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Abstract. We use methods of combinatorial number theory to
prove that, for each n ≥ 2 and any prime p, some homotopy group
πi(SU(n)) contains an element of order pn−1+ordp(bn/pc!), where
ordp(m) denotes the largest integer α such that pα | m.

1. Introduction

Let p be a prime number. The homotopy p-exponent of a topological space X,

denoted by expp(X), is defined to be the largest e ∈ N = {0, 1, 2, . . . } such that

some homotopy group πi(X) has an element of order pe. This concept has been

studied by various topologists (cf. [12], [10], [15], [3], [4], [5], [14], [18], and [19]).

The most celebrated result about homotopy exponents (proved by Cohen, Moore,

and Neisendorfer in [3]) states that expp(S
2n+1) = n if p 6= 2.

The special unitary group SU(n) (of degree n) is the space of all n × n unitary

matrices (the conjugate transpose of such a complex matrix equals its inverse) with

determinant one. (See, e.g., [11, p. 68].) It plays a central role in many areas of math-

ematics and physics. The famous Bott Periodicity Theorem ([2]) describes πi(SU(n))

with i < 2n. In this paper, we provide a strong and elegant lower bound for the

homotopy p-exponent of SU(n).

As in number theory, the integral part of a real number c is denoted by bcc. For a

prime p and an integer m, the p-adic order of m is given by ordp(m) = sup{n ∈ N :

pn | m} (whence ordp(0) = +∞).

Here is our main result.
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Theorem 1.1. For any prime p and n = 2, 3, . . . , some homotopy group πi(SU(n))

contains an element of order pn−1+ordp(bn/pc!); i.e., we have the inequality

expp(SU(n)) ≥ n− 1 + ordp

(⌊
n

p

⌋
!

)
.

We discuss in Section 2 the extent to which Theorem 1.1 might be sharp.

Our reduction from homotopy theory to number theory involves Stirling numbers

of the second kind. For n, k ∈ N with n+k ∈ Z+ = {1, 2, 3, . . . }, the Stirling number

S(n, k) of the second kind is the number of partitions of a set of cardinality n into

k nonempty subsets; in addition, we define S(0, 0) = 1. We will use the following

definition.

Definition 1.2. Let p be a prime. For k, n ∈ Z+ with k ≥ n, we define

ep(n, k) = min
m≥n

ordp(m!S(k, m)).

In Sections 2 and 4 we prove the following standard result.

Proposition 1.3. Let p be a prime, and let n ∈ Z+. Then, for all k ≥ n, we have

expp(SU(n)) ≥ ep(n, k) unless p = 2 and n ≡ 0 (mod 2), in which case exp2(SU(n)) ≥
e2(n, k)− 1.

Our innovation is to extend previous work ([16]) of the second author in combina-

torial number theory to prove the following result, which, together with Proposition

1.3, immediately implies Theorem 1.1 when p or n is odd. In Section 4, we explain

the extra ingredient required to deduce Theorem 1.1 from 1.3 and 1.4 when p = 2

and n is even.

Theorem 1.4. Let p be any prime and n be a positive integer.

(i) For any α, h, l, m ∈ N, we have

ordp

(
m!

l∑

k=0

(
l

k

)
(−1)kS (kh(p− 1)pα + n− 1, m)

)

≥ min

{
l(α + 1), n− 1 + ordp

(⌊
m

p

⌋
!

)}
.
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(ii) If we define N = n− 1 + bn/(p(p− 1))c, then

ep

(
n, (p− 1)pL + n− 1

)
≥ n−1+ordp

(⌊
n

p

⌋
!

)
for L = N, N+1, . . . .

In Section 3, we prove the following broad generalization of Theorem 1.4, and in

Section 2, we show that it implies Theorem 1.4.

Theorem 1.5. Let p be a prime, α, n ∈ N and r ∈ Z. Then for any polynomial

f(x) ∈ Z[x] we have

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)kf

(
k − r

pα

) )
≥ ordp

(⌊
n

pα

⌋
!

)
.

Here we adopt the standard convention that
(

n
k

)
is 0 if k is a negative integer.

In Theorem 5.1, we give a strengthened version of Theorem 1.5, which we conjecture

to be optimal in a certain sense. Our application to topology uses the case r = 0 of

Theorem 1.5; the more technical Theorem 5.1 yields no improvement in this case.

In [5], the first author used totally different, and much more complicated, methods

to prove that

expp(SU(n)) ≥ n− 1 +

⌊
n + 2p− 3

p2

⌋
+

⌊
n + p2 − p− 1

p3

⌋
,

(1.6)

where p is an odd prime and n is an integer greater than one. Since

ordp(m!) =
∞∑

i=1

⌊
m

pi

⌋
for every m = 0, 1, 2, . . .

(a well-known fact in number theory), the inequality in Theorem 1.1 can be restated

as

expp(SU(n)) ≥ n− 1 +
∞∑

i=2

⌊
n

pi

⌋
,

a nice improvement of (1.6).

2. Outline of proof

In this section we present the deduction of Theorem 1.1 from Theorem 1.5, which

will then be proved in Section 3. We also present some comments regarding the extent

to which Theorem 1.1 is sharp.

Let p be any prime. In [8], the first author and Mahowald defined the (p-primary)

v1-periodic homotopy groups v−1
1 π∗(X; p) of a topological space X and proved that if
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X is a sphere or compact Lie group, such as SU(n), each group v−1
1 πi(X; p) is a direct

summand of some actual homotopy group πj(X). See also [7] for another expository

account of v1-periodic homotopy theory.

In [6, 1.4] and [1, 1.1a], it was proved that if p is odd, or if p = 2 and n is odd,

then there is an isomorphism

v−1
1 π2k(SU(n); p) ∼= Z/pep(n,k)Z (2.1)

for all k ≥ n, where ep(n, k) is as defined in 1.2 and we use Z/mZ to denote the

additive group of residue classes modulo m. Thus, unless p = 2 and n is even, for

any integer k ≥ n, we have

expp(SU(n)) ≥ ep(n, k),

establishing Proposition 1.3 in these cases. The situation when p = 2 and n is even

is somewhat more technical, and will be discussed in Section 4.

Next we show that Theorem 1.5 implies Theorem 1.4.

Proof of Theorem 1.4. (i) By a well-known property of Stirling numbers of the second

kind (cf. [13, pp. 125-126]),

m!S(kh(p− 1)pα + n− 1,m) =
m∑

j=0

(
m

j

)
(−1)m−jjkh(p−1)pα+n−1

for any k ∈ N. Thus

(−1)mm!
l∑

k=0

(
l

k

)
(−1)kS(kh(p− 1)pα + n− 1, m) = Σ1 + Σ2,

where

Σ1 =
l∑

k=0

(
l

k

)
(−1)kpn−1+kh(p−1)pα ∑

j≡0 (mod p)

(
m

j

)
(−1)j

(
j

p

)n−1+kh(p−1)pα

and

Σ2 =
∑

j 6≡0 (mod p)

(
m

j

)
(−1)j

l∑

k=0

(
l

k

)
(−1)kjn−1+kh(p−1)pα

=
∑

j 6≡0 (mod p)

(
m

j

)
(−1)jjn−1

(
1− jh(p−1)pα

)l
.

Clearly ordp(Σ1) ≥ n − 1 + ordp(bm/pc!) by Theorem 1.5, and ordp(Σ2) ≥ l(α + 1)

by Euler’s theorem in number theory. Therefore the first part of Theorem 1.4 holds.
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(ii) Observe that

N + 1− (n− 1) >
n

p(p− 1)
=

∞∑

i=2

n

pi
>

∞∑

i=2

⌊
n

pi

⌋
= ordp

(⌊
n

p

⌋
!

)
.

By part (i) in the case l = h = 1 and α = L ≥ N , if m ≥ n then

ordp

(
m!S(n− 1,m)−m!S((p− 1)pL + n− 1, m)

)

≥ n− 1 + ordp

(⌊
n

p

⌋
!

)
.

Since S(n− 1,m) = 0 for m ≥ n, we finally have

ep(n, (p− 1)pL + n− 1) ≥ n− 1 + ordp

(⌊
n

p

⌋
!

)

as required.

The following proposition, although not needed for our main results, sheds more

light on the large exponents N and L which appear in Theorem 1.4(ii), and is useful

in our subsequent exposition.

Proposition 2.2. Let p be a prime and let n > 1 be an integer. Then there exists

an integer N0 ≥ 0, effectively computable in terms of p and n, such that ep(n, (p −
1)pL + n− 1) has the same value for all L ≥ N0.

Proof. For integers m ≥ n and L ≥ 0, we write

(−1)mm!S((p−1)pL+n−1,m) =
m∑

j=0

(
m

j

)
(−1)jj(p−1)pL+n−1 = Sm+S ′m,L+S ′′m,L,

where

Sm =
∑

j 6≡0 (mod p)

(
m

j

)
(−1)jjn−1,

S ′m,L =
∑

j 6≡0 (mod p)

(
m

j

)
(−1)jjn−1(j(p−1)pL − 1),

S ′′m,L =
∑

j≡0 (mod p)

(
m

j

)
(−1)jj(p−1)pL+n−1.

Note that both S ′m,L and S ′′m,L are divisible by pL+1.

Assume that Sn, Sn+1, . . . are not all zero. (This will be shown later.) Then

L0 = minm≥n ordp(Sm) is finite. Let m0 ≥ n satisfy ordp(Sm0) = L0. Whenever
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L ≥ L0, we have ordp(Sm + S ′m,L + S ′′m,L) ≥ L0 for every m ≥ n, and equality is

attained for m = m0. Thus, if L ≥ L0 then

ep(n, (p− 1)pL + n− 1) = min
m≥n

ordp(m!S((p− 1)pL + n− 1,m))

= min
m≥n

ordp(Sm + S ′m,L + S ′′m,L) = L0.

Although L0 is finite, it may not be effectively computable. Instead of L0 we use the

p-adic order N0 of the first nonzero term in the sequence Sn, Sn+1, . . . . This N0 is

computable, also ep(n, (p− 1)pL + n− 1) = L0 for all L ≥ N0 since N0 ≥ L0.

To complete the proof, we must show that Sm is nonzero for some m ≥ n. First note

that this is clearly true for p = 2 since then Sm is a sum of negative terms. If p is odd

and Sm = 0 for all m ≥ n, then ep(n, (p−1)pL +n−1) = minm≥n ordp(S
′
m,L +S ′′m,L) ≥

L + 1 for any L ≥ 0. By (2.1), this would imply that v−1
1 π∗(SU(n); p) has elements

of arbitrarily large p-exponent. However, this is not true, for in [6, 5.8], it was shown

that the v1-periodic p-exponent of SU(n) does not exceed e := b(n−1)(1+(p−1)−1 +

(p− 1)−2)c; i.e., for this e, pev−1
1 π∗(SU(n); p) = 0.

In the remainder of this section and in Section 4, once a prime p and an integer

n > 1 is given, L will refer to any integer not smaller than max{N,N0} where N and

N0 are described in Theorem 1.4(ii) and the proof of Proposition 2.2 respectively.

We now comment on the extent to which Theorem 1.1 might be sharp. In Table 1,

we present, for p = 3 and a representative set of values of n, three numbers. The first,

labelled exp3(v
−1
1 SU(n)), is the largest value of e3(n, k) over all values of k ≥ n; thus

it is the largest exponent of the 3-primary v1-periodic homotopy groups of SU(n).

The second number in the table is the exponent of the v1-periodic homotopy group

on which we have been focusing, which, at least in the range of this table, is equal

to or just slightly less than the maximal exponent. The third number is the nice

estimate for this exponent given by Theorem 1.4.

Note that, for more than half of the values of n in the table, the largest group

v−1
1 π2k(SU(n); 3) occurs when k = 2 · 3L + n − 1. In the worst case in the table,

n = 29, detailed Maple calculations suggest that if k ≥ 29 and k ≡ 10 (mod 18), then

e3(29, k) = min{ord3(k − 28− 8 · 320) + 12, 34}.
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Table 1. Comparison of exponents when p = 3

n exp3(v
−1
1 SU(n)) e3(n, 2 · 3L + n− 1) n− 1 + ord3(bn/3c!)

19 21 20 20
20 22 21 21
21 22 22 22
22 25 25 23
23 26 26 24
24 28 28 25
25 29 28 26
26 30 30 27
27 31 31 30
28 32 32 31
29 34 32 32
30 34 33 33
31 34 34 34
32 35 35 35
33 37 37 36
34 38 37 37
35 39 39 38
36 41 41 40
37 42 41 41
38 43 42 42
39 43 43 43
40 45 44 44
41 45 45 45

Shifts (as by 8 · 320) were already noted in [6, p. 543]. Note also that for more than

half of the cases in the table, our estimate for e3(n, 2 · 3L + n − 1) is sharp, and it

never misses by more than 3.

The big question for topologists, though, is whether the v1-periodic p-exponent

agrees (or almost agrees) with the actual homotopy p-exponent. The fact that they

agree for S2n+1 when p is an odd prime ([3], [10]) leads the first author to conjecture

that they will agree for SU(n) if p 6= 2, but we have no idea how to prove this.

Theriault ([18], [19]) has made good progress in proving that some of the first author’s

lower bounds for p-exponents of certain exceptional Lie groups are sharp.
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3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5, which we have already shown to imply

Theorem 1.1.

Lemma 3.1. Let p be any prime, and let α, n ∈ N and r ∈ Z. Then

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

)
≥ ordp

(⌊
n

pα−1

⌋
!

)
=

⌊
n

pα

⌋
+ordp

(⌊
n

pα

⌋
!

)
.

Proof. The equality is easy, for,

ordp

(⌊
n

pα−1

⌋
!

)
=

∞∑

i=1

⌊bn/pα−1c
pi

⌋
=

∞∑

j=α

⌊
n

pj

⌋

=

⌊
n

pα

⌋
+

∞∑

i=1

⌊bn/pαc
pi

⌋
=

⌊
n

pα

⌋
+ ordp

(⌊
n

pα

⌋
!

)
.

When α = 0 or n < pα−1, the desired inequality is obvious.

Now let α > 0 and m = bn/pα−1c ≥ 1. Observe that

ordp(m!) =
∞∑

i=1

⌊
m

pi

⌋
<

∞∑

i=1

m

pi
=

m

p

∞∑

j=0

1

pj
=

m

p
· 1

1− p−1
=

m

p− 1
.

Thus (p− 1) ordp(m!) ≤ m− 1, and hence

ordp(m!) ≤
⌊
m− 1

p− 1

⌋
=

⌊
n/pα−1 − 1

p− 1

⌋
=

⌊
n− pα−1

ϕ(pα)

⌋
,

where ϕ is Euler’s totient function. By a result of Weisman [21],

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

)
≥

⌊
n− pα−1

ϕ(pα)

⌋
.

(Weisman’s proof is complicated, but an easy induction proof appeared in [16].) So

we have the desired inequality.

Now we restate Lemma 2.1 of Sun [16], which will be used later.

Lemma 3.2. ([16]) Let m and n be positive integers, and let f(x) be a function from

Z to a field. Then, for any r ∈ Z, we have
n∑

k=0

(
n

k

)
(−1)kf

(⌊
k − r

m

⌋)
=

∑

k≡r(mod m)

(
n− 1

k

)
(−1)k−1∆f

(
k − r

m

)
,

where r = r − 1 + m and ∆f(x) = f(x + 1)− f(x).
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Lemma 3.3. Let m,n ∈ Z+ and r ∈ Z, and let f(x) be a complex-valued function

defined on Z. Then we have

∑

k≡r (mod m)

(
n

k

)
(−1)kf

(
k − r

m

)
− f

(⌊
n− r

m

⌋) ∑

k≡r (mod m)

(
n

k

)
(−1)k

= −
n−1∑

j=0

(
n

j

) ∑

i≡r (mod m)

(
j

i

)
(−1)i

∑

k≡rj (mod m)

(
n− j − 1

k

)
(−1)k∆f

(
k − rj

m

)
,

where rj = r − j + m− 1 and ∆f(x) = f(x + 1)− f(x).

Proof. Let ζ be a primitive mth root of unity. Clearly

m−1∑

s=0

ζ(k−r)s =





∑m−1
s=0 1 = m if k ≡ r (mod m),

1−ζ(k−r)m

1−ζk−r = 0 otherwise.

Thus
∑

k≡r (mod m)

(
n

k

)
(−1)kf

(
k − r

m

)

=
n∑

k=0

(
1

m

m−1∑

s=0

ζ(k−r)s

)(
n

k

)
(−1)kf

( ⌊
k − r

m

⌋ )
=

1

m

m−1∑

s=0

ζ−rscs,

where

cs =
n∑

k=0

(
n

k

)
(−ζs)kf

( ⌊
k − r

m

⌋ )
.

Observe that

cs =
n∑

k=0

(
n

k

)
((1− ζs)− 1)kf

( ⌊
k − r

m

⌋ )

=
n∑

k=0

(
n

k

)
k∑

j=0

(
k

j

)
(1− ζs)j(−1)k−jf

( ⌊
k − r

m

⌋ )

=
n∑

j=0

(
n

j

)
(1− ζs)j

n∑

k=j

(
n− j

k − j

)
(−1)k−jf

( ⌊
k − r

m

⌋ )

=
n∑

j=0

(
n

j

)
(1− ζs)j

n−j∑

k=0

(
n− j

k

)
(−1)kf

( ⌊
k − (r − j)

m

⌋ )
.

Applying Lemma 3.2, we find that

cs − (1− ζs)nf
(⌊

n− r

m

⌋)

=
n−1∑

j=0

(
n

j

)
(1− ζs)j

∑

k≡rj (mod m)

(
n− j − 1

k

)
(−1)k−1∆f

(
k − rj

m

)
.
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In view of the above, it suffices to note that

m−1∑

s=0

ζ−rs

m
(1− ζs)j =

j∑

i=0

(
j

i

)
(−1)i

m

m−1∑

s=0

ζs(i−r) =
∑

i≡r (mod m)

(
j

i

)
(−1)i.

This concludes the proof.

With help of Lemmas 3.1 and 3.3, we are able to prove the following equivalent

version of Theorem 1.5.

Theorem 3.4. Let p be a prime, and let α, l, n ∈ N. Then for any r ∈ Z we have

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l )
≥ ordp

(⌊
n

pα

⌋
!

)
.

Proof. We use induction on l.

In the case l = 0, the desired result follows from Lemma 3.1.

Now let l > 0 and assume the result for smaller values of l. We use induction on n

to prove the inequality in Theorem 3.4.

The case n = 0 is trivial. So we now let n > 0 and assume that the inequality

holds with smaller values of n. Observe that

∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l

=
∑

k≡r (mod pα)

((
n− 1

k

)
+

(
n− 1

k − 1

))
(−1)k

(
k − r

pα

)l

=
∑

k≡r (mod pα)

(
n− 1

k

)
(−1)k

(
k − r

pα

)l

− ∑

k′≡r−1 (mod pα)

(
n− 1

k′

)
(−1)k′

(
k′ − (r − 1)

pα

)l

.

In view of this, if pα does not divide n, then, by the induction hypothesis for n − 1,

we have

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l )

≥ ordp

(⌊
n− 1

pα

⌋)
= ordp

(⌊
n

pα

⌋)
.
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Below we let pα | n and set m = n/pα.

Case 1. r ≡ 0 (mod pα). In this case,

1

m!

∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k

pα
− r

pα

) (
k − r

pα

)l−1

=
n/pα

m!

∑

k≡r (mod pα)

(
n− 1

k − 1

)
(−1)k

(
k − r

pα

)l−1

−r/pα

m!

∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l−1

=
1

b(n− 1)/pαc!
∑

k≡r−1 (mod pα)

(
n− 1

k

)
(−1)k+1

(
k − (r − 1)

pα

)l−1

− r/pα

bn/pαc!
∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l−1

.

Thus, by the induction hypothesis for l − 1,

1

m!

∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l

is a p-integer (i.e., its denominator is relatively prime to p) and hence the desired

inequality follows.

Case 2. r 6≡ 0 (mod pα). Note that
∑

i≡r (mod pα)

(
0
i

)
(−1)i = 0. Also,

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

)
≥ ordp

(
n

pα−1
!

)
= m + ordp(m!)

by Lemma 3.1. Thus, in view of Lemma 3.3, it suffices to show that if 0 < j < n then

the p-adic order of

σj =

(
n

j

) ∑

i≡r (mod pα)

(
j

i

)
(−1)i

∑

k≡rj (mod pα)

(
n− j − 1

k

)
(−1)k∆f

(
k − rj

pα

)

is at least ordp(m!), where rj = r − j + pα − 1 and f(x) = xl.

Let 0 < j ≤ n− 1 and write j = pαs + t, where s, t ∈ N and t < pα. Note that
⌊

j

pα

⌋
= s and

⌊
n− j − 1

pα

⌋
=

⌊
m− s− t + 1

pα

⌋
= m− s− 1.
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Since ∆f(x) = (x+1)l−xl =
∑l−1

i=0

(
l
i

)
xi, by Lemma 3.1 and the induction hypothesis

with respect to l, we have

ordp(σj) = ordp

(
n

j

)
+ ordp

( ∑

i≡r (mod pα)

(
j

i

)
(−1)i

)

+ ordp

( ∑

k≡rj (mod pα)

(
n− j − 1

k

)
(−1)k∆f

(
k − rj

pα

) )

≥ ordp

(
n

j

)
+ (s + ordp(s!)) + ordp((m− s− 1)!)

= ordp

(
n

j

)
+ s + ordp(s!)− ordp

(
s∏

i=0

(m− i)

)
+ ordp(m!)

= ordp

(
pαm

pαs + t

)
− ordp

(
m

s

)
+ s− ordp(m− s) + ordp(m!).

When t = 0 (i.e., j = pαs) we have the stronger inequality

ordp(σj) ≥ ordp

(
pαm

pαs

)
− ordp

(
m

s

)
+ s + ordp(m!),

because

ordp

( ∑

k≡rj (mod pα)

(
n− j − 1

k

)
(−1)k∆f

(
k − rj

pα

) )

= ordp

( n−j∑

k=0

(
n− j

k

)
(−1)kf

( ⌊
k − (r − j)

pα

⌋ ))
(by Lemma 3.2)

= ordp

( pα−1∑

i=0

∑

k−(r−j)≡i (mod pα)

(
n− j

k

)
(−1)k

(
k − (r − j)− i

pα

)l)

≥ ordp

(
n− j

pα
!

)
= ordp((m− s)!)

(by the induction hypothesis with respect to n).

Observe that

ordp

(
pαm

pαs

)
=

α∑

i=1

(
pαm

pi
− pαs

pi
− pα(m− s)

pi

)

+
∞∑

i=α+1

( ⌊
pαm

pi

⌋
−

⌊
pαs

pi

⌋
−

⌊
pα(m− s)

pi

⌋ )

=
∞∑

i=1

( ⌊
m

pi

⌋
−

⌊
s

pi

⌋
−

⌊
m− s

pi

⌋ )
= ordp

(
m

s

)
.
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Thus, when t = 0 we have ordp(σj) ≥ s + ordp(m!) ≥ ordp(m!).

Define ordp(a/b) = ordp(a)− ordp(b) if a, b ∈ Z and a is not divisible by b. If t > 0

then

ordp

(
pαm

pαs + t

)
− ordp

(
m

s

)

= ordp

(
pαm

pαs+t

)
(

pαm
pαs

) = ordp
(pαs)!(pα(m− s))!

(pαs + t)!(pα(m− s)− t)!

= ordp
pα(m− s)

pαs + t
+ ordp

∏

0<i<t

pα(m− s)− i

pαs + i
.

For 0 < i < pα, clearly

ordp(p
α(m− s)− i) = ordp(p

αs + i) = ordp(i) < α.

Therefore, when 0 < t < pα we have

ordp

(
pαm

pαs + t

)
−ordp

(
m

s

)
= ordp(m−s)+α−ordp(p

αs+t) > ordp(m−s)

and hence ordp(σj) > s + ordp(m!) ≥ ordp(m!). This concludes the analysis of the

second case.

The proof of Theorem 3.4 is now complete.

Note that, in the proof of Theorem 3.4, the technique used to handle the first case

is of no use in the second case, and vice versa. Thus, the distinction of the two cases

is important.

Corollary 3.5. Let p be a prime, and let α, l, n ∈ N and r ∈ Z. Then we have

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
(k − r)/pα

l

))
≥ ordp

(⌊
n

pα

⌋
!

)
−ordp(l!).

Proof. Simply apply Theorem 1.5 with f(x) = l!
(

x
l

)
∈ Z[x].

4. Changes when p = 2 and n is even

When p = 2 and n is even, the relationship between v−1
1 π2k(SU(n); p) and ep(n, k)

(with k ≥ n) is not so simple as in (2.1). As described in [1] and [9], there is a spectral

sequence converging to v−1
1 π∗(SU(n); p) and satisfying E1, 2k+1

2 (SU(n)) ∼= Z/pep(n,k)Z.

If p or n is odd, the spectral sequence necessarily collapses and v−1
1 π2k(SU(n); p) ∼=
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E1, 2k+1
2 . (Here we begin abbreviating E∗, ∗

r (SU(n)) just as E∗, ∗
r .) If p = 2 and n is

even, there are two ways in which the corresponding summand of v−1
1 π2k(SU(n); 2)

may differ from this.

It is conceivable that there could be an extension in the spectral sequence, which

would make the exponent of the homotopy group 1 larger than that of E1, 2k+1
∞ . How-

ever, as observed in [9, 6.2(1)], it is easily seen that this does not happen.

It is also conceivable that the differential d3 : E1, 2k+1
3 → E4, 2k+3

3
∼= Z/2Z ⊕ Z/2Z

could be nonzero, which would make the exponent of v−1
1 π2k(SU(n); 2) equal to

e2(n, k) − 1. This is the reason for the −1 at the end of Proposition 1.3. By [9,

1.6], if n ≡ 0 (mod 4) and k = 2L + n− 1, then d3 : E1, 2k+1
3 → E4, 2k+3

3 must be 0.

Now suppose n ≡ 2 (mod 4). If n = 2, then n−1+ord2(bn/2c!) = 1 < exp2(SU(n))

since π6(SU(2)) ∼= Z/12Z ([20]). Below we let n > 2, hence n/2 + 1 is even and not

larger than n− 1. As first noted in [1, 1.1] and restated in [9, 6.5], for k = 2L +n− 1,

d3 : E1, 2k+1
3 → E4, 2k+3

3 is nonzero if and only if

e2(n, 2L + n− 1) = e2(n− 1, 2L + n− 1) + n− 1.

We show at the end of the section that

e2(n− 1, 2L + n− 1) = ord2((n− 1)!). (4.1)

Thus, if the above d3 is nonzero, then e2(n, 2L + n− 1) = n− 1 + ord2((n− 1)!) and

hence

exp2(SU(n)) ≥ e2(n, 2L+n−1)−1 = n−1+ord2((n−1)!)−1 ≥ n−1+ord2(bn/2c!),
as claimed in Theorem 1.1.

Proof of (4.1). Putting p = 2, α = L, l = h = 1 and m = n − 1 in the first part of

Theorem 1.4, we get that

ord2

(
(n− 1)!S(n− 1, n− 1)− (n− 1)!S(2L + n− 1, n− 1)

)

≥ n− 1 + ord2

(⌊
n− 1

2

⌋
!
)
≥ n− 1 > ord2((n− 1)!).

Therefore ord2((n− 1)!S(2L + n− 1, n− 1)) = ord2((n− 1)!). On the other hand, by

the second part of Theorem 1.4, ord2(m!S(2L + n− 1,m)) ≥ n− 1 + ord2(bn/2c!) for

all m ≥ n. So we have (4.1).
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5. Strengthening and sharpness of Theorem 3.4

In this section, we give an example illustrating the extent to which Theorem 3.4 is

sharp when r = 0, which is the situation that is used in our application to topology.

Then we show in Theorem 5.1 that the lower bound in Theorem 3.4 can sometimes

be increased slightly.

We begin with a typical example of Theorem 3.4. Let p = α = 2, r = 0 and

n = 100. Then bn/pαc = 25 and ordp(bn/pαc!) = 22. For l ≥ 25, set

δ(l) = ord2

( ∑

k≡0 (mod 4)

(
n

k

) (
k

4

)l )
− 22.

The range l ≥ bn/pαc = 25 is that in which we feel Theorem 3.4 to be very strong.

(See Remark 5.3(2).) Clearly δ(l) measures the amount by which the actual p-adic

order of the sum in Theorem 3.4 exceeds our bound for it. The values of δ(l) for

25 ≤ l ≤ 45 are given in order as

0, 0, 0, 0, 2, 3, 2, 4, 1, 1, 1, 1, 2, 2, 4, 1, 0, 0, 0, 0, 3.

When r = 0 and in many other situations, Theorem 3.4 appears to be sharp for

infinitely many values of l.

Before presenting our strengthening of Theorem 3.4 we need some notation. For

a ∈ Z and m ∈ Z+, we let {a}m denote the least nonnegative residue of a modulo

m. Given a prime p, for any a, b ∈ N we let τp(a, b) represent the number of carries

occurring in the addition of a and b in base p; actually

τp(a, b) =
∞∑

i=1

( ⌊
a + b

pi

⌋
−

⌊
a

pi

⌋
−

⌊
b

pi

⌋ )
= ordp

(
a + b

a

)

as observed by E. Kummer.

Here is our strengthening of Theorem 3.4. The right hand side is the amount by

which the bound in Theorem 3.4 can be improved. This amount does not exceed α,

by the definition of τp. In Table 2, we illustrate this amount when p = 3 and α = 2.

Theorem 5.1. Let p be a prime, and let α, l, n ∈ N. Then, for all r ∈ Z, we have

ordp

( ∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l )
− ordp

(⌊
n

pα

⌋
!

)

≥ τp({r}pα , {n− r}pα) = ordp

({r}pα + {n− r}pα

{r}pα

)
.
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Proof. We use induction on n.

In the case n = 0, whether r ≡ 0 (mod pα) or not, the desired result holds trivially.

Now let n > 0 and assume the corresponding result for n − 1. Suppose that

τp({r}pα , {n− r}pα) > 0. Then neither r nor n− r is divisible by pα.

Set

R =
1

bn/pαc!
∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l

and

R′ =
n/pα

bn/pαc!
∑

k≡r−1 (mod pα)

(
n− 1

k

)
(−1)k

(
k − (r − 1)

pα

)l

.

Clearly

R′ = − n/pα

bn/pαc!
∑

k≡r (mod pα)

(
n− 1

k − 1

)
(−1)k

(
k − r

pα

)l

= − 1

bn/pαc!
∑

k≡r (mod pα)

(
n

k

)
(−1)k k

pα

(
k − r

pα

)l

,

and thus

r

pα
R + R′ = − 1

bn/pαc!
∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l+1

.

This is a p-integer by Theorem 3.4; therefore ordp(rR + pαR′) ≥ α.

Let β = ordp(n). We consider three cases.

Case 1. β ≥ α. In this case, bn/pαc!/(n/pα) = b(n − 1)/pαc! and hence R′ is a

p-integer by Theorem 3.4. In view of the inequality ordp(rR + pαR′) ≥ α, we have

ordp(R) ≥ α− ordp(r) = τp({r}pα , {n− r}pα),

where the last equality follows from the definition of τp and the condition n ≡ 0 6≡
r (mod pα).

Case 2. ordp(r) ≤ β < α. Since bn/pαc = b(n− 1)/pαc, the definition of R′ implies

that

pαR′

n
=

1

b(n− 1)/pαc!
∑

k≡r−1 (mod pα)

(
n− 1

k

)
(−1)k

(
k − (r − 1)

pα

)l

.

Applying the induction hypothesis, we find that

ordp(p
αR′)−β ≥ τp({r−1}pα , {n−1−(r−1)}pα) = τp({r−1}pα , {n−r}pα).



A NUMBER-THEORETIC APPROACH TO HOMOTOPY EXPONENTS OF SU(n) 17

Since {r}pα + {n− r}pα ≡ n 6≡ 0 (mod pα) and
({r}pα + {n− r}pα

{r}pα

)
=

{r}pα + {n− r}pα

{r}pα

({r}pα + {n− r}pα − 1

{r}pα − 1

)

=
{r}pα + {n− r}pα

{r}pα

({r − 1}pα + {n− r}pα

{r − 1}pα

)
,

we have

τp({r}pα , {n− r}pα) = τp({r − 1}pα , {n− r}pα) + β − ordp(r).

Thus

ordp(p
αR′) ≥ ordp(r) + τp({r}pα , {n− r}pα).

Clearly τp({r}pα , {n− r}pα) ≤ α− ordp(r) by the definition of τp, so we also have

ordp(rR + pαR′) ≥ ordp(r) + τp({r}pα , {n− r}pα).

Therefore

ordp(R) = ordp(rR)− ordp(r) ≥ τp({r}pα , {n− r}pα).

Case 3. β < min{α, ordp(r)}. In this case, ordp(r̄) = β < α where r̄ = n− r. Also,

∑

k≡r̄ (mod pα)

(
n

k

)
(−1)k

(
k − r̄

pα

)l

=
∑

n−k≡r (mod pα)

(
n

k

)
(−1)k

(
r − (n− k)

pα

)l

= (−1)l+n
∑

k≡r (mod pα)

(
n

k

)
(−1)k

(
k − r

pα

)l

.

Thus, as in the second case, we have

ordp(R) = ordp

(
1

bn/pαc!
∑

k≡r̄ (mod pα)

(
n

k

)
(−1)k

(
k − r̄

pα

)l )

≥ τp({r̄}pα , {n− r̄}pα) = τp({r}pα , {n− r}pα).

The induction proof of Theorem 5.1 is now complete.

The following conjecture is based on extensive Maple calculations.

Conjecture 5.2. Let p be any prime. And let α, l ∈ N, n, r ∈ Z, with n ≥ 2pα − 1.

Then equality in Theorem 5.1 is attained if l ≥ bn/pαc and

l ≡
⌊

r

pα

⌋
+

⌊
n− r

pα

⌋ (
mod (p− 1)pblogp(n/pα)c) .
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Remark 5.3. (1) The conjecture, if proved, would show that Theorem 5.1 would be

optimal in the sense that it is sharp for infinitely many values of l.

(2) Note that the conjecture only deals with equality when l ≥ bn/pαc. For smaller

values of l, our inequality is still true, but not so strong. In [17], we obtain a stronger

inequality when l < bn/pαc.
We close with a table showing the amount by which the bound in Theorem 5.1

improves on that of Theorem 3.4. That is, we tabulate τp({r}pα , {n − r}pα) when

p = 3 and α = 2.

Table 2. Values of τ3({r}9, {n− r}9)

{r}9

0 1 2 3 4 5 6 7 8
0 0 2 2 1 2 2 1 2 2
1 0 0 2 1 1 2 1 1 2
2 0 0 0 1 1 1 1 1 1

{n}9 3 0 1 1 0 2 2 1 2 2
4 0 0 1 0 0 2 1 1 2
5 0 0 0 0 0 0 1 1 1
6 0 1 1 0 1 1 0 2 2
7 0 0 1 0 0 1 0 0 2
8 0 0 0 0 0 0 0 0 0
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