Thin Film PV Transparent Conductive Oxide History, Functions, and Developments

Chris Cording
AGC Flat Glass North America

Introduction

- Thin-film modules often require a front Transparent Conductive Oxide (TCO)
- High growth thin-film PV industry requires rapidly growing material supply.
- Textured tin oxide can be produced on a float production line with large volumes and good economies of scale.

History

- Early TCO's were produced off-line
- On-line textured SnO₂: F TCO for a-Si first produced in late 1993.
- Sizes up to 130" x 204" (3.3 x 5.2m)
- 10 miles per day in length
- Enough for 4.2 MW per day at 8% efficiency
- About 410 tons per day of front glass

Fluorine Doped Tin Oxide

- Mechanically durable
- Easily produced and processed
- Heat resistant
- Chemically stable
- Moisture resistant
- Controllable morphology
- Lower cost than other TCOs such as ITO
- Can resist sodium damage

Properties and Functions

- Haze (texture)
- Light transmission
- Conductivity

Haze

Haze

- Scatters light into the silicon layers
- Creates a gradient index of refraction between the tin oxide and silicon.
- Imposes texture to the back contact for light scattering.
- Increases surface area for electron transport
- Increases active area of silicon
- Increases surface area for silicon adhesion

Haze

Light Transmission

- Desire a low absorption coefficient
- Low carrier concentration
- High electron mobility
- Good morphology required
- Can be more accurately measured by reducing haze error by covering with methylene iodide (CH₂I₂) and a quartz plate
- Low iron glass

Conductivity

- Measured by a four-point probe
- Carrier concentration
- Electron mobility
- Film thickness
- Crystal shape, size, orientation
- Can be fixed conductivity or mobility shifting

TCO Adhesion

- TCOs can be subject to peeling due to sodium in the glass if the TCO is not properly designed
- The best published test is by Energy Photovoltaics (EPV):
- K. W. Jansen, Dr. A. E. Delahoy "A Laboratory Technique for the Evaluation of Electrochemical Transparent Conductive Oxide Delamination from Glass Substrates," Thin Solid Films 423 153 – 160 (2003), Elsevier Science B.V. (2002)

Tempering/Heat Strengthening

Modulus of Rupture (M.O.R.) in Flexure 60 Second Duration:

- Mean M.O.R. (Probability of breakage 50%)
 - 6,000 psi (41 MPa) Annealed
 - 12,000 psi (82 Mpa) Heat Strengthened
 - 24,000 psi (165 Mpa) Tempered

Typical Design M.O.R. (Probability of breakage 0.8%)

- 2,800 psi (19 Mpa) Annealed
- 5,600 psi (39 Mpa) Heat Strengthened
 - 11,200 psi (77 Mpa) Tempered

Recent Advances in TCOs

Objective: Develop optimal TCO For a-Si/µc-Si tandem solar cell

QE by Wavelength

M. Vanecek, J. Springer et al. Proceedings of WCPEC-3, p1527,(2003)

Haze vs λ Normal SnO₂:F

Haze decreases with increasing wavelength.

Properties of Normal SnO₂:F

SEM Images

			AGC
RMS	45nm	62nm	80nm
(at 550nm) Sheet resistance	8 Ω/sq	5 Ω/sq	4 Ω/sq
Transparency	88%	86%	85%
Haze Value (at 550nm)	16 %	42%	58%
Thickness	0.76µm	1.4µm	2.1µm

Height Distribution Curve

Thicker film has larger height distribution that results in large haze values, but no benefit at wavelengths over 500 nm.

Properties of W-Textured Films

Haze Value (at 550nm)

35 %

84%

Transparency (at 550nm/at800nm)

89%/88%

89%/88%

 $10\Omega/\text{sq}$

 $9 \Omega/sq$

95%

88%/88%

 $8 \Omega/sq$

90%

89%/88%

 $10 \Omega/\text{sq}$

AGC

Haze for W-Textured Films

Surface Distribution of W-Texture

Absorption of W-Texture

QE with W-Texture

Wavelength [nm]

Measured QE increases up to 35%!

Conclusions

- W-Texture is being developed in an offline process.
- The cooperative efforts of thin-film PV manufacturers and the glass industry can result in economies of scale and a bright successful future.

