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We prove thaRP*~1 can be immersed w2 e 7 providede > 7. If e > 14,

this is 1 better than previously known immersions. Our method is primarily an
induction on geometric dimension, with compatibility of liftings being a central
issue.
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This paper is dedicated to Michael Barratt on the occasion of his 81st birthday.

1 Statement of result and background

Our main result is the following immersion theorem for real projective spaces.
Theorem 1.1 If e > 7, thenRP*~1 can be immersed iRZ" &7,

This improves, in these cases, by 1 dimension upon the result of Mil@hnvio
proved, by constructing bilinear maps, thanbi 7 mod 8, therRP' can be immersed

in R2—M—4 \wherea(n) denotes the number of 1s in the binary expansiom.of

In [2, Theorem 1.2], the first and fourth authors used obstruction theory to prove that
if n= 7 mod 8, therRP" can be immersed iiR*"P, whereD = 14,16,17,18 if

a(n) = 7,8,9,> 10. That result, witm = 2° — 1, is stronger than ours fa< 12. If

e > 13, then our result improves on the result2flpy e — 13 dimensions. Thus.1
improves on all known results by 1 dimensioreif> 14.

In [6], James proved thaRP*~ cannot be immersed iiR2""' 229 where § =
3,2,2,4fore=0,1,2,3mod4. Inp], Gitlerand Mahowald announced animmersion
result for RP*~1 in dimension 1 greater than that of James’ nonimmersion, which
would have been optimal. However, a mistake in the argumeif] ofds pointed out

by Crabb and Steer. The approach of our paper was initiated by Mahowald around
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1970 in an unpublished attempt to prove an optimal immersidRi8f . In order to
improve our result to this extent, we would need to show compatibility of our liftings
with liftings given by the Radon-Hurwitz theoren#].

2 Outline of proof

In this section we outline the proofi&fl. In subsequent sections, we will fill in details.

If 6 is a vector bundle over a compact connected spécee define the geometric
dimension off, denoted gd{), to be the fiber dimension &f minus the maximum
number of linearly independent sectionstofEquivalently, if dim@) = n, then gdg)
equals the smallest integkisuch that the maj N BO(n) which classifie® factors
throughBO(k). The following lemma is standard (See eg Sandei9pntjeorem 4.2]).
Here and throughout, denotes the Hopf line bundle ov&P". We will often write
P" instead ofRP?, and will denote the stunted spaléé/Pk—1 asPy.

Lemma 2.1 Let ¢(n) denote the number of positive integersatisfyingi < n and
i =0,1,2,4 mod 8 Supposen > 8. ThenRP" can be immersed ilR"¥ if and
only if gd((2’™ — n— 1)&,) < k.

Thus1.1will follow from the following result, to the proof of which the remainder of
this paper will be devoted.

Theorem 2.2 If e > 7, thengd((Z 1 — 2%)¢pe_1) < 22— e— 6.

The bulk of the work toward proving@.2 will be a determination of upper bounds for
gd(Z¢,) for all n = 7 mod 8 by induction o, starting withe = 7. A similar method
could be employed for alh, but we restrict ton = 7 mod 8 to simplify the already
formidable arithmetic. We let = RP*t7, and denote gaf¢g,.7) by gdm, k).

The classifying map for Zgc.7 will be viewed as the following composite.
fxf

23) A (Acx AYJEFD o | A x A 7% BOs 1 x BOe 1 — BOpe.
j

Hered is a cellular map homotopic to the diagonal m4f) denotes the—skeleton of
X, andf classifies 2-1¢. We write BO,,, for BO(m) for later notational convenience.

As a first step, we would like to us@.@) to deduce that
gd(Z, k) < max{gd(Z1,j) +gd(Z* k—}): 0<j <k}

In order to make this deduction, we need to know that the liftings of the various
29_1§8j+7 to variousBOy, have been made compatibly.
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Definition 2.4 If 6 is a vector bundle over a filtered spagcC - - - C Xk, we say that
gd@|X;) < di compatibly for < k

if there is a commutative diagram

Xo —— X Xk
| | |
BOy, —— BOy, e BOy, —— BGuim()

where the map<x — BOqim@) classifiest, and the horizontal maps are the usual
inclusions.

Remark 2.5 In our filtered spaces, we always assume that the inclusions are cofibra-
tions.

Remark 2.6 Isomorphism classes of-dimensional vector bundles ov¥rcorrespond

to homotopy classes of maps &f into BO,. Thus one would initially say that

the diagram ir2.4 commutes up to homotopy. However, By/, we may interpret

this diagram, and other homotopy commutative diagrams that occur later, as being
strictly commutative. To apply the lemma, we will often, at the outset, replace maps
BO, — BO,.«k by homotopy equivalent fibrations.

Lemma 2.7 If f

A—— E

il lp

X —— B
g

commutes up to homotopy amdis a fibration, therf is homotopic to a maf’ such
thatpof’ =goi.

Proof LetH: A x| — B be a homotopy fronpof to goi. By the definition of
fibration, there existél: A x| — E such thatpoH = H andH|A x 0 = f. Then
H|A x 1 is our desired’. H

If XoC---C XckandYy C --- C Y are filtered spaces, we define, for0 <k,

|
(X x V)i =X x Yij.
j=0
Then Xx Y)o C --- C (XxY)k is clearly afiltered space. We will prove the following
general result in SectiaBl
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Proposition 2.8 Supposegd(@|Xi) < di compatibly fori < k andgd(®|Y;) < d
compatibly fori < k. For0 < j <Kk, letg = max(@ + dj’_i :0<i<j). Then
gd@ x n|(X x Y);) < g compatibly forj < k. Moreover, ifX =Y andf = ), then the
maps(X x X)j — BOg can be chosen to satisfip T = f, whereT: X x X — Xx X
interchanges factors.

We will begin an induction by deriving id.1 some compatible bounds for gd(128
Proposition2.8 will, after restriction under the diagonal map, allow us to prove
gd(0-2%)¢n) < max{d_gd(F&yn) @ >om = n}. These bounds are not yet strong
enough to yield new immersion results. We must improve the bounds by taking
advantage of paired obstructions. The following result will be proved in Segtion

Proposition 2.9 Let BO[p] denote the pullback dBO, and the(p — 1)-connected
coverBQ[p] overBO, and lets = min(p + 2m — 1,4m — 1).

(1) There are equivalence$ andc, such that the following diagram commutes.

BOu[o]® —% (BOuml]/BOmalp)® —2 &M
.| . |

BOxmia[p® —2— (BOom:1lpl/BOam 1[o])® —2— SPZR .
Preparatory to the next two parts, we expand this diagram as follows, with
¢ = ¢ oq and(X,A) a finite CW pair.

A~ BOum 1[o]®

Lo

X BOZm[ ,0] (9 = m

pzl il
BOZm+1[P](S) —2 TPgm .

(2) Supposelim(X) < s, and we are giveX —— BOam[]® such thaf oj = p1ofy
andc, of factors asX — X/A — ™ with [g] divisible by 2 in [X/A, ™ 1
Thenps of lifts to a mapX —— BOm_1[p]©® whose restriction té\ equalsf; .

(3) Suppose, on the other hardim(X) < s, and we are giveiX , BOom1[p]®
such thatf’ o j = ppopyofy andcy o f’ factors asX — X/A 9, EP%Q?1
with [Xd] divisible by 2 in the stable groug>X/A, EZPZm 1. Thenf’ is
homotopic relA to a map which lifts tdBOpm[p] .

Note that K/A, $™ is in the stable range, from which it gets its group structure.
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In Sectiord, we will implemen{2.8 and2.9to prove that the last part of the following
important result follows by induction oafrom the first five parts and its validity when
e =7, while in Sectiorb, we will establish the first five parts.

Theorem 2.10 There is a functiory(e, k) defined fore > 7 andk > 0 satisfying the
following.
(1) If k> 253, theng(e k) = 2°.
(2) Foralle, g(e,0)=9g(e, 1) =0, and, if2 < k < 2%, theng(e, k) > 4k + 4.
(3) If0<¢<Kk/2,theng(e+ 1,k) > g(e, ¢) + g(e,k — ¢) — 1.
(4) If, forsomet with 0 < ¢ < k/2, we haveg(e+ 1,k) = g(e, ) +9(e,.k—¢) — 1,
then, foralll with0 < ¢ < (k—1)/2, we havey(e, ¢)+9(e, k—1—¢) < g(e+1,Kk)
and, if alsok is even, therg(e + 1,k) > 2g9(e, k/2) + 1.
(5) For alle andk, g(e, k) > g(e,k — 1).
(6) gd(Z,k) < g(e, k) compatibly for allk.

The functiong will be defined in 6.1) and5.5. In[Table J, we list its values for
small values of the parameters. We prefer not to tabulate the vgladg = 2¢ when
k> 283,

In Section6, we apply the basic induction argumeftg, and the results for gdf2)
in [2.10to prove the following result by induction an This clearly implies2.2 and
hencel.l.

Proposition 2.11 Fore > 7 andt > 0, gd((Z+ 28T 4. . - 4+ 28t)¢e_1) < 2°—e—6.

3 Proof of general lifting results

In this section, we prov2.8 and2.S. For the first one, we find it more convenient to
work with sections rather than geometric dimension.

Theorem 3.1 Let Xo C --- C Xk andYy C --- C Yk be filtered spaces, and I@t
(resp.n) be a vector bundle ovefi (resp.Yy). Suppose givemy (resp.ng) sections
of 6 on X (resp.n on Yy), of which the firstmy (resp. nj) are linearly independent
(l.i.) on X; (resp.Y;) for 0 <i < k. Let

pj = min(m +n_ :0<i <j).
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k
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7 0O 16 19 32 35 48 51 64 67 80 83 96 99 112 115 128
8 0O 15 18 32 34 47 50 64 66 79 82 96 98 111 114 128
e 9 0O 14 17 31 33 46 49 64 66 78 81 95 97 110 113 128
10 0O 13 16 30 32 45 48 63 65 77 80 94 96 109 112 128
11 0O 12 16 29 31 44 47 62 64 76 79 93 95 108 111 127
12 0O 12 16 28 30 43 46 61 63 75 78 92 94 107 110 126
13 0O 12 16 27 29 42 45 60 62 74 77 91 93 106 109 125
14 0O 12 16 26 28 41 44 59 61 73 76 90 92 105 108 124
k
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
8| 130 143 146 160 162 175 178 192 194 207 210 224 226 239 242 256
9| 130 142 145 159 161 174 177 192 194 206 209 223 225 238 241 256
e 10| 130 141 144 158 160 173 176 191 193 205 208 222 224 237 240 256
11| 129 140 143 157 159 172 175 190 192 204 207 221 223 236 239 256
12| 128 139 142 156 158 171 174 189 191 203 206 220 222 235 238 255
13| 127 138 141 155 157 170 173 188 190 202 205 219 221 234 237 254
14| 126 137 140 154 156 169 172 187 189 201 204 218 220 233 236 253

Table 1:Values ofg(e, k) whene < 14 andk < 32.

Let

i
W= X x Y.
i=0
Then there argg sections obl x n on\W of which the firstp; are linearly independent
onW, for 0 <j < k. Moreover, ift +i > j andm, +n; > p;, then the firsp; sections
are l.i. onX; x Y.

Note that we haveng > --- >m, ng > --- > ng,andpg > - - - > pk.

The following result will be used in the final step of the prooBof.

Lemma 3.2 Supposed is an n—dimensional trivial vector bundle over a spaxe

with Li. sectionsty, ..., t,. Supposes,...,s are Li. sections ofl, each of which

is a linear combination with constant coefficients of the Then there is a set
St, .., S, S41:- - -, Sy Of linearly independent sections 6f with all these sections
being linear combinations with constant coefficients oftthe
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Proof Because of the constant-coefficient assumption, this is just a consequence of
the result for vector spaces, that a basis for a subspace can be extended to a basis for
the whole space. B

Note that the assumption about constant coefficients was required. For example, the
sections(x) = (x,X) of & x R® cannot be extended to a set of three L.i. sections.

Proof of 3.1 Letry,...,rm, be the given sections df on X, ands,..., S, the
given sections ofy on Y. These are considered as sectiong of by using 0 on
the other component. Clearlyry,. ... rm,St,...,Sy} IS @ set ofpy sections o
which is linearly independent oWy. The proof will proceed by findingp; linear
combinations, always with constant coefficients, of these sections which areW.,on
thenp, linear combinations of these new sections which are I.Ménetc, until going
into the last stage we hayg_1 sections which are |.i. olV,_1, and we findpk linear
combinations of them which are Li. owg. Now we apply the lemma repeatedly,
starting with the laspy sections. At the first step, we extend this set to a s¢§of
sections L.i. onW_1, and continue until going into the last stage, where we I@ave
sections which are combinations of the origipglsections and satisfy the conclusion
of the theorem for K i < k. We apply the lemma one last time to extend the set of
p1 sections to the desired setjaf sections.

Here is an explicit algorithm for the sections described in the first half of the preceding
paragraph. We may assume without loss of generalityrtigat no.

Forj from O tok,

e Forifrom1top, —no (resp.p; — o), letr; O _y, (resp.s O = =5). (Note that
if ng > pj, then nothing happens at this step.)

o Fori from max(1p; — no + 1) to min(o, pj), let bothri(j) andserl ; equal

-1 1
I

e Then the sectlons. and ) constructed in the two previous steps give the
sections which are L.i. oWV,. (Each section constructed in the second step can
be counted as anor ans, but is only counted once.)

We must show that these have the required linear independence. Before doing so,
we illustrate with an example, computed Myple. Let k = 4, [mg,...,my] =
[11,6,4,1,0] and |no, ..., ns] =[10,8,3,2,0]. Then py, ..., ps] =[21,16,14,9,7].

The 16 sections l.i. oV, are

f,...,fe, r7+S10, I's+S9, r9+, Mo+5S7, M1+, Ss,...,%1
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The 14 sections l.i. oV, are
ry, rp, s, r4, rs+r7+Si0, re+rg+Sg, r7 +rg+S10+ S8, rg+rio+ S+ Sz,
fg+ri1+S+Se Mo+S7+S5, Ma1+S+%4, S8, S, S

The 9 sections l.i. oM are

M+ret+rg+S, r+rr+ro+sSo+Ss N3+rs+ro+S+5Sy,
r4 +r9+r1+S8+Ss 5+ 17+ T10+ S0+ S7 + S5,
e +rg+ri1+S+S+S4,M7+rg+Sio+S8+S8, rg+rio+ S+ S7+ S,
fg+ri1+S+ S+ s
The 7 sections |.i. oM\ are

ri+r3+re+ 2rg+rip+ 2% + s,
ro4Tr4+1r7+2rg+r11+ S0+ 288 + Ss,
r3+rg+r7+rg+2ro+Sio+S+25+Ss,
fa+rg+rg+ro+2r11+ S+ S+ 2% + 4,
rs+2r7+rg+rip+2s0+ S+ S+ S+ Sg,
e +2rg +rio+ri1+2% +S7 + S + 4 + S,
r7+2rg+ri1+ S0+ 2%+ S+ S5+ S1.

Now we continue with the proof. The property described in the first paragraph of the
proof, that the sections claimed to be L.i. @) are linear combinations with constant
coefficients of those olV,_1, is clear from their inductive definition.

Next we easily show that if > pj — ng, then
rd) = SS,LH =Ti+) Cli+r-i+ Yy s
0> r>p+1-i
with ¢, and d, integers. The point here is that the additional terms have subscript

greater than or p; + 1 — i. The proof is immediate from the inductive formula
. . i1

r0 =ri=D 4 S‘(ICJJJ'Jrl)—i
and the fact thap; < pj—1. Indeed, fromrd ™ we obtain terms>; ands>p_,11-i,
and fromsgjjrll)fi we obtain terms>p 11— andr>p_; —p+i-
Finally we show that the asserted sections are |.MgnLet x € X, x Yj_,. Note that
{ri®),...,rm(X)} is Li., asis{si(x), ..., s_,(X)}, and thaty; < m, + nj_,. If we
form a matrix with columns labeled

My, ..., my Sngs - - -5 S1,
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and rows which express the sections, ordered as
(3.3) 9t S s,
in terms of the column labels, then, by the previous paragraph, the number of columns
is > (usually strictly greater than) the number of rows, the entry in posiiidy i€ 1

for i < min(mo, pj), and all entries to the left of these 1s are zera. ¥ min(mo, ),

then all entries in the-portion of rowi are zero. Moreover an analogous statement

is true if the order of the rows and of the columns are both reversed. Thus there are
1s on the diagonal running up from the lower right corner of the original matrix (for
min(no, ;) positions) and zeros to their right.

If a linear combination of our sections appliedas 0, then the triangular form of

the matrix implies that the firsty, coefficients are 0, while the triangular form looking

up from the lower right corner implies that the lagt, coefficients are 0. Since

P < my +nj_g, this implies that all coefficients are 0, hence the desired independence.

The same argument works for the last statement of the propositionk Eatisfying
j <k < Z+1i, replaceWg by Wi U (X, x Y;). Then everything goes through as above.
[

Proof of 2.8 Let D = dim(9) andD’ = dim(n). Thend;, d/, g, and ¥ x Y); of
2.8 correspond td — m;, D’ — n;, D + D’ — p;, andW of 3.1, respectively. The
compatible gd bounds may be interpreted as vector buddieger X; of dimensiond,
and isomorphism8|X; ~ 6; © (D — di) and6;|X;_1 ~ 6i_1 @ (di — di_1). The trivial
subbundles yield, for ail, D — d; L.i. sections off on X; such that the restrictions of
the sections orX; to X;_; are a subset of the sections ¥p.1. Each of the sections on
Xo has a largesk; for which it is one of the given L.i. sections. By Atiyalh, [Section
1.4.1], this section otX; can be extended ovefi (although probably not as part of a
linearly independent set). Analogous statements are true for sectigfy of

By3.1, there areD + D’ — g L.i. sections off x  on Wy of which the firstD + D’ — g
are L.i. onW;. Taking orthogonal complements of the spans of the sections yields the
desired compatible bundles &% of dimensiong, yielding the first part oR.&

For the second part, first note that in the algorithm in the prod.&fif the r's and

s’s are equal, then the set of sections constructed on ®¥4dk invariant under the
interchange map . Thus the same will be true of the orthogonal complement of their
span. W
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Proof of 2.9

(1)

(2)

Let F; = ™1 denote the fiber oBO,m_1[p] — BOom[p]. There is a relative
Serre spectral sequence for

(3.4) (CF1,F1) — (BOom[pl, BOom-1[p]) — BO2m[p].

The fibrationVom — BOxn[p] — BO[p] shows that the bottom class BD,y[ o]
is in dimension> min(p,2m). The spectral sequence 8.4) shows that
H.(SM) — H.(BOu[p]/BOxm_1[p]) has cokernel beginning in dimension
s+ 1, and so the map is a+equivalence. Thus the inclusion of theskeleton
of BOzm[p]/BO2am-1[p] factors throughS®™ to yield the mapc], which is an
equivalence.

The second map is obtained similarly. A map

SPT 5 BOumyalpl/BOam_1ls]

is obtained as the inclusion of a skeletorG#,/F,, whereF, = Voy, 12 is the
fiber of BOom_1[p] — BOomr1[p]. The relative Serre spectral sequence of

(3.5) CF2, F2) — (BO2mya[p], BOam-1[p]) — BOomy1[p]

implies that coke{,) begins in dimensio> s+ 1, determined by

Hom(CF2, F2) @ Hmin(,2m+1)(BO2m+-1[p])

and the first “product” class iHm(XVam+1,2). The obtaining ot’, now follows
exactly as forc;.

Let Q := BOuny1[p]/BOam-1[p] and E := fiber®Oumi1[p] — Q). The
commutative diagram of fibrations

Vomi12 —— BOam-1[p] —— BOumy1lp]
QaQ — E - BOZm+1[p]

implies the quotienE/BOxm-1[p] has the same connectivity &5Q/Vomi 1.2,
which is 1 less than that determined fra@n5); that is,E/BOom-1[p] is (s—1)—
connected. Thus, since diX) < s, the vertical maps in

BOxm_1[p]® —— BOumya[p]® —— mP2M_ .

| | |

E —— BOumylp] —— Q
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are equivalences in the range relevant for maps fKgm, and X/A. Since the
bottom row is a fibration, we may consider the top row to be one, too, as far as
X is concerned.

Sinceg is divisible by 2, and 22m(2P§m_1 = 0, we deduce that the composite

X/A -2 @ L, sp2m
represents the 0 element ok fA, ©P3™ ,1; ie the map is null-homotopic rel

x. There is a commutative diagram as/#6) with the left sequence a cofiber
sequence and the right sequence a fiber sequence in the range Xj.dim(

f
A —— BOu 1[p]®

ill izl
(3.6) X L, BOumyalp]®
| |
X/A -9, ypam
We have just seen that there is a basepoint-preserving homotopy
H: X/Ax| — xPam |

from i o g to a constant map. There is a commutative diagram

Xx0O0UAXI — BOam+1[/]
Xx1 - x/ax) " wp2m

where the top map ip, o f on X x 0 andj, o f; on eachA x {t}. By the
Relative Homotopy Lifting Property of a fibration, there exists a ripX x

| — BOymnt1[p] making both triangles commute. When= 1, it maps into
BOm-1[p], since it projects to the constant map at the basepoiﬁ]R%fﬂ_l.

(3) We use the fact that 2ypem  factors as
SPI- 1 L gmiL T, e, SPI 1
to deduce that the composite
wx/A 29, y2pam ol gmi2
is null-homotopic sinceXd’] is divisible by 2. Note that we needed to suspend
once since if dimX) = 4m— 1, then K/A, ngmfl] might not have a group

structure. Since
[X/A, S™] = [5(X/A), ™
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is bijective, we deduce that/A cobg mi1 g null-homotopic.

An argument similar to the one in the beginning of the proof of (2) shows that
BOom[p] — BOamyi[p] — ™1 is a fibration through dimension mimg-
2m—1,4m) > s. Since dimK) < s, the lifting follows as in the proof of (2).

|

4 Inductive determination of a bound for gd(Z, k)

In this section, we prove that part (6) 2fLOfollows from its first five parts, together
with its validity for e = 7. We begin by proving the validity when= 7. The following
result is stronger than the required liftings foe= 7; i.e., we havan(k) < g(7, k) and

the inequality is strict ifk is even with 4< k < 14. The reason for beginning our
induction with liftings weaker than the best results that we are able to prove is to fit
them into a simple formula that works for all valueseofHere and throughout we use
the standard notation tha{—) denotes the exponent of 2 in an integer.

Theorem 4.1 Let

0 k=0,1
16 k=2

m(k) =
8k—5 kodd, 3<k<15

8k+v(k)—4 keven, 4 <k<16.
There are compatible liftings df28g,7 to BOyy) for k > 0.

Proof Let Hy denote the Hopf bundle over quaternionic projective sgdek. Let
m'(k) = 13 if k = 2, and otherwisen'(k) = m(k). We will use B, Theorem 1.1b] to
prove

(4.2) there are compatible liftings of BZ¢;1 to BOyy k) for 2 < k < 16.
Three things are required to prove this. First we need thak forl5 and alli < 2k+1
satisfying also #— 1 > m'(k),
I/(?’IZ> > V(‘7r4i_1(Pm'(k) A bO)D

This is easily verified using (*%) = 5 — (i) and, for 1< ¢ < 3,

4—¢c i=a+1
(43) V(‘W4i—1(P4a+e A b0)|) =<4 i=a+2

8—¢ i=a+3
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For example, ik is odd, we haven'(k) = 8k—5. Thena = 2k—2 ande = 3 in (4.3),
and fori = (2k—1, 2k, 2k+1), we havev (*%) = (5,4,5) andv(|m4i_1(Pe_sAb0)|) =
(1,4,5).

Secondly, we need thatyi_1(Pny ) — mai—1(Pwvx) A bO) is injective fori < 2k + 1.
This is obtained from Tables 8.4, 8.8, 8.14, 8.15, and 8.1FJof These show that
for m'(k) = (3,7,13,14,15) mod 16 and #— 1 < m'(k) + (8,4, 6,5, 4), the asserted
injectivity is true. Now the liftings follow from8, Theorem 1.1b]. Ik = 16, the
lifting follows for dimensional reasons.

The third thing we need is compatibility. We must show that
HP*~! — — BOw k-1

| !

HP#1 ——  BOmg
commutes fork > 3. The two composites agree stably, and so their obstructions to
being homotopic lie itH*(HP*~%; 7, (Vivg)) - If K is even, then B— 4 < m/(K) so
the groups are 0. Ik is odd, the result follows sincegk_4(Vegk—s) = 0.

We precede the compatible liftings @f.2) by the canonical mapRP+7 — HP+1,
obtaining compatible liftings of 1287 to BOwy for k > 2. The bundle 1285
is trivial. To insure compatibility of the liftings oiRPY> and RP?3, we note that
the obstructions to compatibility lie ifl*(RP; 7, (Vig)) = 0. This is why we use
m(k) = 16, rather than 13. W

Now we prove the induction step. Let
p(da+b)=8a+2°if0 <b<3.

It satisfies that %, is nontrivial if and only ifn > p(k). Let p = p(e — 1). Assume
that we have obtained compatible liftings ¢f2¢g¢, 7 to BOye-1,k[p] for all k. For
0 < k < 2¢-3, define

gi(e, k) := max{gle— 1,i) + gle— 1,k —i) : max(Q k — 2274 <i < [k/2]}.
Note that by2.10(3),
(4.4) g(e k) > gi(e k) — 1.

Recall A, = P%+7 and let

K
(Ax Ay = UAi X A

i=0
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Then by2.8there are compatible symmetric liftingg of 2°-1¢ x 2°-1¢ on (A x A
to BOy, e[ p] for all k. We precede by compatible mags: Ax — (A x A, cellular

maps homotopic to the diagonal. The composkeéﬂ'f BOy, ek [p] are compatible
liftings of 2%¢g. 7 for all k.

By decreasing induction ok starting withk = 282, we will construct compatible
factorizations througiBOgye k[ o] Of the maps/ o dk. Assume inductively that, for all
j > k, compatible factorizations, up to homotopy A&l, of ¢; o dj throughBQye j)[ o]
have been attained. tf(e, k) > gi(e k), then no factorization ofy o dk is required,
and so our induction ok is extended. So we may assug(e, k) = gi(e, k) — 1.

Let h = [k/2]. By2.10(4),
(4.5) (e k—1) <g(ek — 1

By (4.5),12.1Q(4), and the last part &.1 (which is required for compatibility of the
lifts of (A x A)x—1 and A, x Ap to BOyek—1), We have the commutative diagram
below, similar to 8.6).

dl

Al —— (A X A)k,]_ UAn X Ap E— BOg(e7k),1[p](8k+7)
A« (A x A) BOy(ek[p] &7
A G, (A x A & BOy(eky+1[p] &7
L j B

Ac/B 1 —2— (A x A/((A X A1 U Ay x Ay) ——s C,

whereC = SeK+1 jf g(e k) is odd, andC = Zngg:gfl if g(e k) is even. The maps
labeledd are cellular maps homotopic to the diagonal. The mé&pobtained similarly
to the first paragraph of the proof @fS. Since dimfy) = 8k + 7, the application of
2.9requires that

8k +7 < min(p + g(e k) — 1, 2g(e, k) — 1).

The second follows fron2.1Q(2), while the first follows fromp > 2e — 2 and
g(e, k) > 8k — e+ 2 sincee > 8.

The quotient A x A)x/(An x An) equalsB v T(B), whereT reverses the order of the
factors, andB is the union of all cell€ x € with i < j. By the symmetry property
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of 4, £|T(B) = (¢|B) o T. SinceT o d ~ d, we conclude that o d is divisible by 2.
Indeed, withrg denoting the retraction ont8,

[Cod] =[(?[B)org o d] + [(|T(B)) o rr(e) o d]
and we have

[({[TB)orr@ odl =[({[T(B) o Torgod] =[({[B)orgod].

Thus, by2.S, /o dg is homotopic relA,_; to a map which lifts toBOye x[p]. Note

that the lifting intoBQOye ) —1[p] was not needed if(e, k) is odd. We have extended
our inductive lifting hypothesis, and so have proved that there are compatible liftings
of A¢ to BOyexlp] for all k. This extends the induction omand prove2.10(6),
assuming the first five parts @f1Q

5 The function g(e, k)

In this section, we define the functiag(e, k) which has been used in the previous
sections, and prove the first five parts2il( its numerical properties which were
already used to prov2.10(6), its important geometrical property.

We find it convenient to deal with the complementary funct@ulefined by
(5.1) G(e k) = 8k — g(e k).

It has relatively small values, in which patterns are more readily apparent. This function
G will be defined using several auxiliary functions.

We define a functiors for k > 2 by

(5.2)
-1 k=0(2)

S(Kk) = 8k — 13['%1] +2a(k) +2min(3v(k—1))+ <2 k= 1(8)anda(k) # 2
4  otherwise.

Then§Kk) = 8k — s(k), wheres(K) is the stable value aj(e, k) whene is sufficiently
large. The first values df are given by

k |2
Sk) | 4

34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
8 7

13 12 16 13 21 18 22 21 27 26 30 25 33 30 |34
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It will occasionally be useful to sef(1) = 8, consistent witlg(e, 1) = 0.

Values ofk = 1 mod 8 receive special treatment. They are excluded in the domain of
some of our functions. For example, foez 1 mod 8 withk > 2, we defineV(k) by

2 k=3(4)

V(R = alk) - {1 k3 (4)

The reasons for defining some of these functions will be presented shortly.

We also define functions’ andR as follows.

VK) = v(k) keven
—4  kodd,

and, fork # 1 mod 8,
(5.3) R(Kk) = 9K) + v/(K) — V(K).

The first few values oR are given as follows.

k
R(K)

6 7 8 10 11 12 13 14 15 16 18 19
12 11 16 18 17 22 21 25 24 29 30 P9

2 3 4 5
5 4 9 8

It will also be useful to introduce the notatidn) = max(Q n). We will frequently use
the simple fact that for any numbex,

(5.4) X4 (=X) > 0.

Now we can define our functio®. An integerk is decomposabléf it can be written
ask=kp+---+k withr > 1 andv(k) > R(ki_1) for 1 <i < r. Because each
ki must be preceded in the binary expansiorkddy a long string of Q's, it is clear
that a decomposable integer has a unique maximal decomposition. The sbu) in (
is taken over all;, i > 1, in a maximal decomposition &f. The first values ok
admitting a decomposition are 35, 66, and 67, Wwigh= 3, 2, 3, respectively. A simple
decomposition is a maximal decomposition with= 1. The first value ok admitting

a multiple decomposition is°2 + 35 with ky = 3 andk; = 32.

Definition 5.5 If 2 < k < 2¢~2 and(e, k) # (7,9), we define

min(S(k), G'(e, k)) k#1(8)

G(ev k) = {mln(S(k), 6+ G/(e7 k — 1)) k=1 (8)7
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where, fork # 1 mod 8,

(5.6) Gek=(e—6-1(K)— > (min((k),e—6)— Rk_1)).
ki
The exceptional value i6(7,9) = 5, not 6 as the formula would give.

The terms in the sum irb(6) will sometimes be calledeviations We do not define
G(e, 0), G(e, 1), or G(e, k) for k > 2°-3; instead we just define the complementary
function g by g(e,0) = g(e,1) = 0 andg(e k) = 263 for k > 23, and observe
that the crucial properties (3) and (4) in Theor@riO are easily seen to be satisfied
whenever these extreme values are involved.

Next we provide some general discussion of what led to the rather complicated formula
for g(e, k). Firstwe describe what led to the basic formgle, k) ~ 8k—(e—6—1/(k)),
modified whenk = 1 mod 8. We began with the initial values(k) of 4.1 for g(7, k)

and used a computer program implementing properties (3) and @ 16to obtain
bounds forg(e, k) for largere. Except perhaps for the first few entries ik-aolumn,

the values B— (e — 6 — /(k)) whenk # 1 mod 8, andy(e, 8¢ + 1) = g(e, 8¢) + 2,

were apparent until issues of stabilization, which we will discuss shortly, became
involved. However, there was no apparent regular pattern for the first few entries
in eachk-column. The formula B— (e — 6 — /(k)) was achieved after additional
computer experimentation as the simplest general formula satisfifind) > m(k)

and consistency witg.10Q

Next we explain wher&(k) came from. Itis related to the conditiae, k) > 4k + 4,
which says that our lifting methods only work in the stable range. In an earlier version
of this paper, we used the triviality of*®¢, to give 0 as the value afi(e, k) when

e > 4k + 3, but we were unable to prove that this could be done compatibly with
our other liftings; i.e. that the liftings which we obtain inductively can be done so
that their restrictions to appropriate skeleta are trivial. By foraiig 2) = 16, we
could, as noted in the proof @f.1, guarantee that our liftings restrict to a trivial
bundle onP®, the case&k = 1. For reasons of stability, we forceye, 2) > 12 and

g(e, 3) > 16. Forcingg(e, 4) > 20 is not strong enough, since, wigils,2) = 12
andg(15,4) = 25, we could not obtaig(16,4) = 24 consistently with property (4)

of 2.1Q Thusg(e,4) = 25 for e > 15; i.e. 5(4) = 25. This translates to our value
S4)=8-4—54)=7.

To be consistent witR.1(0, our functionS must satisfy the inequalities of the following
proposition, the proof of which is straightforward, although somewhat tedious, and is
omitted.
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Proposition 5.7 The functionS defined in(5.2) satisfies

Si+)<SH+4)+1
and
S2i) < 25(i) - 1,
with equality in the first ifi = 2' and2 < j < 2' — 1 orj = 2! + 1, and equality holds
in the second if = 2. ThusS may be defined b§(2) = 4, S(3) = 8, and

SK) = min(S() + Sk—i)+1, 2<i < k/2, 25k/2) — 1)

To be consistent with property (3) @10 our functionG must satisfy the property
stated in the next theorem, the proof of which will occupy much of this section.

Theorem 5.8 If e > 8, and2 < i,j < 2°74, then

(5.9) Gle—1,i)+Ge—1,j) +1—G(ei+j)>0.

The stabilization given byg(k) and the requiremen&(©) are what lead to the compli-
cated suming.€). The firstexample of thisis faB(11, 3)+ G(11, 32)+1—G(12, 35).
SinceG'(11,3) = 9 > §3) = 8, wehave5(11, 3) = 8. AlsoG(11,32) = 11-6-5 =

0, and(12— 6 — v/(35)) = 10. Thus we must subtract 1 frofd2 — 6 — +/(35)) in
G(12, 35) in order that.9) will hold. This is accounted for by the decomposition of
35 with ky = 3. The valueR(3) = 4 is the amount that(k — 3) must exceed in order
that the decomposition affects the valueGik, k).

Note that 11 is the smallest value effor which G(e, 3) # (e — 6 — /(3)). This is
obtained by solving
e—6—1/(3)=93)+1,

obtaininge = 11. We wantR(3) to be 1 less than the value bivhich satisfies
G(11,3)+G(11,2) +1—- (12— 6 -/ (2' +3)) = -1

HereG(11,3) — (12— 6 — v/(2' + 3)) necessarily equals2: 1 from 12— 11, and 1
from G(11, 3) = G/(11, 3) — 1. Thus we need to satisfy 0= G(11,2') = 116 —t,
and so

RB)=t—1=(S3)+(3)+6)—6=93)+(3),

consistent with%.3), sinceV(3) = 0.
The wayV arises can be seen by comparing the requirements o5,

G, 2'+5)<Ge—1,2)+Ge—1,2"+3)+1



Immersions of RB—! 19

and
G(e,2'+5) < Ge—1,5+Ge—1,2) + 1.

The first reduces to, foe moderately large,
Gle2'+5 <S2)+e—-6-t+3) =e+6—t,
while the second becomes
G2 +5 <S5)+e—6-t=e+7—t.

We must use the first condition becauS@) + §3) < §5). The valueV(5) = 1
measures this. O (k) satisfies that it is the largestsuch thak = ig + - - - + i, with

Slio + -+ +i) = Sio+ - - +it—1) + i) + 1
fori1<t<r.

This concludes our discussion of the rationale behind the definitida ekcept for

one more brief comment. It was certainly to be expected that these modifications to
the G-formula, given by the summands i6.€), would be cumulative. It was nat

priori clear whetheR(ki_1) or R(ko+ - - - + ki_1) would be the appropriate part of that
formula. The answer will become apparent in Subcase 2d of the pr&of bf

The following proposition will be needed shortly. The functi®rbelow will often be
encountered in the guise &i(k) = R(k) — v/(K).
Proposition 5.10 Let S(k) = S(k) — V(K). If i,j,i +j # 1 mod8, then

S(@)+S@) > S +)).

Moreover, ifi < 2¥0), then equality is obtained.

Proof One easily verifies that

0 k=0(2)
S(k) = 8k — 13[*t] + a(k) + {8 k=3 (4)
9 k=5(8).

For 1 < m < 4, let ¢, denote themth part of the above formula faB(k), and let
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Ym(i,J) = ¢m(i) + ¢m() — ém(i +J). Then

0 m=1
0 m= 2, ij even
—-13 m=2, ijodd
Y, )) =S v(T) m=3
>16 m=4, ij odd
-1 m=4 i+j=5(8)and orj=3(4)
>0 m = 4, otherwise.

Since (‘1) is even ifi +j = 5 (8) andi = 3 (4), the inequality follows.

For the second part, one easily sees that<if2"0), thenym(i,j) = 0 for 1< m< 4.
Whenm =4, itis true because=i+j mod 8 (orv()=2andi=2o0r3). A

We now begin the lengthy proof &.& In order to keep the number of cases and
subcases within reason, we split the theorem into two parts. Most of the work will go
into proving the following result.

Theorem 5.111f e> 8,2 <i,j < 2674, andi,j,i +j # 1 mod 8, ther(5.9) holds.

Proof We divide into cases depending upon whet@) and/or decompositions are
involved.

Case 1 Neitheri norj decomposesi(e— 1,i) # (i), andG(e— 1,j) # (). In this
case, the LHS 015.9) becomes
(5.12) >(e—-7-Vi)+{e-7-V({)+1-(e—6—-1(i+]j)).

By considering separately the four subcasesi(ahdj odd, (b)i odd, j even, (c)
v(j) > v(i) > 0, and (d)v(i) = v(j) > 0, one easily shows theb.(L2) is > 0 in each
subcase. Note that if+ j decomposes, then the LHS &.9) is greater than5,12),
and so we need not worry about this possibility here.

Case 2 G(e— 1,i) = §(i) andi does not decompose.

Subcase 2aAlso, G(e—1,j) = (). Thenthe LHS of%.9) is > S(i)+ () +1—S(i +
j) > 0, by5.7. The remaining subcases of Case 2 now assuméafeat 1,j) < S(j).
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Subcase 2b j does not decompose, andj) < v(i). Then/(i +j) > v/(j), and so
the LHS of 6.9) is

>Si)+e—7—({)+1—(e—6— /(i +j)) > i) > 0.

Subcase 2cj does not decompose, an€f) > v(i). We allow for the possibility that

i might serve as the bottom part of a decomposition#f. This will be true ifv(j) is
sufficiently large. Because of oyr-)-notation, our analysis is valid regardless. This
time /(i) = /(i +j), and so the LHS 0f5.9) is

> i)+ (e—7—v()) +1— (e—6—1/(i)) + (Min(),e— 6) — i) — /(i) + V(i)).

If v(j) <e—7,thisis> V(i) > 0. If v(j) > e— 6, it simplifies to

(5.13) >V(@i)+1+e—6-1/()— (e—6—1/()).

Sincej < 2674 andv(i) < v(j), we have/(i) < e — 5, and s0/%.13 is > V(i) > 0.
Subcase 2d | admits a decomposition. We consider a 2-stage decompogitien
jo+j1+ 2'Awith A odd andv(j1) > R(jo). It will be clear that the argument here can

be adapted to a longer decomposition. Lettihg> O denote any amount added for a
decomposition of + j, the LHS of £.9) becomes, using.1q

(i) + (e~ 7—v'()) — (¥(1) — R(o))

(5.14) —(mint,e—7) - R({1)) +1—(e—6—1/(i+])) +D

= S(i) + V(i) + S(jo) + S(iz) + /(i +]) — min{t,e— 7) + D

> V(i) +S(i +jo +]j1) + /(i +]) — mintt,e— 7)+ D
(5.15)= V(i) + R(i +jo+j1) — (i +jo+j1) + /(i +]j) — mint,e—7)+ D.
We will discuss later the removal of tHe-) at the first step.
We will show below that
(5.16) V(i) = V(i +jo+j1) + V(i +]) > 0.
Assuming this, the only way theb(15) could be negative is if min(e — 7) > R(i +
jo+ j1). Butif this is the case, theri ¢ jo + j1) + 2'A is a decomposition of + j,
which makesD > min(t,e — 6) — R(i +jo +j1). If i +jo + j1 decomposes further,
that only adds more t®. Thus, assumingb(1€), we obtain that%.15) is > 0.

We now prove’s.16). The only way it could possibly be negative is i 2'B —jo —j1

with B even. Then the LHS of(1€) becomes
> a@@B—jo—j1) —2—(t+v(B) +t

= aB-1)+t—a(o+ji1—1)—2—v(B)
> 0
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sincea(B — 1) > v(B) andt > R(jo + j1) >> a(jo +j1 — 1).
Regarding the removal gf-) above: ifv/(i +j) > e — 6, then6.14 becomes
> Si)+e—7-1(j)— v+ Rio) — min(t,e— 7) + R(j1) + 1

= i)+ (e—7—min(t, e— 7))+ (Ri1) — (1)) + (R(o) — ¥'(jo)) + 1
> 0

because each of its terms is nonnegative.

Case 3 G(e— 1,i) = §i) andi decomposes. Although the decomposition dbes

not affect the value of(i), it could affect the value of5(e,i + j) by affecting the
decomposition of + j. In the analogues of Subcases 2a and 2b, the decomposition of
i +j was not needed, and so a decomposition@dnnot affect the validity.

Subcase 3aj does not decompose an) > v(i).

Subsubcase 3aii admits a simple decomposition. Liet= ig + 2'a with o odd and
t > R(io). If v(j) > t, then, consideringy + (2'a) + j as a possible decomposition of
i +j,the LHS of 6.9) becomes

> i)+ (e~ 7—v()) +1- (e~ 6— /(i)

+(min(t, e — 6) — R(ig)) + (min(v(j), e — 6) — R(2'a)).
This exceeds the amount analyzed in Subcase 2c by
(5.17) t — R(ip) — R(2'a) + R(ig + 2'a).
Since, in the notation d8.10 S = R— ¢/, and/(ig) = /(io + 2'a), then 6.17)
equalsS(ip + 2'a) — S(ip) — S(2'a) = 0 by5s.1Q
If, on the other handy(j) < t, then we don't need+ j to be decomposable, since the
LHS of (5.9
>Si)+(e—-7-v())+1-(e—6-1(i)) = i)+ (i) — v(j) > 0,

sinceS(i) > t+4 > v() + 4. (The+4 is included because of the possibility that
V(i)=—4.)

Subsubcase 3aii i admits a multiple decomposition. if(j) < (i) + //(i), then, as
in the preceding paragraph, we do not need a decompositiof pfn order to satisfy
(5.9). If, on the other handy(j) > (i) + ¢/(i), then the result follows as in the first
paragraph of Subcase 3ai, using additivitySbPn disjoint decompositions.
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Subcase 3bi andj both decompose exactly once. liet ig + 2™3 with 5 odd and
m > R(ig), andj = jo + 2'a with « odd andt > R(jo).

If m > t, then we can considér+ j as {o + jo) + 2a + 2M3. It is possible that
(m—R(2'«)) might contribute taG(e, i +j), but even if it does, we do not need it. The
situation is similar to Subcase 2d. Using tfie- R(jo)) and (t — R(ip + jo)) parts of
G(e—1,j) andG(e,i + j), respectively, the LHS o&(S) simplifies to

> (i) — v(jo) + '(i0 + io) + R(o) — R(io + jo),
which is very positive. (It would be> V(ig) by 5.10if i) were replaced by the
much smaller numbeX(ip).) Keeping in mind that 22 > i + j, we will usually omit,
from now on, explicit consideration of the possibility that- 6 < v(ki—1) in (5.6).
In Subcase 4d, there is a detailed discussion of a delicate case in which we consider
carefully what happens whea— 6 is larger than the relevant 2-exponent .

If m=t, then avery similar argument works. Because the decomposition phow
is (ip + jo) + 2Py with p > t, and this exponent appears withtasign in —G(e, i + j),
the LHS of £.9) is even larger than it was when > t.

Now supposen < t. We use iy + jo + 2"3) + 2« as our trial decomposition ofj.
If it is not a true decomposition, then tije-) will take care of it.

The LHS of £.S) becomes
> i)+ (e~ 7—1(jo) — (t—RGo)) +1
—(e—6—v/(io +jo)) + (t — Rlio +jo +2"3))
> (i) — v(jo) + R(jo) + ¥(io + jo) — R(i + jo)
= V(i) + S(i) + S(io) — S(i +jo)
V(i).

v

Subcase 3cAt least one of andj decomposes more than once. The argument is very
similar to that of Subcase 3b. The only reason for separating them is to use 3b as a
warmup for 3c. Lei = ig+---+i; andj = jo+ - - - + js be maximal decompositions.

If v(js) < v(ir), then the LHS of%.9) is, without using any decomposition df- |,

> S(0) - V() = )W) — Rik-1) + /(i +])

>
k=1
s—1
> S0+ Y _(RGK) — V(i) — v(is)
k=0
> (i) — v(ir)

>> 0.



24 Donald M. Davis, Giora Dula, Jés Gonalez and Mark Mahowald

If v(ir) < v(js), first suppose the only decompaositioniof j is the simple decompo-
sition K + js with K =i +jo + - -- +js—1. Then the LHS of%.9) is

> Si) — V() = DK — R(k-1) + /(i +1) + v(is) — RKK)

k=1
s—1
= RG) + V() — /() + S (RGW) — V() + V' (K) — RK)
k=0

> V(i)
by5.10

If i + ) decomposes more finely, say &s+ B + js, then —R(K) is replaced by
—R(B) + v(B) — R(A). But these are equal by the second parbdi() noting that
V(A+B)=1'(A).

Case 4 S(—) not involved,i decomposeg, doesn’t. Recall,j < 2¢~4. We assume
thati admits a decomposition &g+ i1 +i>. The nature of our argument will show that
the conclusion will also be true for longer decompositions. The LHS &) becomes

(5.18)  e—6—v/(io) — (i) + Rlio) — v(i2) + R(i1) + (=7 - v'([)) +,

whereY = —G(e,i +j). We use$.4) often in what follows.

Subcase 4av(j) < v(i). Then, using a decomposition- j = (ip +j + i1) + (i2), we
obtain

(5.19) Y > (e~ 6 /() + (v(i2) — Rlio+] + i)

If there is an additional decompositioniofj as fo+j)+(i1) + (i2), then by the second
part of5.10 R(ip +j +i1) = R(io +j) + R(i1) — v(i1), and so the same expression is
obtained. Theng.1§) is

(5.20) > (e~ 7—R(io+] +i1) + (Rio) — v'(i0)) + (R(i1) — v(i1)) > O,
since if the(—) in (5.19 is > 0, then
e—7>v(2) —2>R(io+]+11) — 2

but the R — v)-expressions are- 2. If the (—) in (5.19 is 0, then the first part of
(5.20) is replaced byd — 7 — v (i) > —2.

Subcase 4b v(i) < v(j) < R(ip). In this case, which is very similar to 4a,

Y > —(e—6— /(i) + (v(i2) — Rlio +]j +i1)),
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because if there is an additional decomposition #fj as o + j) + (i1) + (i2), then
R(io +j +i1) = R(io + j) + R(i1) — ~(i1), and so the expression fof is unchanged.
Then 6.19 is

> (S(io) + S(i1) + S() — S(io+i1+]))) + (e— 7—R(j)) > 0.

In the remaining subcases, we deal with a maximum possible decomposition of
j, realizing, as in 4a and 4b, that if the decomposition must be amalgamated, the
expression is not changed.

Subcase 4t R(ip) < v(j) < v(i1). Then

Y > —(e—6—2/(1) + (v()) — R(io)) + (v(i1) — R()) + (v(i2) — R(in),

and sob.1§ is
> (e—7—wv(i1)) + (v(i1) — R()) > 0.

Subcase 4d v(i1) < v(j) < v(i). Then
Y > —(e—6—v/(i)) + (v(i1) — Rlio)) + (v(i) — R(ix)) + (v(i2) — R()),
and so6.18) is
(5.21) > (e—7—w(i2)) + (v(i2) — R(j)) > 0.
As noted in Subcase 3b, we are usually not paying explicit attention to the possibility
thate — 6 < v(iz) (in the situation in this subcase, 4d). Here it does warrant our

attention. We might have, = 2672, 2°-6 or 3. 2°76, and then it would seem that
(5.21) might not be valid.

If i, = 275, then(v(i2) — R(i1)) in the above analysis is replaced tg— 7 — R(i1)).
This decrease of 2 compensates for the fact¢hal — v(i2) = —2 in (5.27). Similarly,
if v(ip) = e— 6, then(v(iz) — R(i1)) is replaced bye— 7 — R(i1)), compensating for
e—7—v(ix) = —1.

Subcase 4e v (i) < v(j). Then
Y > —(e—6—v/() + (v(ir) — R(io)) + (v(i2) — R(iv)) + (v() — R(i2),
and sob.1§ is
> (e~ 7—v(j)) + (v(j) - R(i2)) > O.

Case 5 S—) not involved, bothi andj decompose. We consider here a typical
example in which both andj decompose twice. It should be clear that the general
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case will work out in the same way. We assume thatig+i1+i2 andj = jo+j1+j2
are decompositions. Then

Gle—1)+Ge-1j)+1 = e-6—1/io) - v(ir) + Riio) - v(iz) + R(ix)
+e—7—1'(jo) — v(i1) + R(o) — v(j2) + R(1)

We assume without much loss of generality th§p) > v(i2) andv(ip) < v(jo).

Subcase 5av(j2) < R(ip + i1+ i2 + jo + j1). We use no decomposition of-j. We
obtain that
Gle—-1,i)+Gle—1,j)+1—G(ei—+]j)

> Rio) +S(i1) — v(i2) + €~ 7+ S(jo) + S(j1) — v(2)

= S(io) + S(i1) + S(i2) + S(jo) + S(j1) + '(i0) — R(i2) + €~ 7 — v(j2)

> Ro+i1+i2+jo+]1) —Ri2)+e—7—v(>)

>> 0,
sincee — 7 — v(j2) > —2 while R(ig + i1 +i2 +jo +j1) — R(i2) >> 0.

Subcase 5b v(j2) > R(io + i1 +i2 + jo +j1). We use a decomposition of+ j as
(io+i1+i2+jo+]j1)+ (2). We discuss afterward the usual argument regarding what
happens if it decomposes more finely. Similarly to Subcase 5a, we obtain
Gle—1,1)+Ge—1,))+1—G(ei+])
> S(io) +S(i1) + S(i2) + S(jo) + S(i1) — S(io + iz +i2 +jo +]j1)
+e—7—R(i2)
> 0

using5.10and
e—72>v(2) —2>R(io+i1+i2+jo+]j1) —2>> R(i2).
Further decomposition df + i1 + i2 + jo + j1 into 2-adically disjoint parts does not

change the expression, using the second paB.ti similarly to the argument in
Subcases 4a and 4b.1H

The following result will be useful in some subsequent proofs. In partic2laf) (5)
is an immediate consequence.
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Proposition 5.22 Fore > 7 and2 < k < 2873,

=8 k=0(8), a(kk=1, e>9Kk) +vk +8
=7 k=0(@8), ak=1 e=9Kk)+uv(k +7
Gle,k+1)—G(e,k)s =6 k= 0(8), otherwise

-1 k=1(8)

6  otherwise.

IA A

Proof We begin by noting that the result is true for the limiting valugg), since
they are easily shown to satisfy

=8 k=2¢6e>3
=6 k=0(), ak)>1
=6 k=4(8)
(5.23) Sk+1)—-Sk <=4 k=2(4)
<-1 k=1(8)
=-1 k=3,5(8)
< -3 k=7(8)

(<
The cas&k = 0 mod 8 of the proposition follows easily fror.23 and the definitions.

We next handle the case= 8/ + 1. If v(¢) > 3, then & 4 2 admits a decomposition
with ko = 2. Any additional portions of a decomposition @f82 will occur identically
in 8¢. Thus, in this case, witlr = 1(8/) > 6,

G(e,8+2)—G(e,8 +1)=e—7— (min(v,e—6)—5) — (6+ (e— 6 —1)).
Thisis < —2, regardless of the sign ef— 6 — v.

Now assume/(¢) < 3. If 8¢ admits a decomposition dg + 2'a with « odd, then
we consider Ky + 2) + 2'a: as a possible decomposition of 8 2. Any additional
portions of a decomposition o8& 2 occur identically in 8. Forv=v(¢{) =0, 1, or
2, we obtain

(5.24) G(e,8+2)—G(e,8+1)=e—13—(e—9—-Vv) —(D—-2+V) + (D),

whereD = min(t,e — 6) — R(kp). Here we have used the easily-verified fact that if
ko = 0 mod 8, therR(ky + 2) — R(kg) = 5 — v(kg). One easily checks theb.24) is
< —2 foranye andD, since 0< v < 2.

Forr =[2,3,4,5,6,7] andk = 8/ + 7, we have, fore > 7,
<e_ G_V/(k+1)> - <e—6—y,(k)> = [57 _6767 —5,5,< _5]7
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and, ifk admits a simple decompositidg + 2'« with o odd,

Herem = min(e — 6,t). As before, higher deviations will cancel in the difference.
ThusG(e k + 1) — G(g, k), which is the sum of the two displays of this paragraph, is
< 6,asclaimed. W

Now we can complete the proof 6f& by proving.

Theorem 5.25 Theorenb.8is true wheri orj ori +j is =1 mod8.

Proof Again we divide into cases.

Case 1 Onlyi =1 mod 8. We have
Gle—1i)+Ge—1j))+1—G(ei—+]))
= (G(e—1,i)—G(e—1,i — 1)) — (G(e,i +]) — G(e,i — 1+]))
(5.26) +(Gle—1,i—1)+G(e—1,j) +1—G(ei — 1+]))
Z 07

since the first €) in (5.26) is > 6 by5.22, the second i< 6 by/5.22, and the third is
> 0 by5.11

Case 2 bothi andj = 1 mod 8. This follows by an argument similar to that of Case
1.

Case 3 i andi+j = 1 mod 8. This follows from the validity fori (- 1,]) similarly to
Case 1. Usuallyz(e—1,i) — G(e—1,i — 1) = 6 andG(e,i +j) — G(e,i —1+j) = 6,
and so the inequality follows as i%5.26). If G(e,i +j) — G(e,i —1+j) > 6, then
Ge—1,i)= i) andG(e— 1,j)) = &), and so

Ge—-L1i)+Ge-1j)+1-Gei+j)>S)+()+1-Si+j)>0
by/5.7.
Case 4 i+ =1 mod 8, whilei,j # 1 mod 8. IfG(e,i +]) — G(e,i +j — 1) > 6,
thenG(e— 1,i) = i), G(e— 1,j) = §(j), andG(e,i +j) < (i +]), and so the result

follows from/5.7. So we may now assum@(e,i +j) — G(e,i +j — 1) = 6. Without
loss of generality, assumds odd and is even.
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First, we assume= 3 mod 4. By the proof d6.22, G(e,i)—G(e,i—1) = 4 or 5, and if

i isindecomposable, theB(e, i) — G(e,i —1) = 4 ifand only if G(e,i — 1) = (i — 1).
Thus the result will follow as ing.2€) once we show that if,j = 2 mod 4 and
i+j = 0 mod 8, then5.9) is satisfied with 1 to spare, and with 2 to spare if
G(e i) — G(ei — 1) =4.

The basic value of the LHS 0b(S) in this case is
(5.27) (e—8) + (-8 +1—-(e—v)

with v > 9. This equals 1 it = 7 or 8, while fore > 9, itis > e— 6. The smallesé
for which the LHS of 6.9) does not equal(27) is e = 12, wheni = 2.

Neglecting temporarily the effect of deviations, the desired conclusion is obtained since
it is true at the onset of(i) and will continue to be true as increases, since now
G(e—1,j) andG(e,i+]) will both increase by 1 each time. Wh&{e— 1, ) achieves

a value ofy(j), then the LHS of%.9) is

>Hi)+9))+1-Si+j)>2
for the congruences being considered here.

When deviations are taken into account, the fact that makes it work is the easily-verified
fact that

(5.28)  R(B(+2)+R@/ +6)— R+ 80 +8) =1+ v((“})).

Suppose, for example, that= i + 2'a andj = jo + 2Y3 are decompositions with
and g odd, andt < u < e— 7. The LHS of |6.S) becomes

>e—8+e—7—(t—R(io)) — (u—R(o)) — (e~ V) + (t = Rlio+]o)) + (u— R2'a))
with v > 9. Using £.29), this is

> e+ V- 14+ Rio+jo) — t+ v((°H°) + (t— Rlio+jo)) — u
> v—7
> 2

sincee — 7 > u and using'%.4). Other situations involving decompositions work out
similarly.

The casa = 5 is handled similarly. W

Next we verify the first part ¢.10(4). In fact the conclusion of that theorem is true
without regard for the hypothesis.
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Theorem 5.291f i,j < 2°=% andi +j + 1 < 2°°2, then

glei)+galej) <gle+1i+j+1)

Proof We prove the equivalent statement, withj, ande as in the hypothesis,
(5.30) G(e,i) +G(ej) +8>G(e+ 1,i +j + 1).
By5.8and5.2Z, we have

G(e,i) +G(ej)+8>Ge+1i+j)+7>Ge+1,i+j+1)

unlessi +j+1=2'+1witht >3 andG(e+2,i +j+ 1) = i +j + 1). In this
case, it will also be true thab(e, i) = (i) andG(e,j) = S(j). Thus it suffices to show

i)+ 2 — i) + 8> 2+ 1).

This follows readily from the definition 06. The smallest value of(i) + (2! — i)
occurs wheri = 2"t andis 3 21 + 2, while§2! +1)=3-2"1+9. W

The second part @.10(4) follows from the following result.
Theorem 5.31 Fork < 2873, G(e + 1,2k) < 2G(e, k) with equality if and only if
G(e+ 1, 2k) = G(e, k) = 0, which occurs if and only if
ke {2273, 2874 2875 3.28°5 226} witha € {1,3,5,7}.
If equality occurs, then
G(e+1,2k) < G(e,¢) + G(e, 2k — ) + 1
for all ¢.

Proof The second sentence follows immediately from the first, since

0< G(el)+G(e,2k—0)+ 1.

For basic values, we have

2(e—2)— (e—6) kodd

2G(e, k) — G(e+ 1,2k) = {(e— 6 — v(K)) k even.

This is clearly> 0, and= 0 in exactly the cases claimed.
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If G(e, k) = S(k), then

2a(k) — 1 k even
12 k=2'+11t>3
2G(e, k)—G(e+1, 2k) > 25(K)—(2k) = o)+ 4 . (;) ,at(s o

vk — 1)+ 2a(k) —4 k=3,5,7(8)
Thisis> 0.

Supposek = ko + 2'a is a simple decomposition, with odd ande — 6 > t. If k is
even, then R(k) = R(2k) + a(k — 1), and so
2G(e, k) — G(e+ 1, 2Kk)
= e—6—v(k) —2(t — Rko)) + (t+ 1 — R(2ko))
= e—5—-t+ak) —1+R2ky)—t—1+ (t+1—R(2ko))
> 1

using 6.4). If k= 3,5,7 mod 8, then
10 k=34
2R(K) = R(2k) + 4v(k — 1) + a(k) — @)
12 k=1 (4)

Then

2G(e,K) — G(e + 1, 2K)
= e+2-2(t—Rky))+ (t+1—R(2ko))
> e+3—-t+R(@2ko) —t—1+ (t+1—R(2Ko)) + 4v(ko — 1)+ (ko) — 12
> 0.

The situation when > e — 6 and the case of higher deviations are handled similarly.
Finally, we have

2G(e, 8¢ + 1) — G(e + 1, 16( + 2)

> 2(G(e, 8¢) + 6) — G(e+ 1,160) — (G(e + 1,16( + 1) — G(e + 1, 160))
—(G(e+ 1,160 + 2) — G(e + 1, 16( + 1))

> 124+0-8—(-1)

> 0.
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Finally, we verify part (2) oR.1Q We have
g(e k) = 8k — G(e, k) > 8k — S(K) > 13[K£1] — 2a(k) — 10.
Thisis > 4k+4 for k > 7, while fork < 7 we verify directly that 8 — S(k) > 4k + 4.

6 A bound for geometric dimension of normal bundle

In this section, we prove the following key result, a main ingredient in the proof of our
geometric dimension result,11, which has already been seen to imply our immersion
theorem.

Theorem 6.1 If e> 7 andt > 1 andkg + - - - + ke_1 = 2673 — 1, then
-1

(6.2) > Gle+ik)>e-2

i=0

Remark 6.3 The integers; in this theorem are nonnegative, but possibly zero. Some
examples in which equality is obtained are

o G(e,2673-1);

o G(e,26% - 1)+ G(e+1,257%;

e G(e,2°°—1)+G(e+1,3-2°9;

o G(e3-2°5-1)+G(e+1,2°%);

o G(626°—1)+G(e+1,2°° + G(e+ 2,264,
e G(e, 2% — 1)+ G(e+ 1,0)+ G(e+ 2,2¢74).

Before proving the theorem, we provide the easy deducti@idf

Proof of 2.11 Froml6.1and 6.1), we obtain
t—1

(6.4) D oetik)<(2°-8)—(e-2)=2°-e-6.
i=0

Let e be fixed, and fot > 1 and 0< ¢ < 283 _ 1, et

t—1
ML 0 = max( S gle+ k) ot +ks = £).

i=0
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ThenM(t, /) = maxM(t—1,i)+gle+t—1,¢—i): 0<i < /). Using2.8 induction
ont, and2.10(6), we obtain that for alt and¢ < 26-3 — 1

gd((Z + -+ + 2571, 0) < M(t,0)

compatibly foralll. By (6.4), M(t, 26~3—1) < 2°—e—6. Since gdf, k) = gdnégkr7),
we obtain the conclusion @.11. H

The proof 016.1is expedited by the following lemma.

Lemma 6.5 Letd > 0. If G(e,i) < i) andG(e+ d,]) < §(j), then
G(e i) + G(e+d,j) > G(e,i +]).

Proof This follows exactly as in the proofs of Cases 1, 4, and’5.di and the proof
of 5.25 In those results, there was an extra 1 on the LHS, but the largemponents
here more than compensate for thatill

Remark 6.6 Lemma6.5is not always true whei®(—) is involved. For example, if
e> 15, thenG(e 2) + G(e+ 1,3) = 12 < 13 = G(e, 5).

Proof of 6.1 Let S denote the set of thode for which G(e + i, k) = Sk;). This
includes cases in whick = 0 ork; = 1. If S is empty, then the result follows by
induction from6.5, sinceG(e, 262 — 1) = e— 2. LetK = > kes ki- We split the
LHS of (6.2) as

(6.7) > _Gle+ik)+ ) Gle+ik).

keS kigS

Since, as is easily prove&(k) > 3k, the first half of 6.7) is > 3K, whilel6.5implies
that the second half ob(7) is

>Ge222-1-K) >e—6—1'(K+1)—D(e 23— 1—K),

whereD(—, —) denotes the deviation, i.e., the sumng]. Now the desired inequality
reduces to

(6.8) 3K > V/(K+1)+4+D(e 222 - 1—K).
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If K # 1,3, this inequality is true, usually with much to spare. Inddéd> /(K +
1)+4ifK#1,3,and
(6.9) 1K > D(e, 2273 — 1 - K).
To seel6.9), note that forD(e, k) to be positive due to a single deviation, thien=
2o + ko with t > R(kg) > ko, « odd, andD(e,k) = t — R(kg). For suchk, if
k=23_1_K,thenK > 2! — 1 — kg, and so the difference iw(O) is

> 3(2' = 1—ko) — (t — R(k)) = (5(2' = 1) — 1) + (R(ko) — 3k0) > 0,
and a similar analysis applies when multiple deviations are involved. Whenl, 3,
(6.9 is true if the LHS is replaced bK) =8. W
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