1) + S′(i2) + S′(j0) + S′(j1)− S′(i0 + i1 + i2 + j0 + j1)

+e− 7− R(i2)

≥ 0

using5.10and

e− 7≥ ν(j2)− 2≥ R(i0 + i1 + i2 + j0 + j1)− 2 >> R(i2).

Further decomposition ofi0 + i1 + i2 + j0 + j1 into 2-adically disjoint parts does not
change the expression, using the second part of5.10, similarly to the argument in
Subcases 4a and 4b.

The following result will be useful in some subsequent proofs. In particular,2.10.(5)
is an immediate consequence.



Immersions of RP2
e−1 27

Proposition 5.22 For e≥ 7 and2≤ k < 2e−3,

G(e, k + 1)−G(e, k)





= 8 k ≡ 0 (8), α(k) = 1, e≥ S(k) + ν(k) + 8

= 7 k ≡ 0 (8), α(k) = 1, e = S(k) + ν(k) + 7

= 6 k ≡ 0 (8), otherwise

≤ −1 k ≡ 1 (8)

≤ 6 otherwise.

Proof We begin by noting that the result is true for the limiting values,S(k), since
they are easily shown to satisfy

(5.23) S(k + 1)− S(k)





= 8 k = 2e, e≥ 3

= 6 k ≡ 0 (8), α(k) > 1

= 6 k ≡ 4 (8)

= 4 k ≡ 2 (4)

≤ −1 k ≡ 1 (8)

= −1 k ≡ 3, 5 (8)

≤ −3 k ≡ 7 (8).

The casek ≡ 0 mod 8 of the proposition follows easily from (5.23) and the definitions.

We next handle the casek = 8` + 1. If ν(`) ≥ 3, then 8̀ + 2 admits a decomposition
with k0 = 2. Any additional portions of a decomposition of 8`+2 will occur identically
in 8`. Thus, in this case, withν = ν(8`) ≥ 6,

G(e, 8` + 2)−G(e, 8` + 1) = e− 7− 〈min(ν, e− 6)− 5〉 − (6 + 〈e− 6− ν〉).
This is≤ −2, regardless of the sign ofe− 6− ν .

Now assumeν(`) < 3. If 8` admits a decomposition ask0 + 2tα with α odd, then
we consider (k0 + 2) + 2tα as a possible decomposition of 8` + 2. Any additional
portions of a decomposition of 8` + 2 occur identically in 8̀. For v = ν(`) = 0, 1, or
2, we obtain

(5.24) G(e, 8` + 2)−G(e, 8` + 1) = e− 13− 〈e− 9− v〉 − 〈D− 2 + v〉+ 〈D〉,
whereD = min(t, e− 6)− R(k0). Here we have used the easily-verified fact that if
k0 ≡ 0 mod 8, thenR(k0 + 2)− R(k0) = 5− ν(k0). One easily checks that (5.24) is
≤ −2 for anye andD, since 0≤ v≤ 2.

For τ = [2, 3, 4, 5, 6, 7] andk = 8` + τ , we have, fore > 7,

〈e− 6− ν ′(k + 1)〉 − 〈e− 6− ν ′(k)〉 = [5,−6, 6,−5, 5,≤ −5],
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and, if k admits a simple decompositionk0 + 2tα with α odd,

〈m− R(k0)〉 − 〈m− R(k0 + 1)〉 ≤ [0, 5, 0, 4, 0, 5].

Here m = min(e− 6, t). As before, higher deviations will cancel in the difference.
ThusG(e, k + 1)−G(e, k), which is the sum of the two displays of this paragraph, is
≤ 6, as claimed.

Now we can complete the proof of5.8by proving.

Theorem 5.25 Theorem5.8 is true wheni or j or i + j is ≡ 1 mod 8.

Proof Again we divide into cases.

Case 1: Only i ≡ 1 mod 8. We have

G(e− 1, i) + G(e− 1, j) + 1−G(e, i + j)

=
(
G(e− 1, i)−G(e− 1, i − 1)

)− (
G(e, i + j)−G(e, i − 1 + j)

)

+
(
G(e− 1, i − 1) + G(e− 1, j) + 1−G(e, i − 1 + j)

)
(5.26)

≥ 0,

since the first (−) in (5.26) is ≥ 6 by5.22, the second is≤ 6 by5.22, and the third is
≥ 0 by5.11.

Case 2: both i and j ≡ 1 mod 8. This follows by an argument similar to that of Case
1.

Case 3: i and i + j ≡ 1 mod 8. This follows from the validity for (i−1, j) similarly to
Case 1. UsuallyG(e−1, i)−G(e−1, i−1) = 6 andG(e, i + j)−G(e, i−1+ j) = 6,
and so the inequality follows as in (5.26). If G(e, i + j) − G(e, i − 1 + j) > 6, then
G(e− 1, i) = S(i) andG(e− 1, j) = S(j), and so

G(e− 1, i) + G(e− 1, j) + 1−G(e, i + j) ≥ S(i) + S(j) + 1− S(i + j) ≥ 0

by 5.7.

Case 4: i + j ≡ 1 mod 8, whilei, j 6≡ 1 mod 8. If G(e, i + j) − G(e, i + j − 1) > 6,
thenG(e− 1, i) = S(i), G(e− 1, j) = S(j), andG(e, i + j) ≤ S(i + j), and so the result
follows from 5.7. So we may now assumeG(e, i + j)−G(e, i + j − 1) = 6. Without
loss of generality, assumei is odd andj is even.
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First, we assumei ≡ 3 mod 4. By the proof of5.22, G(e, i)−G(e, i−1) = 4 or 5, and if
i is indecomposable, thenG(e, i)−G(e, i−1) = 4 if and only if G(e, i−1) = S(i−1).
Thus the result will follow as in (5.26) once we show that ifi, j ≡ 2 mod 4 and
i + j ≡ 0 mod 8, then (5.9) is satisfied with 1 to spare, and with 2 to spare if
G(e, i)−G(e, i − 1) = 4.

The basic value of the LHS of (5.9) in this case is

(5.27) 〈e− 8〉+ 〈e− 8〉+ 1− 〈e− v〉
with v≥ 9. This equals 1 ife = 7 or 8, while fore≥ 9, it is≥ e− 6. The smalleste
for which the LHS of (5.9) does not equal (5.27) is e = 12, wheni = 2.

Neglecting temporarily the effect of deviations, the desired conclusion is obtained since
it is true at the onset ofS(i) and will continue to be true ase increases, since now
G(e−1, j) andG(e, i + j) will both increase by 1 each time. WhenG(e−1, j) achieves
a value ofS(j), then the LHS of (5.9) is

≥ S(i) + S(j) + 1− S(i + j) > 2

for the congruences being considered here.

When deviations are taken into account, the fact that makes it work is the easily-verified
fact that

(5.28) R(8` + 2) + R(8`′ + 6)− R(8` + 8`′ + 8) = 1 + ν
((

`+`′
`

))
.

Suppose, for example, thati = i0 + 2tα and j = j0 + 2uβ are decompositions withα
andβ odd, andt < u≤ e− 7. The LHS of (5.9) becomes

≥ e− 8+ e− 7− (t−R(i0))− (u−R(j0))− (e− v) + 〈t−R(i0 + j0)〉+ 〈u−R(2tα)〉
with v≥ 9. Using (5.28), this is

≥ e+ v− 14+ R(i0 + j0)− t + ν
((i0+j0

i0

))
+ 〈t − R(i0 + j0)〉 − u

≥ v− 7

≥ 2,

sincee− 7 ≥ u and using (5.4). Other situations involving decompositions work out
similarly.

The casei ≡ 5 is handled similarly.

Next we verify the first part of2.10.(4). In fact the conclusion of that theorem is true
without regard for the hypothesis.
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Theorem 5.29 If i, j ≤ 2e−3 and i + j + 1≤ 2e−2, then

g(e, i) + g(e, j) < g(e+ 1, i + j + 1).

Proof We prove the equivalent statement, withi , j , ande as in the hypothesis,

(5.30) G(e, i) + G(e, j) + 8 > G(e+ 1, i + j + 1).

By 5.8and5.22, we have

G(e, i) + G(e, j) + 8≥ G(e+ 1, i + j) + 7 > G(e+ 1, i + j + 1)

unlessi + j + 1 = 2t + 1 with t ≥ 3 andG(e+ 2, i + j + 1) = S(i + j + 1). In this
case, it will also be true thatG(e, i) = S(i) andG(e, j) = S(j). Thus it suffices to show

S(i) + S(2t − i) + 8 > S(2t + 1).

This follows readily from the definition ofS. The smallest value ofS(i) + S(2t − i)
occurs wheni = 2t−1 and is 3· 2t−1 + 2, while S(2t + 1) = 3 · 2t−1 + 9.

The second part of2.10.(4) follows from the following result.

Theorem 5.31 For k ≤ 2e−3, G(e + 1, 2k) ≤ 2G(e, k) with equality if and only if
G(e+ 1, 2k) = G(e, k) = 0, which occurs if and only if

k ∈ {2e−3, 2e−4, 2e−5, 3 · 2e−5, 2e−6α} with α ∈ {1, 3, 5, 7}.
If equality occurs, then

G(e+ 1, 2k) < G(e, `) + G(e, 2k− `) + 1

for all `.

Proof The second sentence follows immediately from the first, since

0 < G(e, `) + G(e, 2k− `) + 1.

For basic values, we have

2G(e, k)−G(e+ 1, 2k) =

{
2(e− 2)− (e− 6) k odd

〈e− 6− ν(k)〉 k even.

This is clearly≥ 0, and= 0 in exactly the cases claimed.
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If G(e, k) = S(k), then

2G(e, k)−G(e+1, 2k) ≥ 2S(k)−S(2k) =





2α(k)− 1 k even

12 k = 2t + 1, t ≥ 3

2α(k) + 4 k ≡ 1 (8), α(k) 6= 2

4ν(k− 1) + 2α(k)− 4 k ≡ 3, 5, 7 (8).

This is > 0.

Supposek = k0 + 2tα is a simple decomposition, withα odd ande− 6 ≥ t . If k is
even, then 2R(k) = R(2k) + α(k− 1), and so

2G(e, k)−G(e+ 1, 2k)

= e− 6− ν(k)− 2(t − R(k0)) + 〈t + 1− R(2k0)〉
= e− 5− t + α(k0)− 1 + R(2k0)− t − 1 + 〈t + 1− R(2k0)〉
≥ 1,

using (5.4). If k ≡ 3, 5, 7 mod 8, then

2R(k) = R(2k) + 4ν(k− 1) + α(k)−
{

10 k ≡ 3 (4)

12 k ≡ 1 (4).

Then

2G(e, k)−G(e+ 1, 2k)

= e+ 2− 2(t − R(k0)) + 〈t + 1− R(2k0)〉
≥ e+ 3− t + R(2k0)− t − 1 + 〈t + 1− R(2k0)〉+ 4ν(k0 − 1) + α(k0)− 12

> 0.

The situation whent > e− 6 and the case of higher deviations are handled similarly.

Finally, we have

2G(e, 8` + 1)−G(e+ 1, 16̀ + 2)

≥ 2(G(e, 8`) + 6)−G(e+ 1, 16̀ )− (G(e+ 1, 16̀ + 1)−G(e+ 1, 16̀ ))

−(G(e+ 1, 16̀ + 2)−G(e+ 1, 16̀ + 1))

≥ 12+ 0− 8− (−1)

> 0.
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Finally, we verify part (2) of2.10. We have

g(e, k) = 8k−G(e, k) ≥ 8k− S(k) ≥ 13[k+1
2 ] − 2α(k)− 10.

This is≥ 4k+4 for k ≥ 7, while for k < 7 we verify directly that 8k−S(k) ≥ 4k+4.

6 A bound for geometric dimension of normal bundle

In this section, we prove the following key result, a main ingredient in the proof of our
geometric dimension result,2.11, which has already been seen to imply our immersion
theorem.

Theorem 6.1 If e≥ 7 and t ≥ 1 andk0 + · · ·+ kt−1 = 2e−3 − 1, then

(6.2)
t−1∑

i=0

G(e+ i, ki) ≥ e− 2.

Remark 6.3 The integerski in this theorem are nonnegative, but possibly zero. Some
examples in which equality is obtained are

• G(e, 2e−3 − 1);

• G(e, 2e−4 − 1) + G(e+ 1, 2e−4);

• G(e, 2e−5 − 1) + G(e+ 1, 3 · 2e−5);

• G(e, 3 · 2e−5 − 1) + G(e+ 1, 2e−5);

• G(e, 2e−5 − 1) + G(e+ 1, 2e−5) + G(e+ 2, 2e−4);

• G(e, 2e−4 − 1) + G(e+ 1, 0) + G(e+ 2, 2e−4).

Before proving the theorem, we provide the easy deduction of2.11.

Proof of 2.11 From6.1and (5.1), we obtain

(6.4)
t−1∑

i=0

g(e+ i, ki) ≤ (2e− 8)− (e− 2) = 2e− e− 6.

Let e be fixed, and fort ≥ 1 and 0≤ ` ≤ 2e−3 − 1, let

M(t, `) = max

( t−1∑

i=0

g(e+ i, ki) : k0 + · · ·+ kt−1 = `

)
.
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ThenM(t, `) = max(M(t−1, i)+g(e+ t−1, `− i) : 0≤ i ≤ `). Using2.8, induction
on t , and2.10.(6), we obtain that for allt and` ≤ 2e−3 − 1

gd((2e + · · ·+ 2e+t−1), `) ≤ M(t, `)

compatibly for all̀ . By (6.4), M(t, 2e−3−1)≤ 2e−e−6. Since gd(n, k) = gd(nξ8k+7),
we obtain the conclusion of2.11.

The proof of6.1 is expedited by the following lemma.

Lemma 6.5 Let d > 0. If G(e, i) < S(i) andG(e+ d, j) < S(j), then

G(e, i) + G(e+ d, j) ≥ G(e, i + j).

Proof This follows exactly as in the proofs of Cases 1, 4, and 5 of5.11and the proof
of 5.25. In those results, there was an extra 1 on the LHS, but the largere-components
here more than compensate for that.

Remark 6.6 Lemma6.5 is not always true whenS(−) is involved. For example, if
e≥ 15, thenG(e, 2) + G(e+ 1, 3) = 12 < 13 = G(e, 5).

Proof of 6.1 Let S denote the set of thoseki for which G(e + i, ki) = S(ki). This
includes cases in whichki = 0 or ki = 1. If S is empty, then the result follows by
induction from6.5, sinceG(e, 2e−3 − 1) = e− 2. Let K =

∑
ki∈S ki . We split the

LHS of (6.2) as

(6.7)
∑

ki∈S
G(e+ i, ki) +

∑

ki 6∈S
G(e+ i, ki).

Since, as is easily proved,S(k) ≥ 3
2k, the first half of (6.7) is ≥ 3

2K , while 6.5implies
that the second half of (6.7) is

≥ G(e, 2e−3 − 1− K) ≥ e− 6− ν ′(K + 1)− D(e, 2e−3 − 1− K),

whereD(−,−) denotes the deviation, i.e., the sum in (5.6). Now the desired inequality
reduces to

(6.8) 3
2K ≥ ν ′(K + 1) + 4 + D(e, 2e−3 − 1− K).
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If K 6= 1, 3, this inequality is true, usually with much to spare. Indeed,K ≥ ν ′(K +
1) + 4 if K 6= 1, 3, and

(6.9) 1
2K ≥ D(e, 2e−3 − 1− K).

To see (6.9), note that forD(e, k) to be positive due to a single deviation, thenk =
2tα + k0 with t > R(k0) > k0, α odd, andD(e, k) = t − R(k0). For suchk, if
k = 2e−3 − 1− K , thenK ≥ 2t − 1− k0, and so the difference in (6.9) is

≥ 1
2(2t − 1− k0)− (t − R(k0)) = (1

2(2t − 1)− t) + (R(k0)− 1
2k0) > 0,

and a similar analysis applies when multiple deviations are involved. WhenK = 1, 3,
(6.8) is true if the LHS is replaced byS(K) = 8.
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