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The phenomenology of the laboratory glass transition is examined in the enthalpy landscape
framework. It is shown that a generic description of the glassy state based on partitioning of the
phase space caused by the finiteness of the time of observation explains all universal features of
glass transition. Using this description of glass, which is referred to as the extrinsically constrained
liquid, expressions are derived for properties of glass and for property changes at the laboratory
glass transition. A model enthalpy landscape is used to illustrate the basic concepts of this
description. Additional new consequences of this description, such as the role of complexity in glass
transition and the zero residual entropy of a glass, are discussed. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2738471�

I. INTRODUCTION

Interest in the physics of supercooled liquids, glass tran-
sition, and the glassy state has seen explosive growth during
the last decade. New conceptual tools have been introduced
�such as the energy landscape1�, new theoretical directions
have been pioneered �for example, the random first order
transition2 and the random energy models3�, new insights
have been gained from simulations �particularly in simple
systems such as the binary Lennard-Jones systems4�, and
new results have been established experimentally �for ex-
ample, the spatially heterogeneous dynamics5�. Excellent
reviews6,7 are available that summarize much of this work.
Notwithstanding these significant advances, a generic, com-
prehensive, and theoretically sound framework for rational-
izing the relaxation behavior of supercooled liquids and
structural glasses is still lacking.8 While there are many fac-
ets to this complex topic, the transition of a liquid as a result
of a finite observation time to a solid glass—called the labo-
ratory glass transition �LGT�—is of special importance as it
provides the basis for many important technological applica-
tions. These applications include �to list just a few� temper-
ing, annealing, optical homogeneity, and viscous forming of
structural glasses.9 The LGT is the primary focus of this
paper. The so-called ideal glass transition that is hypoth-
esized to occur in supercooled liquids at a low temperature
�known as the Kauzmann temperature� is not a concern of
this paper.

A key concept in the physics of LGT is that of the ob-
servation �or experimental or extrinsic� time �tobs�. At some
temperature �T� and pressure �P�, a liquid behaves like a
solid �i.e., exhibits a finite shear modulus� when tobs is much
less than the intrinsic average structural relaxation time
��T , P� of the liquid. This solidlike state is called glass.10 As
tobs approaches �, a glass begins to relax spontaneously to-
wards its liquid state. When tobs��, the system exhibits liq-
uid state properties. Denoting an observable by Q, it follows
that

Q�tobs � �,T,P� � QG�T,P,tobs� and

Q�tobs � �,T,P� � QL�T,P� . �1�

It should be noted that while glass properties QG depend
on tobs, the liquid state properties QL do not. The difference
�Q defined as

�Q�T,P,tobs� � QL�T,P� − QG�T,P,tobs� �2�

is called a configurational property and represents the change
in Q upon relaxation of a glass to the liquid state. Relaxation
in liquids and glasses, at some fixed pressure, can be inves-
tigated either by varying tobs at fixed T �using, for example,
either aging experiments or ultra-hypersonic techniques11� or
by varying T at fixed a fixed value of tobs �such as by cooling
a liquid at constant rate that is inversely proportional to tobs�.
The two methods study the same phenomenon. For the
present work, we focus on LGT during the cooling of a liq-
uid.

At high temperatures, � is small compared to tobs. As a
result, the system behaves like a liquid. At low temperatures
�where tobs���, the system behaves like a glass. The labora-
tory glass transition is characterized by a temperature Tg,
where � is equal to tobs

��Tg�P�� = tobs. �3�

Tg is called the �laboratory� glass transition temperature.
Equation �3� can, in principle, be solved for Tg�tobs� from the
knowledge of ��T , P�:

Tg�tobs,P� = Tg�tobs,��Tg,P�� . �4�

Thus, measurements at high temperatures �T�Tg� provide
properties of the liquid state,

Q�T � Tg�tobs,P�� = QL�T,P� , �5a�

and low temperature measurements provide glassy state
properties,
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Q�T � Tg�tobs,P�� = QG�T,P,tobs� . �5b�

A large amount of relaxational data12,13 around Tg has been
collected for the past several decades in a diverse variety of
systems �ionic, covalent, metallic, and hydrogen bonded� in
both liquid and glassy states �particularly at P=1 atm�. Col-
lectively, these studies show a strong universality in the ob-
served features of LGT. These universal �or generic� features
are the following.14,15

�1� LGT is not a sharp transition. Properties change
smoothly across Tg.

�2� Tg�tobs� increases with decrease in tobs.
16 This behavior

is in contrast to that of a first order thermodynamic
transition �such as crystallization� that is kinetically
suppressed to lower temperatures as cooling rate is in-
creased �or tobs is decreased�. This anomalous tobs de-
pendence of LGT is an indication that LGT is not a
thermodynamic transition but a consequence of arrested
relaxation dynamics.

�3� There is no change in the enthalpy of the system �i.e.,
no latent heat in LGT�, �H=0.17 Also, there is no
change in the volume, �V=0.18

�4� There are rounded discontinuities in �second order�
properties such as isobaric heat capacity �C�, isother-
mal compressibility �K�, and thermal expansion coeffi-
cient ���. These changes are similar to that for an
Ehrenfest second order transition ��C�0 and �K�0�.
However, LGT is not a second order transition because
the so-called Prigogine-Defay ratio ��C�K /TgV����2�
is observed to be greater than unity.19 This ratio is unity
for an Ehrenfest second order transition.

�5� A glass relaxes spontaneously to the liquid state. This
process—referred to as structural relaxation �SR�—
typically exhibits two stages: a fast process �called sec-
ondary or � relaxation� and a slow process �called pri-
mary or � relaxation�. Both stages exhibit near-
stretched exponential dynamics.20

�6� A glass is homogeneous at the mesoscopic level due to
frozen-in spatial variations in structure. These structural
variations result in density and entropy variations that
can be measured by either Rayleigh light scattering21,22

or small angle X-ray scattering23 techniques. It has
been suggested24 that these frozen-in variations are the
source of spatially heterogeneous dynamics in glasses.

The universality of these experimental features suggests
that the underlying physics of LGT is insensitive to the de-
tails of the interatomic potentials. It should, therefore, be
feasible—and certainly desirable—to develop a generic sta-
tistical mechanical framework for LGT. Such a framework
will provide a common basis for rationalizing data in differ-
ent systems and “macroscopic boundary conditions” for de-
veloping microscopic models of LGT. This paper discusses
such a generic framework for the glassy state �and for LGT�
which we refer to as the “extrinsically constrained liquid”
�ECL� description.

The notion of constraining �confining or arresting or
freezing� some aspect of the liquid state during LGT is not
new. The conventional phenomenological thermodynamic

formalism postulates the existence of a set of internal �or
order� parameters.15,16,25 The internal parameters assume
their equilibrium values in the liquid state and are frozen in
the glassy state. This approach predicts correctly the signs of
changes in the second order properties at Tg, a Prigogine-
Defay ratio greater than unity, and first order properties that
do not change at the glass transition. By adding a phenom-
enological rate equation for the internal parameters, this ap-
proach is also capable for analyzing the relaxation kinetics.
The well-known Tool-Narayanaswamy model is a testimo-
nial to this.25 However, the internal parameter approach does
not answer questions such as how many internal parameters
are needed and does not provide any clue about the physical
meanings of internal parameters. Most importantly, it does
not provide any insight into the T dependence of the relax-
ation time.

Jäckle26,27 was the first to propose a generic statistical
mechanics of LGT. He examined two different statistical me-
chanical formulations of the glassy state. The one called the
quenched liquid �QL� view is widely accepted at present.28,29

In the QL view, a glass is considered as an ensemble of
configurations with a probability density in the phase space
which is frozen at the value equal to that in the liquid state at
Tg. The QL view has the following implications about LGT.

�a� The glass and the liquid are one and the same mac-
rostate at Tg.

�b� There is no entropy change at LGT. As a consequence,
the glass has higher configurational entropy than the
liquid at temperatures below Tg and a positive residual
entropy at T=0.

The first consequence is inconsistent with observed fea-
ture #4. The second cannot be tested experimentally and, as
we show later, remains controversial. The statistical me-
chanical framework for broken-ergodic systems was devel-
oped by Palmer.30 Broken ergodicity corresponds to confine-
ment of the system configuration point in one of the many
sub-regions �components� of the phase space because of a
finite observation time. His treatment showed that all glasses
�structural and spin� can be treated as broken-ergodic sys-
tems. Palmer’s formalism, however, requires a choice for the
probabilities of the “component ensemble.” Palmer exam-
ined in detail the “unbiased component ensemble” which ig-
nores all history dependence. Palmer’s formalism, with Jäck-
le’s history dependent component probability distribution,26

forms the basis of our analysis.
Jäckle also proposed a second formulation, termed the

disordered solid �DS� view. According to Jäckle,26 in the DS
view “the glass free energy is determined by the vibrational
degrees of freedom alone, and is similar to the free energy of
the corresponding crystal.” The DS view is associated with
an entropy loss ��S�Tg��0� in LGT. This raises questions
since there is no latent heat in LGT.

The energy landscape approach is known to provide
relatively transparent and generic view of various thermody-
namic changes and kinetic processes taking place in a liquid
near Tg.1,31 The energy landscape framework has renewed
interest in Palmer’s broken-ergodicity formalism. It has been
discovered that dynamics in a landscape involves regions of
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phase space—called metabasins—where a system resides for
extended periods of time. These metabasins resemble the
“components” proposed by Palmer. The main objective of
our paper is to examine a synthesis of the following four
well-established concepts assuming that the landscape is
known: �1� tobs as a key extrinsic time scale of LGT, �2�
existence of tobs-dependent metabasins in the landscape, �3�
application of broken-ergodicity concepts to systems con-
fined to metabasins, and �4� a history dependent �QL� prob-
ability distribution for metabasins.

A somewhat similar approach has been reported by
Wales and Doye.32 However, their focus is on detailed analy-
sis of a particularly simple landscape model to examine fra-
gility values as a function of system parameters. Unlike their
work, our goal is to develop a generic framework for exam-
ining LGT and to point out certain related issues which pre-
viously have not received much attention. We do not analyze
a landscape model to learn about LGT. We use an analyti-
cally soluble model to demonstrate the consistency of con-
cepts involved in ECL.

The outline of this paper is as follows. Section II pre-
sents the ECL description. Section III illustrates the ECL
description using a model landscape. Section IV compares
the ECL description with existing models of LGT. New con-
sequences of ECL are reported in Sec. V. The last section
concludes this work.

II. GLASS AS A EXTRINSICALLY CONSTRAINED
LIQUID

Since the enthalpy landscape plays a key role in our
discussion, we review the relevant features of such a land-
scape in Sec. II A. We then introduce the relevant concepts
of activated dynamics in Sec. II B discuss the phase space
partitioning in Sec. II C, and present the ECL description of
glass in Sec. II D. Expressions for the property changes at
LGT are derived thereafter.

A. Enthalpy landscape

As described by Debenedetti and Stillinger,31 an en-
thalpy landscape �HL� is an enthalpy hypersurface as a func-
tion of the system’s microstate described by 3N−6 positional
coordinates of atoms and a coordinate for the system vol-
ume. Here, N is the total number of particles in the system.
Because crystallization plays no role in LGT,33 we consider
only the HL of a supercooled liquid �SCL�. This is obtained
from the HL of an equilibrium liquid after removing all mi-
crostates containing crystals of size greater than �or equal to�
the critical crystal nucleus size. Geometric features of an HL
of interest to LGT are as follows.

1. Inherent structure „IS…

The rugged HL consists of a large number of enthalpy
minima. Each minimum represents a mechanically stable
state and is known either as a “configurational state” or as an
“inherent structure” �IS�.34 The total number �	� of ISs is
extremely large, on the order of �N!�exp�constant N�. The
enthalpy distribution of IS states, Hi

�IS� �i=1, . . . ,	�, deter-
mines the thermodynamic properties of the system.

2. Basins „B…

Associated with each IS is a set of mechanically unstable
microstates that drain into the IS upon energy minimization.
This set is called the basin of the IS. The basin states repre-
sent the “vibrational” states at T�0. The system is at the IS
only at T=0 K. The shape of a basin, especially its principal
curvatures at the IS, determines the vibrational frequencies in
the basin. For convenience, we assume that all basins have
the same shape. As a consequence, the vibrational states of
all basins are identical. Further, for simplicity, we assume
that basins are isotropic, harmonic, and are characterized by
a single vibrational frequency �
�.

3. Activation free energy „F…

Transitions between two ISs may occur along several
possible paths �possibly transiting through multiple interme-
diate ISs�. Each of these paths goes through a maximum in
the enthalpy at some configuration called the saddle point
configuration. The difference between the saddle point en-
thalpy and the enthalpy of the originating IS is called the
barrier enthalpy H� . In the hyperdimensional space, there may
exist a number, say, nij�H� ij�, of different paths having the
same barrier enthalpy. The most probable path �called the
activation path� is the one having the lowest activation free
energy F� ij, from IS�i� to IS�j�:

F� ij = H� ij − kBT ln�nij� . �6�

A point to emphasize is that barrier enthalpies �and
hence free energies� of activation paths in the two opposite
directions are, in general, not equal: H� ij�H� ji. In principle,
all activation pathways of a given HL can be identified and
the range of barrier free energies F� ij �from a minimum F� K to
a maximum F� C� can be determined. The distribution of bar-
rier free energies �F� K�F� ij �F� C� determines the activated
dynamics in the HL.

B. Activated dynamics in an enthalpy landscape

Two qualitatively different dynamical processes can be
distinguished in an HL:

�a� Intrabasin �or vibrational� relaxation �VR� is a very fast
nonthermally activated process that occurs within each
basin. Physically, VR corresponds to temperature
equilibration between the basin and the thermal reser-
voir. The configuration �IS� of the system does not
change during VR. In the following, we assume that
VR is fast enough so that, at any instant, the tempera-
tures of all basins are equal and the same as that of the
heat reservoir.

�b� Interbasin transitions �or basin hopping� are slow, ther-
mally activated processes in which the system configu-
ration hops among different basins. These interbasin
transitions are the source of structural relaxation and of
LGT.

According to the transition state theory,35 the transition
rate �ij from IS �i� to IS�j� at a temperature T is expressed as
follows:
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�ij = 
 exp�− F� ij/kBT� . �7�

Here, kB is Boltzmann’s constant.
The probability Wij of transition from IS�i� to IS�j� in

time t is

Wij�T,t� = 1 − �1 − exp�− F� ij/kBT��
t. �8�

The activation pathways from i to j are considered impass-
able �or closed� when

Wij �  , �9�

where  is a small positive number. Using Eqs. �8� and �9�, a
maximum passable free energy barrier F* can be defined as
follows:

F� *�T,tobs,� � kBT ln
1

�1 − �1 − ��1/
tobs��
. �10�

Only pathways with F� ij �F� * are passable �i.e., open� in
the observation time. When the maximum barrier energy F� C

is less than F� *, all barriers are passable and the system is able
to sample an adequate number of basins within the time of
observation so that the average of a property over tobs is
effectively equal to the infinite time average �and the phase
average for ergodic systems�. This state is called ergodic and
describes the liquid state.

When F� K�F� *�F� C, some pathways become impassable.
However, the system may still remain ergodic as alternative
paths may still be available in the hyperdimensional land-
scape for the system to sample a representative number of
ISs. As F� * decreases further �as a consequence of cooling,
see Eq. �10��, more and more pathways become impassable.
At low temperatures, the HL partitions into a set of nonover-
lapping components among which no transitions occur dur-
ing the observation time. A system with a partitioned HL is
called broken ergodic within the observation time.

In principle, it is possible to determine whether an HL is
partitioned at a given temperature and for a given tobs. The
HL can be mapped into a graph whose vertices are the ISs.
Each pair of vertices, between which transition paths are
allowed during tobs in both directions, is connected by two
directed edges. One edge, from vertex i to vertex j, is as-
signed the value F� ij and the other the value F� ji, representing
the �reverse� transition from j to i. Pair of vertices having
allowed transitions only in one direction is connected by a
single directed edge. Vertices that do not have any allowed
transitions in either direction between them do not share an
edge. Such a “transition graph” of the HL is connected at
high temperatures �i.e., there exists at least one path between
any two vertices�. At a sufficiently low temperature, the
graph breaks up into pieces among which there are no con-
necting edges. We refer to such a broken-ergodic system,
having a partitioned HL because of a finite time of observa-
tion, as an “extrinsically constrained” system. Stein and
Newman36 have used the term “structural confinement” for
such systems. However, we prefer the term extrinsic con-
straining as it describes more appropriately the fact that the
confinement is strictly a consequence of the finite time of
observation. It is also useful to point out that extrinsic con-
straining is different from “trapping” where a system remains

trapped even when tobs becomes large �a phenomenon some-
times referred to as “weakly broken ergodicity”37�.

C. The LGT partition and metabasins

The ECL description considers a glass as a broken-
ergodic state, the LGT as the process of breaking ergodicity,
and the finite tobs as the cause of ergodicity breaking. The
time of observation is an externally imposed constraint on
the observed behavior of the system and plays an important
role in defining a laboratory glass. It is clear that the impass-
ability of pathways begins, upon cooling, at a temperature TC

�corresponding to the highest barrier F� C and defined in a
manner similar to Eq. �10��. As the temperature decreases,
more of the remaining barriers become impassable in the
order of decreasing barrier free energies. Tg�tobs� is the onset
temperature below which a given HL becomes partitioned.
We refer to this partition of the HL at Tg�tobs� as the LGT
partition. The LGT partition is not an intrinsic property of the
landscape as it depends on T and tobs.

Following Stillinger,38 we refer to the components of the
LGT partition as metabasins �MBs�, each of which may con-
tain many single basins. There is ample evidence from simu-
lations for the existence of the well-defined MBs.39,40 The
process of partitioning continues as the temperature de-
creases below Tg and comes to a stop at some low tempera-
ture, TK�tobs�, where the smallest barrier free energy �F� K�
becomes equal to F� *. The value of TK�tobs� is greater than
that of the well-known Kauzmann temperature TK, which is
defined only in the limit of large tobs.

3,6,7,31

The question of interest is that, given an HL and tobs,
how one can determine the LGT partition �and the value of
Tg�. In principle, the LGT partition can be identified as fol-
lows. For given values of T and tobs, F� * can be calculated
�using Eq. �10�� and all IS pairs can be classified as having
transitions or not. Then, using the transition graph, one can
determine if the HL is connected. At high T, the HL is fully
connected �i.e., there is no partitioning and the number of
components is simply 1�. At low T, the HL is partitioned.
Thus, if one studies the number of components of the HL as
a function of T �keeping tobs fixed�, Tg can be determined.

In MD simulations, one can determine whether an HL is
partitioned at a given temperature by starting the system con-
figuration point in a randomly selected IS, propagating the
system for a time equal to tobs, and keeping track of all the
different basins that the system visits in this process. By
repeating such experiment several times from the same start-
ing basin �but with different randomly selected initial veloc-
ity directions�, one can identify the MB containing that par-
ticular starting IS. Then, by repeating the process from
different ISs, one can determine the remaining MBs. Finally,
this procedure can be repeated at different temperatures. One
can determine Tg as the temperature where the partitioning
begins upon cooling.

D. The extrinsically constrained liquid description of
the glassy state

The ECL description consists of two postulates about the
metabasins �MBs�:
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�i� For T�Tg�tobs�, the HL partitions into a set of MBs
among which there are no transitions. The system is
confined in a MB with a probability equal to the frac-
tion of the relaxation time spent in that particular MB
by the liquid at Tg�tobs�.

�ii� At Tg �tobs�, each MB is ergodic.

While the first postulate provides a method of calculat-
ing the probability of confinement in a particular MB, the
second postulate permits the calculation of the thermody-
namic properties of MBs. The two together are needed to
calculate the properties of a glass. The underlying assump-
tion behind the ECL postulates is

�MB�Tg� � tobs � �HL�Tg� . �11�

In the following, we assume that the LGT has been identified
and has a total of M metabasins. Using the first ECL postu-
late, the probability PK

�MB� for the system configuration point
to be confined in the Kth MB �K=1, . . . ,M� is given by

PK
�MB��Tg�tobs�� = �

i�K�tobs�
pi,L

�B��Tg�tobs�� . �12�

Here, pi,L
�B��Tg� is the probability that, in the liquid state at Tg,

the system configuration point is in the ith basin. The MB
probabilities PK remain unchanged unless the glass is al-
lowed to relax.

A property QK of the Kth MB at some temperature
T ��Tg� is the restricted ensemble average of all basins
within that MB:

QK
�MB��T,Tg�tobs�� = �

i�K

pi
�B��T�

PK
�MB��Tg�tobs��

Qi
�B��T� . �13�

The property QG�T ,Tg�tobs�� of a glass can now be expressed
as the weighted average of QK

�MB� over all MBs:

QG�T,Tg�tobs�� = �
K

M

PK
�MB��Tg�tobs��QK

�MB��T,Tg�tobs�� .

�14�

E. Some terminology: Vibrational, relaxational, and
configurational properties

A property Q of a system is given by the weighted av-
erage of its values, Qi

�B�, in all basins:

Q�T� = �
i=1

	

pi�T��Qi
B�T�� . �15�

The change in Q, �Q, as a result of a temperature change is
given by

�Q = �
i=1

	

�pi�Qi
B�T�� + �

i=1

	

pi	dQi
B

dT

�T . �16�

The last term in Eq. �16� is the basin contribution �QB. This
term accounts for the changes in the vibrational states of
basins with temperature. The first term on the right hand side
is due to changes in pi due to inter-MB transitions. We refer
to this term as the relaxational contribution �QR.10 When

relaxation is sufficiently fast so that the system maintains
equilibrium at all times, the relaxational part is called con-
figurational property �Q of the liquid:

�Q = �
i=1

	
dpi,L

dT
Qi

B�T� . �17�

F. Property changes in observables at LGT

From Eq. �15�, an observable property QL�T� of the liq-
uid is given by

QL�T� = �
i

	

piL
�B��T�Qi

�B��T� . �18�

From Eqs. �14� and �18�, it follows that

QG�Tg,Tg�tobs��

= �
K

M

PK
�MB��Tg��

i�K

�pi
�B��Tg�/PK

�MB��Tg��Qi
�B��Tg�

= QL�Tg� . �19�

In other words, there is no change in any observable first
order property at Tg. In particular, there is no change in
enthalpy, implying no latent heat in LGT.

The relaxational contributions to properties show signifi-
cant changes at LGT. For example, Palmer30 and Jäckle26,27

have shown that there is always a drop in the heat capacity in
going from the liquid to the glassy state. The configurational
entropy of a liquid is

�SR,L�Tg� = − kB�
i

	

piL
�B��Tg�ln�piL

�B��Tg�� . �20�

Using Eq. �18�, the relaxational entropy of a glass, �SR,G�Tg�,
is given by

�SR,G�Tg� = �
K=1

M

PK,L
�MB��Tg��SR,K

�MB��Tg� . �21�

Here, �SR,K
�MB��Tg� is the relaxational entropy of the Kth

MB. The entropy loss at LGT is the difference �SR,L�Tg�
−�SR,G�Tg� and is given by �using Eqs. �20� and �21��

�S�Tg�tobs�� = − kB�
K

M

PK,L
�MB��Tg�tobs��ln PK,L

�MB��Tg�tobs�� .

�22�

There is a growing trend to refer to �S as the “complexity.”41

�S is also equal to the “relative entropy” of the glass.42 If all
MBs had equal probability, the complexity will take its maxi-
mum value kB ln�M�, much like Boltzmann’s expression for
the entropy �kB ln 	�. Using Eqs. �19� and �22�, the free
energy change �F at LGT is given by

�F�Tg�tobs�� = − Tg�S�Tg�tobs�� . �23�
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III. ECL IN A MODEL LANDSCAPE

A. A model HL

We illustrate the concepts of the ECL description of the
glassy state by simulating dynamics during cooling at con-
stant rate for a simple model landscape. The model HL is
designed to be extremely simple so that the equilibrium and
the constrained equilibrium properties can be solved analyti-
cally. The model HL �see Fig. 1� has two well-defined MBs:
the ground state MB �labeled A� and the excited state MB
�labeled B�. All ISs within each MB are degenerate. The IS
energy in B is greater than the IS energy of A �which is taken
as the ground level� by an amount equal to H. There are a
total of nA ISs in A and nB in B. There are two sets of barriers
in this model HL. All intra-MB barriers �referred to as �
barriers� have equal enthalpy �=H /2�. The inter-MB barrier
�i.e., the � barrier� has a height of 3H �from the A side�.

B. Entropies of the liquid and the glassy states

Since, in this model HL, all ISs within a MB have equal
probability, the liquid configurational entropy is expressed as

�SR,L�T� = kB�PA,L�T�ln� nA

PA,L�T�


+ PB,L�T�ln� nB

PB,L�T�
� . �24�

Depending on the value of tobs, two types of glasses may
form in this HL. For a sufficiently small tobs �or high cooling
rate�, the system is trapped within a single basin and the
entropy of the resulting glass is zero. We refer to it as the
“zero entropy glass.” When the cooling rate is slow, the sys-
tem is first trapped in one of the MBs forming an � glass
�i.e., a normal glass�. The relaxational entropy of such a glass
�when ISs within each MB are degenerate� is, using Eq. �20�,

�SR,G�Tg� = kB�PA,L
�MB��Tg�ln nA + PB,L

�MB��Tg�ln nB� . �25�

Using Eq. �22�, the entropy loss �i.e., the complexity� in LGT
is given by

�S�Tg� = − kB�PA ln PA + PB ln PB� . �26�

For the model HL, �S can be calculated analytically and its

variation with Tg goes through a maximum kB ln�2� before
saturating to the high temperature limit of 0.637kB.

C. Evolution of properties during linear cooling

The evolution of IS probabilities was studied for the
model system by solving a system of master equations.43

Results for a constant cooling rate are shown in Fig. 2�a�. It
shows that the loss of entropy occurs continuously over a
range of temperatures. Inter-MB transitions, going over the
largest barrier, are the first to freeze and the intra-MB tran-
sitions going over the lowest barriers are the last to freeze.
The vertical line in Fig. 2�a� shows the glass transition tem-
perature calculated according to the Moynihan method,25

which assumes that there is no loss of entropy at Tg �depicted
by the dotted curve labeled QL in Fig. 2�a��.

Figure 2�b� shows the change in the relaxational free
energy corresponding to Fig. 2�a�,

FIG. 1. Model HL containing two metabasins. Metabasin A has three and B
has six ISs. All ISs have the same vibrational frequency �=0.5 GHz�.

FIG. 2. �a�: Relaxational entropy �in units of kB� for a liquid cooled at a
constant nondimensional rate of 103 �in the model HL of Fig. 1� from a
nondimensional temperature of 4. The dark curve in the middle �labeled
SCL� gives the equilibrium entropy of the supercooled liquid. The lower
curve corresponds to the ECL description. The upper curve �QL� corre-
sponds to the commonly accepted view of glass �see Sec. IV�. Temperature
is in the units of H /kB �3H is the maximum barrier height in Fig. 1�. The
value of Tf

��� gives the temperature where the entropy of the supercooled
liquid equals that which is “frozen” in the glass under the traditional �QL�
view of the glass transition. �b� Variation of the excess relaxational free
energy �over that of the liquid free energy� during cooling at a constant rate
�same experiment as in �a��.
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�FR�T� = �HR�T� − T�SR�T� . �27�

This figure shows that the relaxational free energy of a glass
is always greater than that of the liquid. This is expected
since liquid state is the minimum free energy state.19

D. Isothermal structural relaxation of a glass

During SR of a glass, the constraint of tobs is relaxed and
the laboratory time becomes equal to tobs. As a consequence
of removing the tobs constraint, the inter-MB transitions be-
come active. SR begins rapidly over � barriers within MBs.
During this � relaxation, the probability of being confined in
a MB and the complexity value do not change with time.
Nonetheless, the entropy of the system increases as the prob-
ability distribution within each MB “spreads out.”

In the � relaxation, entropy changes with time primarily
because of inter-MB transitions. The complexity increases
from a value of zero in the glassy state to its equilibrium
value at T. Since intra-MB relaxation is always present even
during inter-MB relaxation, there is a contribution from the
intra-MB term as well during the � relaxation. Figure 3�a�
shows entropy change during isothermal relaxation of an �
and of a zero entropy glass.

Notice that, during relaxation in this model HL, the sys-
tem exchanges enthalpy with the reservoir. Figure 3�a� shows
that entropies of both glasses exhibit a maximum during re-
laxation. Even though the entropy shows a maximum, the
free energy decreases in both cases as shown in Fig. 3�b�.
This is expected since relaxation is a spontaneous irrevers-
ible isothermal process and, by the second law, the free en-
ergy must decrease monotonically.

IV. COMPARISON OF ECL DESCRIPTION WITH
OTHER MODELS OF GLASSY STATE

As mentioned earlier, Jäckle26 argued in favor of the QL
view of glass. Figure 2�a� shows the configurational entropy
variation according to the QL view for the liquid cooled at a
constant rate in the model HL. Note that the entropy of the
QL glass remains above that of the liquid at low tempera-
tures leading to a finite residual entropy. Since in this view
the liquid and the glass are considered identical macrostates
at Tg, a glass should not exhibit any relaxation at Tg.

The ECL description is more general than Jäckle’s sec-
ond formulation—the disordered solid �DS� view.26 A glass
is confined in a single MB containing many basins. This
permits a glass to have some configurational degrees of free-
dom and allows a possibility for secondary �intra-MB� relax-
ations at lower temperatures.

V. DISCUSSION OF THE ECL DESCRIPTION OF THE
GLASSY STATE

A. ECL and the observed features LGT

It is useful to recap how the observed features of LGT
�listed in Sec. I� are satisfied by the ECL description of glass.

�i� LGT is not a sharp transition. As mentioned earlier,
the pathways start to become impassable at a temperature TC

that is higher than Tg. Gradually, more and more pathways

become impassable upon cooling. Thus, LGT is intrinsically
a continuous transition.

�ii� Tg decreases as tobs increases. This follows directly
from Eq. �10� since increase in tobs leads to an increase in the
value of F* and requiring a lower Tg to make pathways im-
passable. The tobs dependence of Tg is the key to understand-
ing the history dependence of the properties of glass.

�iii� No latent heat in LGT. This follows directly from
Eq. �19� because of the fact that volume and energy being
basin properties are not changed in LGT.

�iv� Changes in higher order properties. Since LGT is a
transition from an ergodic to a broken-ergodic state, the sec-
ond order properties �like the heat capacity, compressibility,
and expansion coefficient� show finite changes. This is a sig-
nature property of broken ergodicity as has been shown by
Palmer.30 The discontinuities appear rounded for finite cool-
ing rates.

�v� Glass relaxes spontaneously to the liquid state. Dur-
ing a relaxation experiment �where a glass is held at a fixed
temperature�, the laboratory time �t� becomes equal to the

FIG. 3. �a�: Entropy evolution during isothermal structural relaxation at a
temperature of 1

4 . The dashed curve represents a zero entropy glass
�quenched and confined to a single IS by quenching from T=4 to T= 1

4 �, the
thin continuous curve represents an � glass formed by cooling at a constant
rate from T=4 to T= 1

8 and then immediately up quenching to T= 1
4 , and dark

continuous curve the thermal equilibration of an up-quenched liquid from
T= 1

8 to T= 1
4 . Also shown is the equilibrium value of the configurational

entropy of the liquid at T= 1
4 . �b� Change in relaxational free energy during

isothermal relaxation for cases corresponding to those shown in �a�. Note
that the free energy decreases in all cases. The units are the same as in Fig.
2.
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tobs. As t increases, so does tobs. Because of the removal of
the tobs constraint, the glass relaxes spontaneously.

�vi� Glass and liquid are not equivalent macrostates at
Tg. In the ECL description, all pathways are passable in the
liquid state and the HL remains connected. This is not the
case in the glassy state �with partitioned HL� even though
both are at the same temperature �i.e., Tg�. Since they are
different, a glass being the nonequilibrium state relaxes to
the equilibrium liquid state �even at its own Tg�.

B. The crossover effect

The crossover effect refers to observing a nonmonotonic
change in a property during isothermal isobaric relaxation of
a glass. In the ECL view, the crossover effect has a natural
explanation. During relaxation, the entropy of the system
changes because of the changes in vibrational contribution
�intrabasin relaxation� and because of the complexity term
�due to inter-MB transitions�. The complexity term always
increases �see Eq. �22�� since its starting value in the glassy
state is zero. However, the sign of the vibrational contribu-
tion depends on whether the system is up quenched or down
quenched to the relaxation temperature �prior to the start of
the relaxation�. The vibrational contribution to entropy de-
creases after down quenching because of a drop in tempera-
ture �but increases after up quenching�. Thus, after down
quenching, the two contributions vary in opposite directions
�increase of complexity and decrease of vibrational entropy�.
Thus, only after down quenching, the entropy may show a
maximum �indicating a crossover effect� during relaxation.
Whether the crossover effect is actually observed depends on
the magnitude and the kinetics of the two contributions. This
is in agreement with the results of a recent MD simulation
study of o-terphenyl44 according to which “we find that only
for sufficiently deep quenching temperatures and long aging
times, it is possible to reproduce in simulations the crossover
effects.”

C. ECL and the second law

According to Eq. �18�, there is no change in enthalpy at
LGT. However, there is a loss of relaxational entropy in go-
ing from liquid to glass as the inter-MB transitions freeze
out. A loss of entropy in LGT has also been suggested by
Wales and Doye,32 by Thirumalai et al.,45 by Speedy,46 by
Balmakov,47 and by Kivelson and Reiss.48 A loss of entropy
accompanied by no change in enthalpy appears to violate the
second law of the thermodynamics. How to resolve this con-
tentious issue?

First, we reiterate that even though we are considering a
nonisolated system, the system is effectively isolated at Tg

since there is no change in energy or in the volume at LGT.
Thus, the conflict is not because the system is not isolated.

Second, this apparent violation of the second law is also
not because of some concern with the definition of entropy
for the glassy state. The glassy state is a broken-ergodic state
and each MB, being ergodic, follows the same definition of
entropy as that for an equilibrium state as long as all the
appropriate constraints are properly accounted for.49

Third, there is no disagreement about the absence of
latent heat in LGT. This is an experimentally established fact
and is accepted by all previous treatments. Thus, the absence
of latent heat in LGT is not an issue.

It seems to us that as long as the glassy state is restricted
to a subset of the phase space, there has to be loss of con-
figurational entropy. Theories that conclude no entropy loss
at Tg use a thermodynamic definition of entropy �namely, as
the temperature derivative of the free energy�. Thus, the issue
comes down to the definition of configurational entropy: Is it
given by the number of thermodynamically allowed mi-
crostates or the number of kinetically accessible microstates
visited by the system during the time of observation? There
is apparently no clear answer to this question in the
literature.42,43,49 If we assume the latter �as we do in this
paper�, then the loss of entropy at LGT is real.

However, we suggest that a loss of entropy without la-
tent heat at LGT does not violate the second law. This is
because the constraint of tobs, responsible for LGT, is an
external constraint imposed on the system by the observer.
The application of this constraint “drives” the LGT. The
LGT is, therefore, not a spontaneous process. The second
law applies only to spontaneous processes and, therefore,
does not apply to LGT.

It is useful to point out that the process which is the
inverse of LGT, namely, the structural relaxation of a glass
�to the liquid state� at Tg, as a consequence of removal of the
constraint of tobs, is an spontaneous process. During this re-
laxation process, the entropy increases as is required by the
second law. This increase of entropy during relaxation at Tg

is consistent with the entropy loss during LGT.

VI. SUMMARY

In summary, we conclude that there is convincing sup-
port for the “extrinsically constrained liquid” description of
glass. According to the ECL view, LGT is essentially an
“entropy reducing,” nonspontaneous ergodicity-breaking
process without any latent heat. The description provides a
natural explanation of crossover experiments, of existence of
secondary relaxations, of the existence of excess heat capac-
ity in the glassy state, and of the effects of thermal history
�i.e., cooling rates� on the properties of glass.
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