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Abstract. Let Mn,r denote the space of isometry classes of n-
gons in the plane with one side of length r and all others of length
1, and assume that 1 ≤ r < n− 3 and n− r is not an odd integer.
Using known results about the mod-2 cohomology ring, we prove
that its topological complexity satisfies TC(Mn,r) ≥ 2n− 6. Since

Mn,r is an (n− 3)-manifold, TC(Mn,r) ≤ 2n− 5. So our result is
within 1 of being optimal.

1. Statement of results

The topological complexity, TC(X), of a topological space X is, roughly, the num-

ber of rules required to specify how to move between any two points of X. A “rule”

must be such that the choice of path varies continuously with the choice of endpoints.

(See [3, §4].) We study TC(X) where X = Mn,r is the space of isometry classes of

n-gons in the plane with one side of length r and all others of length 1. (See, e.g., [7,

§9].) Here r is a real number satisfying 0 < r < n− 1, and n ≥ 4. Thus

Mn,r = {(z1, . . . , zn) ∈ (S1)n : z1 + · · ·+ zn−1 + rzn = 0}/O(2).

If we think of the sides of the polygon as linked arms of a robot, we might prefer the

space Mn,r, in which we identify only under rotation, and not also under reflection.

However, the cohomology algebra of Mn,r is better understood than that of Mn,r,

leading to better bounds on TC.

If r is a positive real number, then Mn,r is a connected (n − 3)-manifold unless

n− r is an odd integer (e.g., [7, p.314] or [9, p.2]), and hence satisfies

(1.1) TC(Mn,r) ≤ 2n− 5
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by [3, Cor 4.15].1 In this paper, we obtain the following strong lower bound for

TC(Mn,r).

Theorem 1.2. If r is a real number such that 1 ≤ r < n− 3 and n− r is not an odd

integer, then TC(Mn,r) ≥ 2n− 6.

This result is within 1 of being optimal, using (1.1).

If n − 3 < r < n − 1, then Mn,r is homeomorphic to real projective space

RP n−3, for which the topological complexity is 1 greater than the immersion di-

mension, a much-studied concept, but not yet completely determined. See, e.g.,

[5], [1], or [8]. In fact, there are often large gaps between the known upper and

lower bounds for TC(RP n−3)([2]). Theorem 1.2 also applies when 0 < r < 1 if

n is odd, while if n is even and 0 < r < 1, then, as pointed out by the referee,

H∗(Mn,r) ≈ H∗(Mn−1,1)[u]/u2, from which we can deduce TC(Mn,r) ≥ 2n− 7.

The proof of Theorem 1.2 relies on the mod 2 cohomology ring H∗(Mn,r;Z2), first

described in [7]. Throughout the paper, all cohomology groups have coefficients in

Z2, and all congruences are mod 2, unless specifically stated to the contrary. To prove

Theorem 1.2, we will find 2n−7 classes yi ∈ H1(Mn,r) such that
∏

(yi⊗1+1⊗yi) 6= 0

in Hn−3(Mn,r)⊗Hn−4(Mn,r). This implies the theorem by the basic result that if in

H∗(X)⊗H∗(X) there is an m-fold nonzero product of classes of the form yi⊗1+1⊗yi,
then TC(X) ≥ m + 1.([3, Cor 4.40]) We show at the end of the paper that our

cohomology result for Mn,r is optimal, in that (2n−6)-fold products of (yi⊗1+1⊗yi)
are always 0. Thus we will have proved the following result. (See [3] or [4] for the

definition.)

Theorem 1.3. If 1 ≤ r < n − 3 and n − r is not an odd integer, the zero-divisors-

cup-length of H∗(Mn,r) equals 2n− 7.

2. Proof

In this section we prove Theorems 1.2 and 1.3. By [6, 6.2], if, for an integer k,

n − 2k − 1 < r < n − 2k + 1, then Mn,r is diffeomorphic to Mn,n−2k, and so we

1If n − r is an odd integer, Mn,r is often not a manifold but still satisfies

TC(Mn,r) ≤ 2n− 5, by [4, Theorem 4]. However, its cohomology algebra is not so
well understood in this case, and so we do not study it here.



TOPOLOGICAL COMPLEXITY OF SOME PLANAR POLYGON SPACES 3

restrict our discussion to the latter spaces. We begin by stating our interpretation of

the cohomology ring H∗(Mn,n−2k).

Theorem 2.1. Let k ≥ 1 and n > 2k.

(1) The algebra H∗(Mn,n−2k) is generated by classes R, V1, . . . , Vn−1

in H1(Mn,n−2k).

(2) The product of k distinct Vi’s is 0.

(3) If d ≤ n − 3 and S ⊂ {1, . . . , n − 1} has |S| < k, then all

monomials Re0
∏
i∈S

V ei
i with ei > 0 for i ∈ S and

∑
i≥0

ei = d

are equal. We denote this class by TS,d. This includes the class

T∅,d = Rd.

(4) For every subset L of {1, . . . , n− 1} with n− k ≤ |L| ≤ d + 1,

there is a relation RL,d which says∑
S⊂L

TS,d = 0.

These are the only relations, in addition to those previously

described.

Proof. In [9, Theorem 1], the more general result proved in [7, Corollary 9.2] is applied

to Mn,n−2k. The first three parts of our theorem are immediate from the result stated

there, although our TS,d notation is new. The relations stated in [9] are in the form

of an ideal, whereas we prefer to make a listing of a basic set of relations. The result

of [9] says that the relations in H∗(Mn,n−2k) comprise the ideal generated by our

relations RL,|L|−1 with n − k ≤ |L| ≤ n − 2. Multiplying by various Rt give all our

relations RL,d. Additional relations in the ideal can be obtained by multiplying RL,d

by V`. If ` 6∈ L, this equals our RL∪{`},d+1 −RL,d+1, while if ` ∈ L, it equals 0.

Most of our proofs also utilize the following key result, which was proved as [9,

Theorem B].

Lemma 2.2. There is an isomorphism φ1 : Hn−3(Mn,n−2k)→ Z2 satisfying φ1(TS,n−3) =(
n−2−|S|
k−1−|S|

)
.

We begin our work with a useful lemma.
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Lemma 2.3. There is a homomorphism

φ2 : Hn−4(Mn,n−2k)→ Z2

satisfying φ2(TS,n−4) =
(
n−2−|S|
k−1−|S|

)
.

Proof. We must show that φ2 sends each of the relations RL,n−4 to 0. If |L| = `, then

φ2(RL,n−4) =
k−1∑
i=0

(
`
i

)(
n−2−i
k−1−i

)
=
∑
i

(
`
i

)(−n+k
k−1−i

)
=
(
`−n+k
k−1

)
.

Since n− k ≤ ` ≤ n− 3, we have 0 ≤ `− n+ k ≤ k − 3, and so
(
`−n+k
k−1

)
= 0.

To prove Theorem 1.2, we will find 2n − 7 classes yi ∈ H1(Mn,n−2k) such that∏
(yi ⊗ 1 + 1⊗ yi) 6= 0 in Hn−3(Mn,n−2k)⊗Hn−4(Mn,n−2k). There will be four cases,

Theorems 2.5, 2.11, 2.12, and 2.17. All of them use the following notation, which

pervades the rest of the paper.

Notation 2.4. Let t ≥ 0 and k = 2t + k0, 1 ≤ k0 ≤ 2t, and n = k + 1 + 2tB + D

with 0 ≤ D < 2t and B ≥ 1. Let C = k0 +D − 1. Then n = 2t(B + 1) + C + 2.

Every pair (k, n) with k ≥ 2 and n > 2k yields unique values of t, k0, B, and D.

Theorem 2.5. Let B be odd and

P = (V1 ⊗ 1 + 1⊗ V1)2t(B+1)−1 ·
C∏

(Vi ⊗ 1 + 1⊗ Vi)

·
C∏

(Vi ⊗ 1 + 1⊗ Vi)2 · (R⊗ 1 + 1⊗R)2t(B+1)−C−2.(2.6)

If P1 denotes the component of P in H2t(B+1)+C−1(Mn,n−2k)⊗H2t(B+1)+C−2(Mn,n−2k),

then (φ1 ⊗ φ2)(P1) 6= 0 ∈ Z2.

The product notation here, which will be continued throughout the paper, means

a product of C distinct factors with subscripts distinct from other subscripts involved

elsewhere in the expression. Since P has 2n−7 factors, Theorem 2.5 implies Theorem

1.2 when B is odd.

Proof. Since B is odd, the third case of Lemma 2.9 applies. Note that (Vi ⊗ 1 + 1⊗
Vi)

2 = V 2
i ⊗ 1 + 1⊗ V 2

i , and that there are 2C factors of this form or Vi ⊗ 1 + 1⊗ Vi
in the middle of P . When P is expanded, the only terms T for which (φ1 ⊗ φ2)(T )
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might possibly be nonzero are those containing exactly C of these Vi or V 2
i on each

side of the ⊗ accompanied by a nontrivial contribution from the V1-part. (This uses

Lemmas 2.2, 2.3, and 2.9.) Such a term T which contains j of the Vi’s (i > 1) (and

(C − j) V 2
i ’s) on the left side of ⊗ will be of the form

(2.7)(
2t(B+1)−1

e

)(
2t(B+1)−C−2

2t(B+1)−C−1+j−e

)
V e

1 Vi1 · · ·VijV 2
ij+1
· · ·V 2

iC
R2t(B+1)−C−1+j−e⊗Q,

where Q is the complementary factor. Here we must have 0 < e < 2t(B + 1)− 1, in

order that there are C + 1 distinct Vi factors (including V1) on both sides of ⊗. For

this choice of (i1, . . . , iC), let W denote the sum of all such terms as e varies, with

i1, . . . , iC fixed. Then

(φ1 ⊗ φ2)(W ) =

2t(B+1)−2∑
e=1

(
2t(B+1)−1

e

)(
2t(B+1)−C−2

2t(B+1)−C−1+j−e

)
≡

(
2t+1(B+1)−C−3
2t(B+1)−C−1+j

)
+
(

2t(B+1)−C−2
2t(B+1)−C−1+j

)
+
(

2t(B+1)−C−2
−C+j

)
.(2.8)

The first of the three terms in the last line is what the sum would have been if the

terms with e = 0 and e = 2t(B + 1) − 1 were included, while the other two terms

are the two omitted terms. Mod 2, the first binomial coefficient is 0 by Lemma 2.10,

since the case with B = 1 and C = 2t+1 − 2 does not satisfy n > 2k. The second

binomial coefficient in (2.8) is 0 because its bottom part is greater than its top, and

the third is 0 unless j = C. Thus there is a unique2 W , namely

W =

2t(B+1)−2∑
e=1

ceV
e

1

( C∏
Vi
)
R2t(B+1)−e−1 ⊗ V 2t(B+1)−1−e

1

( C∏
V 2
i

)
Re−C−1,

with ce =
(

2t(B+1)−1
e

)(
2t(B+1)−C−2
2t(B+1)−1−e

)
, for which φ(W ) = 1, establishing the claim in this

case.

The following lemmas were used above.

2The uniqueness refers to the choice of which squared terms appear on the left
side of ⊗ in (2.7), given the choice of i’s in (2.6). The choice of which values of i
occur in (2.6) is arbitrary, and far from unique.
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Lemma 2.9. In the notation of 2.4,(
n− 2− i
k − 1− i

)
≡


1 i = C + 1

0 k0 ≤ i ≤ C

0 0 ≤ i ≤ C if B is odd.

Proof. We have
(
n−2−i
k−1−i

)
=
(
n−2−i
2tB+D

)
with 0 ≤ D < 2t. If i = C + 1, then n − 2 − i =

2tB + 2t − 1, and so the binomial coefficient is odd by Lucas’s Theorem, which we

will often use without comment. Decreasing i by 1, . . . , D increases the top of the

binomial coefficient by that amount, yielding
(

2t(B+1)+j
2tB+D

)
with 0 ≤ j < D. Such

a binomial coefficient is even. If B is odd, decreasing i even more will leave the

binomial coefficient even, as it will be either
(
B+1
B

)(
j
D

)
with j ≥ D or

(
B+2
B

)(
j
D

)
with

j ≤ C − 2t < D.

Lemma 2.10. If 0 ≤ C ≤ 2t+1 − 2 and 0 ≤ j ≤ C, then, mod 2,(
2t+1(B + 1)− C − 3

2t(B + 1)− C − 1 + j

)
≡

{
1 if B is a 2-power and C = 2t+1 − 2

0 otherwise.

Proof. If C = 2t+1 − 2, then the binomial coefficient is
(

2t+1B−1
2tB+∆

)
with |∆| < 2t. For

∆ = 0 this is odd iff B is a 2-power, as is easily seen using Lucas’s Theorem. If the

bottom part of the binomial coefficient is changed from ∆ = 0 by an amount less than

2t, the binomial coefficient is multiplied by p/q with p and q equally 2-divisible. If

C = 2t+1− 3, then the binomial coefficient is of the form
(

2t+1B
2tB+∆

)
with |∆| < 2t. This

is even for all B, similarly to the previous case. For smaller values of C, the result

follows by induction on (decreasing) C, using Pascal’s formula. Here it is perhaps

more convenient to think of the binomial coefficient as
(

2t+1(B+1)−C−3
2t(B+1)−j−2

)
.

The case in which D = 0 and B is even is special because then (φ1⊗φ2)(M) = 1 for

every monomial M in Hn−3(Mn,n−2k) ⊗ Hn−4(Mn,n−2k), and so for any appropriate

product P , we have (φ1 ⊗ φ2)(P ) =
(

2n−7
n−3

)
= 0 (unless n − 3 is a 2-power.) So we

modify φ2.

Theorem 2.11. In the notation of 2.4, let B be even and D = 0. There is a

homomorphism

φ3 : Hn−4(Mn,n−2k)→ Z2
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defined by

φ3(TS,n−4) =

{
1 |S| < k − 1

0 |S| = k − 1.

If

P = (V1 ⊗ 1 + 1⊗ V1)n−3 ·
k−2∏

(Vi ⊗ 1 + 1⊗ Vi) · (R⊗ 1 + 1⊗R)n−k−2,

then (φ1 ⊗ φ3)(P ) = 1 ∈ Z2.

Proof. To prove that φ3 is well-defined, we must show that for n− k ≤ ` ≤ n− 3, we

have
k−2∑
i=0

(
`
i

)
≡ 0. Then 2tB < ` ≤ 2tB + k − 2. Since B is even and k ≤ 2t+1, the

2tB does not affect the binomial coefficient mod 2, and the sum becomes
k−2∑
i=0

(
`
i

)
for

0 < ` ≤ k − 2, and this equals 2`.

Since φ1(M) = 1 for every monomial in Hn−3(Mn,n−2k), (φ1 ⊗ φ3)(P ) equals the

sum of coefficients in

(1 + V1)n−3 ·
k−1∏
i=2

(1 + Vi) · (1 +R)n−k−2

of all monomials of degree n − 4 which are not divisible by V1 · · ·Vk−1. This equals

S1− (S2−S3), where S1 is the sum of all coefficients in degree n− 4, S2 is the sum of

coefficients of terms divisible by V2 · · ·Vk−1, and S3 is the sum of coefficients of terms

divisible by V2 · · ·Vk−1 but not also by V1. Then S1 =
(

2n−7
n−4

)
≡ 0 since n− 3 cannot

be a 2-power here. Also S2 =
(

2n−5−k
n−4−(k−2)

)
=
(

2t+1B+k−3
2tB−1

)
≡ 0 since k ≤ 2t+1. Finally

for S3 the only monomial is V2 · · ·Vk−1R
n−2−k, so S3 = 1.

Let lg(−) = [log2(−)].

Theorem 2.12. Theorem 2.5 is true if B is even and C − 2lg(C) < 21+lgD.

The first few cases of this hypothesis are (D = 1 and C ∈ {2e, 2e + 1}) and

(D ∈ {2, 3} and C ∈ {2e, 2e + 1, 2e + 2, 2e + 3}).

Proof. We consider first the portion P2 of the expansion of P which has V
2t(B+1)−1

1

on the left side of ⊗. If j (resp. g) denotes the number of other Vi’s (resp. V 2
i ’s) on
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the left side of ⊗, then (φ1 ⊗ φ2)(P2) equals

(2.13)
C∑

j,g=0

(
C
j

)(
C
g

)(
2t(B+1)−1+C−j−g

2tB+C+1−k0

)(
2t(B+1)−(C−j−g)

2tB+C+1−k0

)(
2t(B+1)−C−2

C−j−2g

)
.

The third and fourth factors here are from φ1(−) and φ2(−), which satisfy

φ1(TS,n−3) = φ2(TS,n−4) =
(

2t(B+1)+C−|S|
2t+k0−1−|S|

)
=
(

2t(B+1)+C−|S|
2tB+C+1−k0

)
.

These two factors in our sum are of the form
(

2t(B+1)−1+∆
2tB+D

)(
2t(B+1)−∆

2tB+D

)
with −C ≤

∆ ≤ C and 1 ≤ D ≤ 2t − 1. In positions less than 2t, the top parts of these two

binomial coefficients differ in every position of their binary expansions, and so, due

to any position where D has a 1, one of the factors will be even. Thus (2.13) is 0 in

Z2. A similar argument works for the portion of the sum in which V
2t(B+1)−1

1 is on

the right side of ⊗.

Arguing similarly to (2.8), it remains to show that the following sum is 1 mod 2.

C∑
j,g=0

(
C
j

)(
C
g

)(
2t(B+1)+C−j−g−1

2tB+D

)(
2t(B+1)−1−C+j+g

2tB+D

)
(2.14)

·
((

2t+1(B+1)−C−3
2t(B+1)+C−1−j−2g

)
+
(

2t(B+1)−C−2
2t(B+1)+C−1−j−2g

)
+
(

2t(B+1)−C−2
C−j−2g

))
.(2.15)

Let ` = lg(D). Note that t ≥ `+1. Keep in mind that B is even. It is easy to check

that there is a nonzero summand due to the third term of (2.15) if (j, g) = (C, 0), and

one due to the first term of (2.15) if t = `+1, D = 2`+1−1, j+g = C = 2`+2−2 with

j even and 0 ≤ j ≤ C, and B is a 2-power. The proof will be completed by showing

that other terms are nonzero iff C = 2`+2 − 1, t ≥ `+ 2, and |C − j − g| = 2`+1. The

result will follow, as the total number of nonzero terms is odd in any case.

It is also easy to check that the terms of the third type give nonzero summands.

For example, let ` = 2, so we have D ∈ {4, 5, 6, 7}, C = 15, and j + g = 7 or 23.

Then 7 ≤ j+ 2g ≤ 14 in the first case, and, since j, g ≤ 15, we have 31 ≤ j+ 2g ≤ 38

in the second case. Also t ≥ 4 and B is even. The latter two factors in (2.14) are(
2t(B+1)−1±8

2tB+D

)
≡ 1. Of the three terms in (2.15), the first will be even since it is either(

2t+1B+α
2tB+β

)
with 0 < α < 2t+1 and 0 < β < 2t, or

(
32B+14
16B−γ

)
with 1 ≤ γ ≤ 8. When

j+g = 7, the second summand in (2.15) has bottom greater than top, while the third

is of the form
(

16A+15
b

)
with 1 ≤ b ≤ 8, hence is odd. When j + g = 23, the second
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summand is of the form
(

16A+15
16A+c

)
with 8 ≤ c ≤ 15, while the third has its bottom part

negative.

Now we show that all other terms in (2.14)-(2.15) are 0. Let t ≥ ` + 1, 2e ≤ C <

2e + 2`+1 with e ≤ t. We will show

(1) If

P0 =
(
C
j

)(
C
g

)(
2t(B+1)+C−j−g−1

2tB+D

)(
2t(B+1)−1−C+j+g

2tB+D

)
then P0 is odd iff

(
C
j

)
and

(
C
g

)
are odd and C − j − g ≡ 0 mod

2`+1 and |C − j − g| < 2t.

(2) In the cases just noted where P0 is odd,

(2.16)
(

2t+1(B+1)−C−3
2t(B+1)+C−1−j−2g

)
≡
(

2t(B+1)−C−2
2t(B+1)+C−1−j−2g

)
≡
(

2t(B+1)−C−2
C−j−2g

)
≡ 0

except in the cases noted in the paragraph following (2.14)-

(2.15).

To prove (1), let E = C − j − g. Then −C ≤ E ≤ C, but by symmetry, it suffices

to consider 0 ≤ E ≤ C < 2t+1. It is easy to see that E − 1 and −E − 1 both have

a 1 in the 2`-position iff E ≡ 0 mod 2`+1. Since D has a 1 in the 2`-position, P0 is

even unless E ≡ 0 mod 2`+1. Letting E = 2`+1E ′, and removing the lower parts (i.e.,

< 2`+1) of the binomial coefficients, in order that P0 be odd, we need for(
2t(B + 1) + 2`+1(E ′ − 1)

2tB

)(
2t(B + 1)− 2`+1(E ′ + 1)

2tB

)
to be odd. If 2`+1E ′ ≥ 2t, the second binomial coefficient is 0. Otherwise, 2`+1(E ′ +

1) ≤ 2t, and then both binomial coefficients are odd.

For (2), we first study how the middle coefficient in (2.16) can be odd. If t = `+ 1,

then C − j − g = 0, and the binomial coefficient is 0 since its bottom part is greater

than the top. Now assume t ≥ ` + 2. Let C − j − g = −2`+1K. The binomial

coefficient becomes
(

2t(B+1)−C−2
2`+2K−j−1

)
. For this to be odd, in positions < 2`+2 the 1’s in

(the binary expansion of) (C+ 1) must be contained in those of j. For
(
C
j

)
to be odd,

the 1’s of j must be contained in those of C. The only way that the 1’s of (C + 1)

can be contained in those of C in these positions is if C + 1 ≡ 0 mod 2`+2. Since

C − 2lgC < 2`+1, the only such C is 2`+2 − 1. Since −2`+2 < C − j − g < 0, we must

have C− j− g = −2`+1. Thus the only ways the middle coefficient of (2.16) can yield

a nonzero value are those listed earlier.



10 DONALD M. DAVIS

The third coefficient in (2.16) is handled similarly. If t = `+1, then C−j−g = 0 and

g = 0, yielding a claimed condition. Now assume t ≥ `+ 2. Let C − j − g = 2`+1K.

The binomial coefficient becomes
(

2t(B+1)−C−2
2t(B+1)−2`+2K−j−2

)
. For this and

(
C
j

)
to both be

odd, either C + 1 ≡ 0 mod 2`+2 or j ≡ C mod 2`+2. The former condition reduces

to C = 2`+2 − 1, C − j − g = 2`+1 similarly to the previous case. For the latter, if

C = j, then g = 0 and we obtain one of the claimed conditions. Otherwise, write

C = 2e + ∆ with 0 ≤ ∆ < 2min(e,`+1). Then we must have e ≥ `+ 2 and j = ∆, and,

since g ≡ 0 mod 2`+1 and
(
C
g

)
is odd, we must have g = 0 or 2e, neither of which

make
(

2t(B+1)−C−2
C−j−2g

)
odd, since e < t .

For the first coefficient in (2.16), we first consider the situation when t = ` + 1.

Then C−j−g = 0 and the coefficient equals
(

2`+2(B+1)−C−3
2`+1(B+1)−2−j

)
. For this and

(
C
j

)
to both

be odd, we must have C ≡ −ε mod 2`+1 with ε ∈ {1, 2}, and j even. If C = 2`+1− ε,
then the coefficient is

(
2`+2B+α
2`+1B+β

)
, with 0 ≤ α, β < 2`+1, and thus is even, due to

(
2B
B

)
.

If C = 2`+2− 2 (its largest possible value) and B is not a 2-power, the coefficient can

be written as
(

2ν+1(2A+1)−1
2ν(2A+1)+∆

)
with A > 0 and 0 ≤ ∆ < 2ν , which is even since it splits

as
(

2ν+2A
2ν+1A

)(
2ν+1−1
2ν+∆

)
.

If t ≥ `+ 2, let C − j − g = 2`+1K and write the coefficient as
(

2t+1(B+1)−C−3
2t(B+1)−2−2`+2K−j

)
.

For both this and
(
C
j

)
to be odd, we must have C ≡ −1 or −2 mod 2`+2 and j even.

Since C − 2lgC < 2`+1, this implies C = 2`+2 − 1 or 2`+2 − 2. The top part of the

binomial coefficient splits as 2t+1B + (2t+1 − 2`+2 − ε). Since |2`+1K| ≤ C, then

|2`+1K| ≤ 2`+1. Thus the bottom of the binomial coefficient is 2tB + α with

2t − 2`+3 ≤ α ≤ 2t + 2`+2 − 2.

Since B is even, the binomial coefficient, mod 2, splits as
(

2t+1B
2tB

)(
2t+1−2`+2−ε

α

)
≡ 0 if

0 ≤ α < 2t+1. This is true if t > ` + 2 or (t = ` + 2 and α ≥ 0). If t = ` + 2 and

α < 0, then the binomial coefficient is 0 by consideration of position 2`+2.

The final case for Theorem 1.2 is
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Theorem 2.17. In the notation of 2.4, and with ` = lgD, if B is even and C−2lgC ≥
2`+1, let C = 2`+1A+ γ with 0 ≤ γ < 2`+1, and m = 2t(B + 1) + 2`+1A− 1. If

P = (V1 ⊗ 1 + 1⊗ V1)m ·
C∏

(Vi ⊗ 1 + 1⊗ Vi)

·
C∏

(Vi ⊗ 1 + 1⊗ Vi)2 · (R⊗ 1 + 1⊗R)2n−7−m−3C ,(2.18)

then (φ1 ⊗ φ2)(P ) 6= 0 ∈ Z2.

Proof. Using the methods of our previous proofs, it suffices to prove that, under the

hypotheses, with ψ(i) =
(
n−2−i
k−1−i

)
, the following mod-2 equivalences are valid.

(1) For all j and g,(
C
j

)(
C
g

)
ψ(j + g)ψ(2C − j − g + 1)

(
2n−7−3C−m
n−3−j−2g

)
≡ 0

and(
C
j

)(
C
g

)
ψ(j + g + 1)ψ(2C − j − g)

(
2n−7−3C−m
n−3−j−2g−m

)
≡ 0.

(2) If
(
C
j

)(
C
g

)
ψ(j + g + 1)ψ(2C − j − g + 1) ≡ 1, then

(a)
(

2n−7−3C
n−3−j−2g

)
≡ 0;

(b)
(

2n−7−3C−m
n−3−j−2g

)
≡ 0;

(c)
(

2n−7−3C−m
n−3−j−2g−m

)
≡ 1 iff g = 0 and j = γ, in which case(

C
j

)(
C
g

)
ψ(j + g + 1)ψ(2C − j − g + 1) ≡ 1.

The proof of (1) is similar to that for the corresponding terms in the proof of

Theorem 2.12. The third and fourth factors will be of the form
(

2tα+x
2tβ+D

)
and

(
2tα−1−x
2tβ+D

)
with 0 < D < 2t. Their product is 0 mod 2 by the same reasoning as before.

The hypothesis of (2) implies C − j− g ≡ 0 mod 2`+1 and |C − j− g| < 2t, exactly

as in the proof of 2.12. Write C − j − g = 2`+1K with |2`+1K| < 2t.

Part (2a) is like the first coefficient of (2.16) except that the constraint on C−2lgC

is different. The argument when t = ` + 1 is the same, since the constraint did not

occur in that argument. So now assume t ≥ ` + 2 and write the binomial coefficient

as
(

2t+1(B+1)−C−3
2t(B+1)−2−2`+2K−j

)
. As before, for both this and

(
C
j

)
to be odd, we must have

C = 2`+2Y −ε with ε ∈ {1, 2}. We cannot have C = 2t+1−2 (which implies D = 2t−1)

because of the assumption that C − 2lgC ≥ 21+lgD. Thus 2`+2Y ≤ 2t+1 − 2`+2. We

have 2`+1K = 2t− 2`+1− p with p ≥ 0, and then j ≤ 2`+2Y − ε− (2t− 2`+1− p), and
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hence

2`+2K + j ≤ 2t − 2`+1 + 2`+2Y − ε.
On the other hand, 2`+1K ≥ −(2t − 2`+1), and j ≥ −(C − j − g) = −2`+1K, so we

have

2`+2K + j ≥ 2`+1K ≥ −2t + 2`+1.

Letting B = 2B′, the binomial coefficient becomes
(

2t+2B′+2t+1−2`+2Y−3+ε
2t+1B′+x

)
with

2`+1 − 2`+2Y + ε− 2 ≤ x ≤ 2t+1 − 2`+1 − 2.

If x ≥ 0, this binomial coefficient splits, and is 0 due to
(

2t+2B′

2t+1B′

)
. If x < 0, the binomial

coefficient splits as(
2t+2B′

2t+1(B′ − 1)

)(
2t+1 − 2`+2Y − 3− ε

2t+1 + x

)
,

which is 0 since the second factor has bottom part greater than the top.

To prove (2b), with C, A, and γ as in the statement of the theorem, the binomial

coefficient here is
(
p
q

)
with p = 2t(B+1)−2−C−2`+1A and q = 2t(B+1)−1+C−j−2g.

Then q − p = 2(C − j − g) + j + 2`+1A + 1. Since C − j − g ≥ −C and is a

multiple of 2`+1, C − j − g ≥ −2`+1A. Similarly to the previous case, this implies

2(C − j − g) + j ≥ −2`+1A. Thus q − p > 0 and
(
p
q

)
= 0.

Finally, for (2c), the binomial coefficient becomes
(

2t(B+1)−2−C−2`+1A
γ−j−2g

)
. For this to

be nonzero, we must have j + 2g ≤ γ. But j + g ≡ γ mod 2`+1, and so we must have

g = 0 and j = γ, in which case the binomial coefficient equals 1. Clearly
(
C
j

)(
C
g

)
≡ 1.

Also, ψ(j + g + 1) = ψ(γ + 1) =
(

2t(B+1)+2`+1A−1
2tB+D

)
≡ 1 and ψ(2C − j − g + 1) =

ψ(2C − γ + 1) =
(

2t(B+1)−2`+1A−1
2tB+D

)
≡ 1. These use the fact that, since D ≤ 2`+1 − 1,

C ≤ 2t + 2`+1 − 2, and hence 2`+1A ≤ 2t.

We close by showing that all (2n − 6)-fold products P of elements of the form

(y ⊗ 1 + 1 ⊗ y) in H∗(Mn,n−2k ×Mn,n−2k) are zero. This will complete the proof of

Theorem 1.3. First note that all such products are invariant under the involution

that interchanges factors. If m1 and m2 are monomials of degree n−3 in the Vi’s and

R, then m1⊗m2 +m2⊗m1 = 0 since mi equals either 0 or the unique nonzero class.

Thus it suffices to show that the coefficient of any TS,n−3⊗TS,n−3 in P is 0. We prove
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this by induction on |S|. Note that the factors which we must consider are not just

those of the form (Vi ⊗ 1 + 1⊗ Vi) and (R⊗ 1 + 1⊗R), but also sums of these.

The coefficient of Rn−3 ⊗ Rn−3 in P is 0 if P contains any factors which do not

contain terms (R⊗ 1 + 1⊗R), while if all factors contain such terms, it is
(

2n−6
n−3

)
≡ 0.

This initiates the induction, as |S| = 0 here. Assume that all terms TS′,n−3 ⊗ TS′,n−3

in any product P are 0 if |S ′| < s. Let S be a subset with |S| = s. In P , we may omit

all terms (Vi ⊗ 1 + 1⊗ Vi) for which i 6∈ S. If this omission makes any of the factors

become 0, then the coefficient of TS,n−3 ⊗ TS,n−3 is 0. Otherwise, by the induction

hypothesis, the coefficient of all TS′,n−3⊗TS′,n−3 with S ′ a proper subset of S is 0, and

since the sum of all coefficients in Hn−3(Mn,n−2k) ⊗Hn−3(Mn,n−2k) is
(

2n−6
n−3

)
, which

is even, the coefficient of the remaining term TS,n−3 ⊗ TS,n−3 must also be 0.
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