$B P-H O M O L O G Y$ OF ELEMENTARY ABELIAN 2-GROUPS: $B P$-MODULE STRUCTURE

DONALD M. DAVIS

Abstract

We determine the $B P_{*}$-module structure, mod higher filtration, of the main part of the $B P$-homology of elementary abelian 2-groups. The action is related to symmetric polynomials and to Dickson invariants.

1. Introduction and results

Let $B P_{*}(-)$ denote Brown-Peterson homology localized at 2 . Its coefficient groups $B P_{*}$ are a polynomial algebra over $\mathbb{Z}_{(2)}$ on classes $v_{j}, j \geq 1$, of grading $2\left(2^{j}-1\right)$. Let $v_{0}=2$. As was done in [6] and [8], we consider $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$, which is a $B P_{*}$-direct summand of $B P_{*}\left(B(\mathbb{Z} / 2)^{k}\right)$. We determine the $B P_{*}$-module structure of $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$ modulo terms which are more highly divisible by v_{j} 's. Information about the action of v_{0} was applied to problems in topology in [2] and [9]. In the forthcoming paper [3], we apply it to another problem, higher topological complexity of real projective spaces. In Theorem 1.7 of the current paper, we obtain complete explicit information about the v_{0}-action (mod higher filtration). In Theorem 1.1, we determine the action of all v_{j} 's as quotients of symmetric polynomials, and in Theorem 1.3 and Corollary 1.6 we give explicit formulas as symmetric polynomials in certain families of cases. In Section 4, we discuss relationships of our symmetric polynomials with the Dickson invariants.

Now we explain this more explicitly. There are $B P_{*}$-generators $z_{i} \in B P_{2 i-1}(B \mathbb{Z} / 2)$ for $i \geq 1$, and $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$ is spanned as a $B P_{*}$-module by classes $z_{I}=z_{i_{1}} \otimes$ $\cdots \otimes z_{i_{k}}$ for $I=\left(i_{1}, \ldots, i_{k}\right)$ with $i_{j} \geq 1$. Let Z_{k} denote the graded set consisting of all such classes z_{I}. It was proved in [6, Thm 3.2] that $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$ admits

Key words and phrases. Brown-Peterson homology, symmetric polynomials, Dickson invariants.

2000 Mathematics Subject Classification: 55N20, 05E05, 15A15, 13A50.
a decreasing filtration by $B P_{*}$-submodules F_{s} such that, for $s \geq 0$, the quotient F_{s} / F_{s+1} is a vector space over the prime field \mathbb{F}_{2} with basis all classes $\left(v_{k}^{t_{k}} v_{k+1}^{t_{k+1}} \cdots\right) z_{I}$ with $z_{I} \in Z_{k}, t_{i} \geq 0$, and $\sum t_{i}=s$.

Define an action of $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$ on the \mathbb{F}_{2}-vector space with basis Z_{k} by

$$
x_{1}^{e_{1}} \cdots x_{k}^{e_{k}} \cdot z_{I}=z_{I-E},
$$

where $I-E=\left(i_{1}-e_{1}, \ldots, i_{k}-e_{k}\right)$; here, by convention, $z_{J}=0$ if any entry of J is ≤ 0. For positive integers t_{1}, \ldots, t_{r}, let $m_{t_{1}, \ldots, t_{r}}$ denote the monomial symmetric polynomial in x_{1}, \ldots, x_{k}, the smallest symmetric polynomial containing the monomial $x_{1}^{t_{1}} \cdots x_{r}^{t_{r}}$. Over \mathbb{F}_{2}, if $r=k$ and the t_{i} are distinct, it equals the Vandermonde determinant

$$
\left|\begin{array}{ccc}
x_{1}^{t_{1}} & \cdots & x_{1}^{t_{k}} \\
& \vdots & \\
x_{k}^{t_{1}} & \cdots & x_{k}^{t_{k}}
\end{array}\right| .
$$

Our first theorem determines the action of $v_{j}, 0 \leq j \leq k-1$, from F_{s} / F_{s+1} to F_{s+1} / F_{s+2}, as a ratio of monomial symmetric polynomials in x_{1}, \ldots, x_{k}. Note that k is fixed throughout, and we are always dealing with polynomials over \mathbb{F}_{2}. This theorem will be proved in Section 2.

Theorem 1.1. If F_{s} is as above, and $0 \leq j \leq k-1$, the action of v_{j} from F_{s} / F_{s+1} to F_{s+1} / F_{s+2} is multiplication by $\sum_{\ell \geq k} v_{\ell} p_{\ell, j}$, where

$$
\begin{equation*}
p_{\ell, j}=\frac{m_{2^{0}, \ldots, \widehat{j}^{j}, \ldots, 2^{k-1}, 2^{\ell}}}{m_{2^{0}, \ldots, 2^{k-1}}} \tag{1.2}
\end{equation*}
$$

(The $\widehat{2^{j}}$ notation denotes omission.) Moreover, $p_{\ell, j}$ is a symmetric polynomial, mod 2.

It is not a priori clear that the quotient on the right hand side of (1.2) should be a polynomial mod 2 . In fact, if the 2^{ℓ} there is a replaced by a non- 2 -power and $k \geq 3$, then the ratio is not a polynomial mod 2 .

We have obtained explicit polynomial formulas for $p_{\ell, j}$ in several cases. These will be proved in Section 3. The first is the complete solution when $k=3$.

Theorem 1.3. If $k=3$ and $\ell \geq 3$, then

$$
\begin{aligned}
& p_{\ell, 0}=\sum_{\substack{i \geq j \geq k>0 \\
i+j+k=2^{\ell}-1}}\binom{j+k}{k} m_{i, j, k} \\
& p_{\ell, 1}=\sum_{\substack{i \geq j>0 \\
i+j=2^{\ell}-2}}(1+j) m_{i, j, 0}+\sum_{\substack{i \geq j \geq k>0 \\
i+j+k=2^{\ell}-2}}\left(1+\binom{j+k}{k-1}+\binom{j+k+1}{k+1}\right) m_{i, j, k} \\
& p_{\ell, 2}=\sum_{\substack{i \geq j \geq k \geq 0 \\
i+j+k=2^{\ell}-4}}\left(1+\binom{j+k+2}{k+1}\right) m_{i, j, k} .
\end{aligned}
$$

Incorporating Theorem 1.3 into Theorem 1.1 gives the $v_{0^{-}}, v_{1^{-}}$, and v_{2}-action, mod higher filtration, in $B P_{*}(B \mathbb{Z} / 2) \otimes_{B P_{*}} B P_{*}(B \mathbb{Z} / 2) \otimes_{B P_{*}} B P_{*}(B \mathbb{Z} / 2)$. For example, v_{0} acts as
(1.4) $v_{3} m_{4,2,1}+v_{4}\left(m_{12,2,1}+m_{10,4,1}+m_{8,6,1}+m_{9,4,2}+m_{8,5,2}+m_{8,4,3}\right)+\cdots$,
where the omitted terms involve v_{ℓ} for $\ell \geq 5$.
We have also obtained the explicit polynomial formula for (1.2) for any k if $\ell=k$.
Theorem 1.5. If $\ell=k$, then $p_{\ell, j}=p_{k, j}$ equals the sum of all monomials of degree $2^{k}-2^{j}$ in x_{1}, \ldots, x_{k} in which all nonzero exponents are 2-powers. Here $0 \leq j \leq k-1$.

Theorem 1.5 gives the formula for the v_{k}-component of the $B P_{*}$-module structure, modulo higher filtration, of $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$. It is complete information, mod higher filtration, for $B P\langle k\rangle$ homology. Johnson-Wilson homology $B P\langle k\rangle$, introduced in [7], has coefficients $\mathbb{Z}_{(2)}\left[v_{1}, \ldots, v_{k}\right]$. By $[6$, Thm 3.2] and [8, Thm 1.1], as an abelian group $\bigotimes_{B P\langle k\rangle_{*}}^{k} B P\langle k\rangle_{*}(B \mathbb{Z} / 2)$ has basis $\left\{v_{k}^{j} z_{I}: j \geq 0, z_{I} \in Z_{k}\right\}$.
Corollary 1.6. In $\bigotimes_{B P\langle k\rangle_{*}}^{k} B P\langle k\rangle_{*}(B \mathbb{Z} / 2)$, for $0 \leq j \leq k-1$,

$$
v_{j} \cdot z_{I} \equiv v_{k} \sum_{E} z_{I-E}
$$

mod higher filtration, where $E=\left(e_{1}, \ldots, e_{k}\right)$ ranges over all k-tuples such that all nonzero e_{j} are 2-powers, and $\sum e_{j}=2^{k}-2^{j}$.

This generalizes [8, Cor 2.7], which says roughly that v_{0} acts as $v_{k} m_{2^{k-1}, 2^{k-2}, \ldots, 1}$.
Finally, our most elaborate, and probably most useful, explicit calculation is given in the following result, which gives the complete formula for the v_{0}-action, mod higher filtration. This is useful since v_{0} corresponds to multiplication by 2 .

Theorem 1.7. In $\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$, vo acts as $\sum_{\ell \geq k} v_{\ell} \cdot p_{\ell, 0}$ mod higher filtration, where

$$
p_{\ell, 0}=\sum_{f} \prod_{i=0}^{\ell-1} x_{f(i)}^{2^{i}}
$$

where f ranges over all surjective functions $\{0, \ldots, \ell-1\} \rightarrow\{1, \ldots, k\}$. Equivalently, $p_{\ell, 0}=\sum m_{\left\|S_{1}\right\|, \ldots,\left\|S_{k}\right\|}$, where the sum ranges over all $\left\|S_{1}\right\|>\cdots>\left\|S_{k}\right\|$ with S_{1}, \ldots, S_{k} a partition of $\left\{1,2,4, \ldots, 2^{\ell-1}\right\}$ into k nonempty subsets. Here $\|S\|$ is the sum of the elements of S.

See (1.4) for an explicit example of $p_{3,0}$ and $p_{4,0}$ when $k=3$. For example, the term $m_{10,4,1}$ in $p_{4,0}$ corresponds to $S_{1}=\{8,2\}, S_{2}=\{4\}$, and $S_{3}=\{1\}$, and this corresponds to the sum of all surjective functions $f:\{0,1,2,3\} \rightarrow\{1,2,3\}$ for which $f(3)=f(1)$.

We thank a referee for many useful suggestions. See especially Section 4.

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1.
Proof of Theorem 1.1. Let $Q=\bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$. Let z_{i} and z_{I} be as in the second paragraph of the paper. By [6], Q is spanned by classes $\left(v_{0}^{t_{0}} v_{1}^{t_{1}} \cdots\right) z_{I}$ with only relations $\sum_{j \geq 0} a_{j} z_{i-j}$ in any factor, where $a_{j} \in B P_{2 j}$ are coefficients in the [2]-series. By $[11,3.17]$, these satisfy, $\bmod \left(v_{0}, v_{1}, \ldots\right)^{2}$,

$$
a_{j} \equiv \begin{cases}v_{i} & j=2^{i}-1, i \geq 0 \\ 0 & j+1 \text { not a 2-power } .\end{cases}
$$

Let F_{s} denote the ideal $\left(v_{0}, v_{1}, \ldots\right)^{s} Q$. Then F_{s} / F_{s+1} is spanned by all $\left(v_{0}^{t_{0}} v_{1}^{t_{1}} \cdots\right) z_{I}$ with $\sum t_{j}=s$, with relations

$$
\begin{equation*}
\sum_{j \geq 0} v_{j} z_{i-\left(2^{j}-1\right)}=0 \tag{2.1}
\end{equation*}
$$

in each factor. As proved in [6, Thm 3.2] (see also [8, 2.3]), this leads to an \mathbb{F}_{2}-basis for F_{s} / F_{s+1} consisting of all $\left(v_{k}^{t_{k}} v_{k+1}^{t_{k+1}} \cdots\right) z_{I}$ with $\sum t_{j}=s$.

We claim that if $z_{I} \in F_{0}$ and $0 \leq j \leq k-1$, then we must have

$$
\begin{equation*}
v_{j} z_{I}=\sum_{\ell \geq k} v_{\ell} p_{\ell, j} z_{I} \tag{2.2}
\end{equation*}
$$

where $p_{\ell, j}$ is a symmetric polynomial in variables x_{1}, \ldots, x_{k} of degree $2^{\ell}-2^{j}$, acting on z_{I} by decreasing subscripts as described in the third paragraph of the paper. That the action is symmetric and uniform is due to the uniform nature of the relations (2.1). That it never increases subscripts of z_{i} is a consequence of naturality: there are inclusions $\bigotimes_{B P_{*}} B P_{*}\left(R P^{2 n_{i}}\right) \rightarrow \bigotimes_{B P_{*}}^{k} B P_{*}(B \mathbb{Z} / 2)$ in which the only z_{I} in the image are those with $i_{t} \leq n_{t}$ for all t, and the v_{j}-actions are compatible.

Note that (2.1) can be interpreted as saying that, for any $i \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\sum_{j \geq 0} v_{j} x_{i}^{2^{j}-1}=0 \tag{2.3}
\end{equation*}
$$

Since the v_{ℓ}-components are independent if $\ell \geq k$, and (2.2) says that for $j<k \leq \ell$ the v_{ℓ}-component of the v_{j}-action is given by the (unknown) polynomial $p_{\ell, j}$, we obtain the equation

$$
\sum_{j=0}^{k-1} p_{\ell, j} x_{i}^{2^{j}-1}=x_{i}^{2^{\ell}-1}
$$

for any $i \in\{1, \ldots, k\}$ and $\ell \geq k$. After multiplying the i th equation by x_{i}, we obtain the system

$$
\left[\begin{array}{ccccc}
x_{1} & x_{1}^{2} & x_{1}^{4} & \cdots & x_{1}^{2^{k-1}} \tag{2.4}\\
& & \vdots & & \\
x_{k} & x_{k}^{2} & x_{k}^{4} & \cdots & x_{k}^{2^{k-1}}
\end{array}\right]\left[\begin{array}{c}
p_{\ell, 0} \\
\vdots \\
p_{\ell, k-1}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2^{\ell}} \\
\vdots \\
x_{k}^{2^{\ell}}
\end{array}\right]
$$

whose solution as (1.2) is given by Cramer's Rule. Our argument shows that the components $p_{\ell, j}$ of the solution are polynomials, $\bmod 2$.

The ratios on the RHS of (1.2) can also be shown to be polynomials by the following algebraic argument, provided by the referee. Let V denote the \mathbb{F}_{2}-vector space with basis x_{1}, \ldots, x_{k}. The denominator $m_{1,2, \ldots, 2^{k-1}}$ in (1.2) equals the product of the nonzero elements v of V. We show that a Vandermonde determinant D in x_{1}, \ldots, x_{k} with distinct 2-power exponents $2^{t_{j}}$ is divisible by each v in the unique factorization domain $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$, and hence is divisible by their product.

By induction on k and expansion along rows, the determinant is divisible by all elements except perhaps $\sum_{i=1}^{k} x_{i}$. Let $M_{k, j}$ denote the minor associated with $x_{k}^{2^{t_{j}}}$.

Replacing the last row by the sum of the others shows that

$$
\sum_{j} M_{k, j} \sum_{i=1}^{k-1} x_{i}^{2^{t_{j}}}=0
$$

since it is the determinant of a matrix with dependent rows. Thus

$$
D=\sum_{j} M_{k, j} x_{k}^{2^{t_{j}}}=\sum_{j} M_{k, j} \sum_{i=1}^{k} x_{i}^{2^{t_{j}}}=\sum_{j} M_{k, j}\left(\sum_{i=1}^{k} x_{i}\right)^{2^{t_{j}}}
$$

is divisible by $\sum_{i=1}^{k} x_{i}$.
The v_{j}-action formula on F_{0} applies also on F_{s} by the nature of the module.

3. Proofs of explicit formulas for certain $p_{\ell, j}$

In this section, we prove Theorems 1.3, 1.5, and 1.7.
Proof of Theorem 1.3. Let $h_{d}\left(x_{1}, \ldots, x_{r}\right)$ denote the complete homogeneous polynomial of degree d. With $k=3$, after a few row operations, (2.4) reduces to

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{3} \\
0 & 1 & h_{2}\left(x_{1}, x_{2}\right) \\
0 & 0 & x_{1}+x_{2}+x_{3}
\end{array}\right]\left[\begin{array}{c}
p_{\ell, 0} \\
p_{\ell, 1} \\
p_{\ell, 2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2^{\ell}-1} \\
h_{2^{\ell}-2}\left(x_{1}, x_{2}\right) \\
h_{2^{\ell}-3}\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

Using Pascal's formula, one easily verifies, $\bmod 2$,

$$
h_{n+1}\left(x_{1}, x_{2}, x_{3}\right) \equiv\left(x_{1}+x_{2}+x_{3}\right) \sum_{k, j}\left(\binom{n+2-k}{j+1}-1\right) x_{1}^{n-j-k} x_{2}^{j} x_{3}^{k}
$$

Since $\binom{2^{\ell}-2-k}{j+1} \equiv\binom{j+k+2}{j+1}$, the result for $p_{\ell, 2}$ follows.
Now we have

$$
\begin{aligned}
p_{\ell, 1} & =h_{2^{\ell}-2}\left(x_{1}, x_{2}\right)-h_{2}\left(x_{1}, x_{2}\right) p_{\ell, 2} \\
& =\sum x_{1}^{i} x_{2}^{2^{\ell}-2-i}+\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right) \sum_{\substack{i \geq j \geq k \geq 0 \\
i+j+k=2^{\ell}-4}}\left(1+\binom{j+k+2}{k+1}\right) m_{i, j, k} .
\end{aligned}
$$

If $k>0$, the coefficient of $m_{i, j, k}$ in this is

$$
\left(1+\binom{j+k+2}{k+1}\right)+\left(1+\binom{j+k+1}{k+1}\right)+\left(1+\binom{j+k}{k+1}\right)
$$

which equals the claimed value. If $k=0$ and $j>0$, there is an extra 1 from the $\sum x_{1}^{i} x_{2}^{2^{\ell}-2-i}$, and we obtain $\binom{j+2}{1}+\binom{j+1}{1}+\binom{j}{1} \equiv 1+j$, as desired. The coefficient of $m_{2^{\ell}-4,0,0}$ is easily seen to be 0 .

Finally, we obtain $p_{\ell, 0}$ from $x_{1}^{2^{\ell}-1}+x_{1} p_{\ell, 1}+x_{1}^{3} p_{\ell, 2}$. The coefficient of $m_{i, j, 0}$ in this is $(1+j)+\left(1+\binom{j+2}{1}\right)=0$, as desired. If $k>0$, the coefficient of $m_{i, j, k}$ is $\left(1+\binom{j+k}{k-1}+\binom{j+k+1}{k+1}\right)+\left(1+\binom{j+k+2}{k+1}\right) \equiv\binom{j+k}{k}$, as desired.

Proof of Theorem 1.5. It suffices to show that

$$
\begin{equation*}
\sum_{i=1}^{k} x_{1}^{2^{i-1}} g_{2^{k}-2^{i-1}}=x_{1}^{2^{k}} \tag{3.1}
\end{equation*}
$$

where g_{m} is the sum of all monomials in x_{1}, \ldots, x_{k} of degree m with all nonzero exponents 2-powers. (Other rows are handled equivalently.)

The term $x_{1}^{2^{k}}$ is obtained once, when $i=k$. The only monomials obtained in the LHS of (3.1) have their x_{i}-exponent a 2 -power for $i>1$, while their x_{1}-exponent may be a 2 -power or the sum of two distinct 2-powers. A term of the first type, $x_{1}^{2^{i}} x_{2}^{2^{t_{2}}} \cdots x_{k}^{2^{t_{k}}}$ with $\sum 2^{t_{i}}>0$, can be obtained from either the i th term in (3.1) or the $(i+1)$ st. So its coefficient is $0 \bmod 2$. A term of the second type, $x_{1}^{2^{a}+2^{b}} x_{2}^{t_{2}} \cdots x_{k}^{t_{k}}$, can also be obtained in two ways, either from $i=a+1$ or $i=b+1$.

Theorem 1.7 is an immediate consequence of the following proposition, which shows that, in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{k}\right]$,

$$
m_{2^{1}, \ldots, 2^{k-1}, 2^{\ell}}=m_{2^{0}, \ldots, 2^{k-1}} \cdot \sum m_{\left\|S_{1}\right\|, \ldots,\left\|S_{k}\right\|}
$$

with S_{i} as in Theorem 1.7 or Proposition 3.2.
Proposition 3.2. For $\ell \geq k$, the only k-tuples $\left(n_{1}, \ldots, n_{k}\right)$ that can be decomposed in an odd number of ways as $n_{i}=s_{i}+t_{i}$ with $\left(t_{1}, \ldots, t_{k}\right)$ a permutation of $\left(1,2,4, \ldots, 2^{k-1}\right)$ and $s_{i}=\left\|S_{i}\right\|$, where S_{1}, \ldots, S_{k} is a partition of $\left\{1,2,4, \ldots, 2^{\ell-1}\right\}$ into k nonempty subsets, are the permutations of $\left(2,4,8, \ldots, 2^{k-1}, 2^{\ell}\right)$.

Proof. We will show that all

$$
\left(\begin{array}{ccc}
S_{1} & \cdots & S_{k} \tag{3.3}\\
t_{1} & \cdots & t_{k}
\end{array}\right)
$$

as in the proposition can be grouped into pairs with equal column sums $\left(\left\|S_{1}\right\|+\right.$ $t_{1}, \ldots,\left\|S_{k}\right\|+t_{k}$) except for permutations (by column) of

$$
\left(\begin{array}{ccccc}
2^{0} & 2^{1} & \cdots & 2^{k-2} & \left\{2^{k-1}, \ldots, 2^{\ell-1}\right\} \tag{3.4}\\
2^{0} & 2^{1} & \cdots & 2^{k-2} & 2^{k-1}
\end{array}\right)
$$

It is easy to see that (3.4) is the only matrix (3.3) with its column sum.
Let M be a matrix (3.3), and let $K=\left\{2^{0}, \ldots, 2^{k-1}\right\}$. Define $f: K \rightarrow K$ by $f(x)=t_{i}$ if $x \in S_{i}$. Since $f^{i+1} K \subseteq f^{i} K$, there is a smallest nonnegative integer N such that $f^{N+1} K=f^{N} K$; i.e., with $T:=f^{N} K, f \mid T$ is an automorphism of T.

Case 1: $f \mid T \neq 1_{T}$. We pair M with the matrix obtained by interchanging x and $f(x)$ in all columns with $t_{i} \in T$. Note that this preserves column sums and is involutive, in the sense that the new matrix is also of Case 1 type, and would lead to M. For example,

$$
\left(\begin{array}{ccc}
2^{0} & \left\{2^{1}, 2^{3}\right\} & 2^{2} \\
2^{1} & 2^{0} & 2^{2}
\end{array}\right) \text { is paired with }\left(\begin{array}{ccc}
2^{1} & \left\{2^{0}, 2^{3}\right\} & 2^{2} \\
2^{0} & 2^{1} & 2^{2}
\end{array}\right) .
$$

Case 2: $f \mid T=1_{T}$. Let $2^{i} \in T$ be minimal such that the S_{j} above it in (3.3) strictly contains $\left\{2^{i}\right\}$. Such an i must exist since either $T=K$ or else some $\ell \in K-T$ must satisfy $f(\ell) \in T$.

Case 2a: $i<k-1$. Then
$\left(\begin{array}{ccccc}\cdots & \left\{2^{i}, D\right\} & \cdots & E & \cdots \\ \cdots & 2^{i} & \cdots & 2^{i+1} & \cdots\end{array}\right)$ is paired with $\left(\begin{array}{ccccc}\cdots & D & \cdots & \left\{2^{i}, E\right\} & \cdots \\ \cdots & 2^{i+1} & \cdots & 2^{i} & \cdots\end{array}\right)$.
Here D and E represent nonempty collections of 2-powers.
Case 2b: $i=k-1$. Let S_{v} be the set above 2^{k-1} in (3.3). If S_{v} contains $\left\{2^{i}: k-1 \leq i \leq \ell-1\right\}$, then the matrix must be of the form (3.4), since f must be bijective, and hence $T=K$ and $f=1_{K}$. Otherwise, let 2^{e} be the smallest 2-power $\geq 2^{k}$ not in S_{v}. There is a sequence $2^{i_{1}}, \ldots, 2^{i_{r}}$ such that $2^{i_{1}}$ lies below 2^{e} in M, $f\left(2^{i_{j}}\right)=2^{i_{j+1}}$ for $1 \leq j<r$, and $2^{i_{r}} \in S_{v}$. This sequence of $2^{i_{j}}$'s must eventually be in S_{v} because otherwise it would have a cycle, and be in Case 1. The matrix M is paired with one in which all the $2^{i_{j}}$'s are moved up or down within their column, while the 2^{j} 's with $k-1 \leq j \leq e$ are interchanged between the columns containing the 2^{e} and the 2^{k-1}, with other entries remaining fixed. We illustrate with a case $r=2, e=k+2$.
$\left(\begin{array}{ccccc}2^{k+2} & \cdots & 2^{t_{1}} & \cdots & \left\{2^{t_{2}}, 2^{k-1}, 2^{k}, 2^{k+1}\right\} \\ 2^{t_{1}} & \cdots & 2^{t_{2}} & \cdots & 2^{k-1}\end{array}\right) \leftrightarrow\left(\begin{array}{ccccc}\left\{2^{t_{1}}, 2^{k-1}, 2^{k}, 2^{k+1}\right\} & \cdots & 2^{t_{2}} & \cdots & 2^{k+2} \\ 2^{k-1} & \cdots & 2^{t_{1}} & \cdots & 2^{t_{2}}\end{array}\right)$.

4. Relations with Dickson invariants

In this section, we discuss the relationship between our polynomials $p_{\ell, j}$ and the Dickson invariants. Most of the results in this section were suggested by a referee.

Let V be an \mathbb{F}_{2}-vector space with basis x_{1}, \ldots, x_{k}, and $S(V)$ its symmetric algebra. The general linear group $\mathrm{GL}(V)$ acts on $S(V)$, and the ring of invariant elements is called the 2-primary Dickson algebra D_{k}. Dickson showed in [4] that D_{k} is a polynomial algebra on classes c_{j} of grading $2^{k}-2^{j}$ for $0 \leq j \leq k-1$. We suppress the usual k from the subscript, as we did with our p 's, since it is fixed throughout this paper.

If M is a Vandermonde determinant in x_{1}, \ldots, x_{k} with distinct 2-power exponents, then M is invariant under the action of $\mathrm{GL}(V)$. This is easily proved using linearity of determinants and that $\left(\sum \alpha_{i} x_{i}\right)^{2^{t}}=\sum \alpha_{i} x_{i}^{2^{t}}$. Since our polynomials $p_{\ell, j}$ in (1.2) are ratios of Vandermonde determinants with distinct 2-power exponents, they are elements of D_{k}, and one might seek to express them in terms of the generators c_{j}.

Our first result is that our polynomials $p_{k, j}$ (i.e., those with $\ell=k$) are exactly the generators c_{j}.

Proposition 4.1. For $0 \leq j \leq k-1, p_{k, j}=c_{j}$.
Proof. By [10, Prop 1.3a], $c_{j}=\frac{m_{2^{0}, \ldots, 2^{j}, \ldots, 2^{k-1}, 2^{k}}}{m_{2^{0}, \ldots, 2^{k-1}}}$, which by (1.2) equals $p_{k, j}$.
The following corollary is now immediate from Theorem 1.5.
Corollary 4.2. The Dickson invariant usually called $c_{k, j}$ over \mathbb{F}_{2} is the sum of all monomials of degree $2^{k}-2^{j}$ in x_{1}, \ldots, x_{k} in which all nonzero exponents are 2 -powers.

This result was certainly known to some, but we could not find it explicitly stated in the literature. One place that essentially says it is [1, Prop 3.6(c)].

Some of our elements $p_{\ell, j}$ are related to one another in the following way.
Proposition 4.3. For $\ell \geq k+1$, we have $p_{\ell, 0}=c_{0} p_{\ell-1, k-1}^{2}$. In particular, $p_{k+1,0}=$ $c_{0} c_{k-1}^{2}$.

Proof. The denominator in (1.2) equals c_{0}, so we have

$$
c_{0} p_{\ell, 0}=m_{2^{1}, \ldots, 2^{k-1}, 2^{\ell}}=m_{2^{0}, \ldots, 2^{k-2}, 2^{\ell-1}}^{2}=c_{0}^{2} p_{\ell-1, k-1}^{2} .
$$

The second part follows from Proposition 4.1.

There is an action of the mod-2 Steenrod algebra on $S(V)$ and on D_{k}, and the following complete formula was obtained in [5].

Proposition 4.4. ([5]) In the Dickson algebra D_{k}, for $0 \leq s \leq k-1$,

$$
\mathrm{Sq}^{i} c_{s}= \begin{cases}c_{r} & i=2^{s}-2^{r} \\ c_{r} c_{t} & i=2^{k}-2^{t}+2^{s}-2^{r}, r \leq s<t \\ c_{s}^{2} & i=2^{k}-2^{s} \\ 0 & \text { otherwise } .\end{cases}
$$

Without using that formula, we can easily obtain the following result.
Proposition 4.5. For $0 \leq j \leq k-1$,

$$
\mathrm{Sq}^{2^{i}} p_{\ell, j}= \begin{cases}p_{\ell, j-1} & i=j-1 \\ 0 & i \neq j-1, \quad i<k-1\end{cases}
$$

Proof. For $i<k-1, \mathrm{Sq}^{2^{i}}\left(m_{2^{0}, \ldots, 2^{k-1}}\right)=0$ since each term with factor $\mathrm{Sq}^{2^{i}}\left(x_{s}^{2^{i}}\right) x_{t}^{2^{i+1}}$ is
 $\operatorname{Sq}^{n}\left(m_{2^{0}, \ldots, 2^{k-1}}\right)=0$ for $0<n<2^{k-1}$. Similarly, for $0<i<k-1$,

$$
\mathrm{Sq}^{2^{i}}\left(m_{2^{0}, \ldots, 2^{j}, \ldots, 2^{k-1}, 2^{\ell}}\right)= \begin{cases}m_{2^{0}, \ldots, 2^{j-1}, \ldots, 2^{k-1}, 2^{\ell}} & i=j-1 \\ 0 & \text { otherwise } .\end{cases}
$$

The result follows from applying the Cartan formula to

$$
m_{2^{0}, \ldots, 2^{k-1}} p_{\ell, j}=m_{2^{0}, \ldots, 2^{j}, \ldots, 2^{k-1}, 2^{\ell}}
$$

This result meshes nicely with the following one.
Proposition 4.6. For $\ell \geq k$,

$$
p_{\ell+1, k-1}=\sum_{j} c_{j} \mathrm{Sq}^{2^{\ell}-2^{k}+2^{j}} p_{\ell, k-1}
$$

Proof. We have

$$
\begin{equation*}
\mathrm{Sq}^{2^{\ell}}\left(c_{0} p_{\ell, k-1}\right)=\mathrm{Sq}^{2^{\ell}}\left(m_{2^{0}, \ldots, 2^{k-2}, 2^{\ell}}\right)=m_{2^{0}, \ldots, 2^{k-2}, 2^{\ell+1}}=c_{0} p_{\ell+1, k-1} . \tag{4.7}
\end{equation*}
$$

As a special case of Proposition 4.4, we have, for $i>0$,

$$
\mathrm{Sq}^{i} c_{0}= \begin{cases}c_{j} c_{0} & i=2^{k}-2^{j} \\ 0 & \text { otherwise }\end{cases}
$$

Applying the Cartan formula to the LHS of (4.7) and cancelling c_{0} yields the result.

In principle, iterating Propositions 4.5 and 4.6 enables us to obtain complete formulas expressing our polynomials $p_{\ell, j}$ in terms of the c_{i} 's. For $\ell=k$, this was initiated in our Proposition 4.1. Here we do it for $\ell=k+1$ and $k+2$. For $\ell \geq k+3$, the formulas become unwieldy.

Theorem 4.8. For $0 \leq j \leq k-1$,
a. $p_{k+1, j}=c_{j-1}^{2}+c_{j} c_{k-1}^{2}$;
b. $p_{k+2, j}=c_{j} c_{k-2}^{4}+c_{j} c_{k-1}^{6}+c_{j-1}^{2} c_{k-1}^{4}+c_{j-2}^{4}$.

Proof. (a). By Propositions 4.1, 4.6, and 4.4, we have

$$
\begin{aligned}
p_{k+1, k-1} & =\sum_{j} c_{j} \mathrm{Sq}^{2^{j}} p_{k, k-1}=\sum_{j} c_{j} \mathrm{Sq}^{2^{j}} c_{k-1} \\
& =c_{k-2}^{2}+c_{k-1} \cdot c_{k-1}^{2}
\end{aligned}
$$

Assume the result true for j. By Propositions 4.5 and 4.4,

$$
\begin{aligned}
p_{k+1, j-1} & =\mathrm{Sq}^{2^{j-1}}\left(c_{j-1}^{2}+c_{j} c_{k-1}^{2}\right) \\
& =\left(\mathrm{Sq}^{2^{j-2}} c_{j-1}\right)^{2}+\sum_{m}\left(\mathrm{Sq}^{2 j^{j-1}-2 m} c_{j}\right)\left(\mathrm{Sq}^{m} c_{k-1}\right)^{2} \\
& =c_{j-2}^{2}+\left(\mathrm{Sq}^{2^{j-1}} c_{j}\right) c_{k-1}^{2} \\
& =c_{j-2}^{2}+c_{j-1} c_{k-1}^{2},
\end{aligned}
$$

extending the induction.
(b). Applying Proposition 4.6 to part (a), we obtain

$$
\begin{aligned}
p_{k+2, k-1} & =\sum_{j} c_{j} \mathrm{Sq}^{2^{k}+2^{j}}\left(c_{k-2}^{2}+c_{k-1}^{3}\right) \\
& =\sum_{j} c_{j}\left(\mathrm{Sq}^{2^{k-1}+2^{j-1}} c_{k-2}\right)^{2}+\sum_{j, m} c_{j}\left(\mathrm{Sq}^{2^{k}+2^{j}-2 m} c_{k-1}\right)\left(\mathrm{Sq}^{m} c_{k-1}\right)^{2}
\end{aligned}
$$

Using Proposition 4.4, the first sum equals $c_{k-2} c_{k-3}^{2} c_{k-1}^{2}+c_{k-1} c_{k-2}^{4}$, while the second equals

$$
c_{k-3}^{4}+c_{k-2} c_{k-1}^{2} c_{k-3}^{2}+c_{k-2}^{2} c_{k-1}^{4}+c_{k-1}^{7} .
$$

Combining these yields the result for $j=k-1$. The result for arbitrary j follows by decreasing induction on j, similarly to part (a).

References

[1] D.Arnon, Generalized Dickson invariants, Israel Journ Math 118 (2000) 183205.
[2] D.M.Davis, Vector fields on $R P^{m} \times R P^{n}$, Proc Amer Math Soc 140 (2012) 4381-4388.
[3] , Bounds for higher topological complexity of real projective space implied by $B P$, on arXiv.
[4] L.E.Dickson, A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans Amer Math Soc 12 (1911) 75-98.
[5] N.H.V.Hu'ng, The action of the Steenrod algebra on the modular invariants of linear groups, Proc Amer Math Soc 113 (1991) 1097-1104.
[6] D.C.Johnson and W.S.Wilson, The BP homology of elementary p-groups, Amer Jour Math 102 (1982) 427-454.
[7] , Projective dimension and Brown-Peterson homology, Topology 12 (1973) 327-353.
[8] D.C.Johnson, W.S.Wilson, and D.Y.Yan, The BP homology of elementary p-groups, II, Topology and its Applications 59 (1994) 117-136.
[9] H.-J.Song and W.S.Wilson, On the nonimmersion of products of real projective spaces, Trans Amer Math Soc 318 (1990) 327-334.
[10] C.Wilkerson, A primer on the Dickson invariants, Contemp Math Amer Math Soc 19 (1983) 421-432.
[11] W.S.Wilson, A BP Introduction and Sampler, CBMS Regional Conferene Series 48 (1982).

Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA
E-mail address: dmd1@lehigh.edu

