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First a very quick brief review

p(T.)= p(T))+a, AT

a, is the slope of the p vs T graph
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o is made up of two contributions: a and a

vibration structural relaxation *

a,=a,+a/T)
)
— s |

A

(04

AT



What happens when a liquid is cooled ?

liquid
glass (equilibrium)

(Nonequilibrium) A
A s/

p,H,V
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Glass transition region
( departure from equilibrium )
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In the liquid region, relaxation processes
are almost instantaneous compared to
the observation time.

liquid

relaxation observation

In the glass region, relaxation processes
are so slow that they are not observed
during the observation time.

glass

relaxation observation

In the glass transition region, relaxation
times are comparable to the observation
time.

glass—transition

. -~ .
relaxation observation



Definition of the Fictive temperature

v

Tool viewed a glass at temperature T, as having the same structure
as a super cooled liquid at temperature T,, i.e. T; acts almost as a
map between a nonequilibrium glass and an equilibrium liquid.
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Cooling rates and the Fictive temperature

] T;
The glass line for a quench ¢ = ar — X
Immediate departure from the liquid line
q, faster than q,
T,

q, faster than q,
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Temperature



The Ritand and Napolitano and Spinner experiments

A equilibrated line

A The equilibrated n, value

|

sample

T, T T, t

A single Fictive temperature is insufficient.



Liquids can be classified as either “strong or “fragile”
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A Strong Liquid
(Arrhenius Behavior)
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A Fragile Liquid
( Non Arrhenius Behavior )

Almost all liquids are fragile.
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It is the slope. It is a measure of how
. - m = M “fragile” a liquid is.
Definition of Fragility: T
dl =
T
Ref: A.K. Varshneya, Fundamentals of T=T,
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Inorganic Glasses.
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There is a minimum to fragility. The
minimum of fragility is the slope of
the strong line !



Recall from Lecture xxx that the rate of

What does relaxation mean ? L :
change is directly proportional to the

Or “_J: ” ope .
How does p “relax” toward the super cooled distance” from equilibrium.
liquid line ?
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glass line dt T

p(T.0)
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super cooled liquid line ( equilibrium)

or)= (1)

T

Temperature
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Derivation Of TOO|'S equation (The derivation will only seem painful. Itisn’t.)

Recall from lecture 13, that  A) p(T)=p,(T,)+8p,+Ap,
p(T)=p,(L)+a (T, -T)+a (T-T)

The vibrational contribution to p(T)is B) p, (T) =P, (TO)+OCg (T—To) Recall that o, = at,,

Subtracting A) from B) yields ' these terms cancel l

p(T)=-p.(T)=[p.(T,)+a.(T,-T,)+a (T -T)|-[p,(T,)+ o (T -T,)]

p(T)—m(T)=peq<n>—pv<n>+\wf>»n<—raL—afm/

px(T) px(T ) a =0 -,

Q) P.S.(T) = Pa,s(To)"‘ O‘X(Tf _To) The structure can not change past the Fictive temperature.

Taking the time derivative of C) yields

dt T dt




dp _p,-p

Recall on slide 9 that we stated E)
dt T

p is the sum of the both vibrational and structural contributions as F)  p(T.t)=p,(T)+p,(T)

When t >0, we obtain G) p(T.°)=p,(T)+p,(T.)

) add and subtract

Further, we can rewrite eq. A) as p(T) =p, (T )+aL (T -T. )+O!g (T—T the same term

p(T)=p,(T)+a, (T, -T,)+a (T-T)+a Tl -aT

Nange these terms

p<T)=peq(T:))-l_aL(T_T:))-I_ag(T_Tf)-'_aLT} _aLT

H) p(T)=p,[T)+a (T -T)+(a, - )T, -T)=p,([T)+a(l-T)

p.,(T)




Substituting F) P(T.t)=p,(T)+p,(Tt) and G) p.( p..(T) IntoE dp _DP,~P

/\< t

yields d( T)+p,( Tl‘ T)+p,( Tt

dt T

1) dp,(T 1) _ p.,(T)-p.(T+) Recall p, has no time dependence.
dt T

Now rewriting H) p(T)=p,(T)+a(T,-T) as p(T)-p,(T)=a(T,-T) and substituting

F) p(T4)=p,(T)+p(T1) and  G) P, (T)=p,(T)+p,(T) vyields



Equating D) dps<T) de and |) dps(T,l‘) peqs(T)—ps<T,l‘)

and substitutingineq.J))  p,(T.1)-p,(T)=o,(T, -T)

Tool’s eq.
finally gives dpS(T) =, a1, = peq‘Y(T)_p“(T’t) = as(Tf _T) > dT, _ I -T
dt dt T T dt T

What is the graphical meaning of Tool’s equation ?

What happens to T,, when a glass is changed T, to T, ?

In particular, what happens when an up quench from T, to T, followed by an isothermal hold at T, ?



p, H,V

T,
%

T; changes with time according to Tool’s equation.

r, T,-T
dt T

What did Tool use fort ?



What is a good choice fort ?

We recall that = G t. So T =1/G = Kn. This makes perfect sense. If the system is more viscous,
the relax time should be larger ?

Tool assumed that over a small region
of T, n could be approximated as n=ne"" wherenr,and A are constants.

Tool quickly realized that this did not account for the data. He postulated that  must depend
on the Fictive temperature T;.

His argument goes as the following. If a liquid were cooled quickly, it would have a larger T;
than a slower cooled liquid. This larger T; would correspond to a more “open” structure
which would reduce the m. If the liquid were cooled slower, then the T, would be smaller
and the structure is “closer” together and would have a larger 1. To account for this, Tool
(1946) assumed that a better choice of ) would be

-(AT+A,Ty) (AT +A,T;) (AT +ALT,)

n="mn.e So we can finally write 7=Kn=Kn.e =T.e

0

where 1, and A, and A, are constants.

dr. (T -T .
Tool’s equation becomes df =( / )e(“ ATy
4 T

0



However, this equation is incorrect. Why ? Problems with Tool’s equation.

Tool’s eq. dT, _ I, -T can not describe Ritand’s or Napolitano’s and Spinner’s experiment.
dt T

If a glass is equilibrated at T, then T;=T,. Recall that when the index of refraction of the
sample equals n,, it is placed in a furnace at temperature T, The same index of refraction
implies the same structure and according to Tool the same T.. Since T=T, and T;=T,, the
right side of Tool’s equation equals zero, so T;=a constant =T, . ng,,,. should remain
fixed. It doesn’t !

A equilibrated line

The equilibrated n,
value




What is the fundamental problem with Tool’s equation ?

ar, T,-T
dt T

Tool’s equation only has one relaxation time.

Napolitano and Macedo assumed that there were two relaxation times, one fast the other slow.

They assumed that n(t) must have the mathematical form

| 1 o n(t)=n; +1(Cer‘+C e’z)
A 5 n, +Ce" 2

where C, and C, are constants and t, << 7, .

g e q




In some sense this result is not too surprising. Recall from lecture xxx, that a stretched exponential
often fit the data better. Further, stretched exponentials can be approximated by the Prony series.

exp

b
e e_(’“"] N ia e-,f where T, is an experimentally determined parameter, 0 <b <1, and the
il a,’ssumto 1.

Can we do any better ? Yes! The Narayanaswamy Model.

In order to fully comprehend the Narayanaswamy model, we first need to understand the
concept of thermorheological simplicity (TRS).



What is Thermorheological Simplicity ?

We can define the relaxation respond at a temperature T as R=

Therangeof Ris1toO,i.e.ift=0,R=1andift=9o, R=0.

Suppose the relaxation response of some property p of a glass has been measured at some
temperature T, This same relaxation experiment is then carried out at two new temperatures T,
and T; suchthatT,>T,>T;.

A graph of R versus log t, might look like the following

log t

In certain cases, the form of the response R is identical in shape but only shifted. At atemperature T,<T, ,
the response R is delayed in time since the kinetics are slower. Likewise for T;,since T; >T,>T,. Thisis
called TRS. What are the mathematical implications of TRS ?



As stated earlier, often the response function R can be fit to a stretched exponential. Further the stretched
exponential can be approximated by a Prony series as shown below.

b . . .
%] oot where T,,, is an experimentally determined parameter, 0<b <1, and the a,’s

sum to 1.

The temperature dependence comes from the t,. In order for TRS to occur, the temperature dependence
in all of the t,'s must be the same. To see this, suppose that the Prony series of R is composed of only
two terms. Let’s assume that t, has an Arrehinus dependence,

AH

T, =ae “ onTwhilet, has an exponential dependence, 7, =a,e

1 1 2 2

—kT

Clearly, if the temperature T were doubled to 2T, then the response function would look radically different
at the two temperatures and R would not exhibit TRS.




However, if all of the t,’s of a system had the same temperature dependence, then the system would
exhibit TRS. If a system exhibits TRS, then all the t’s can only differ from one another by some
temperature independent multiplicative constant. If we call this constant A | for the relaxation t,,, then

mathematically we have

T where the T contains all of the functional dependence on the temperature T.

T

n = An
It
2

We can now write the response function Ras ~ R=Yae

n=I1

4 .
The response function R is only a function of the ratic —=f === R=Yae " =>ae™
T

If the R for a system were measured at any value of T and then graphed as R vs. 3, all of the R’s at
various T’s would lie on top of one another, i.e. there would be one Master graph.

> R Forany T

log t Log f5



Since there is one Master graph of R, let’s define a reference temperature T, at which the Master graph
would be measured. Further, let’s call the time associated with this reference temperature £. Since
the same graph would result at any temperature T, we can conclude that

. T . .
or more simply E=—¢ where € is called the reduced time.
T

When T=T, x =t. We can view § in the following way. If a system relaxes by some amount at temperature
Tinatimet, §is the time that is needed for the system to relax the same amount at temperature T,, i.e.

R(t,T)=R(5.T)

Pl N &

N N
We may now writeRas R=Yae " =Yae™ =Yae
n=l1

n=1 n=1

Today’s Quiz Stops Here !



What would be the relaxation response if we changed the temperature from T, to T, ? Or in other words,
what is the generalization of the isothermal relaxation response R ?

p(T,.t)- p(T,.)

We call this response M and it is definedas M (¢)=
0= or.0)- p(1.)

This has the same range as R. Whent=0, M,=1 and if t = oo, M, =0.



Using eq. H) on slide 10, we have p(T)=p,(T)+a (T -T)=p(T)+a,(T-T)+a,(T,-T)

- J
Y

i)




Can one assume that the stretched exponential solution for R is valid for M, i.e.

=
s M=e¢'™ correct ?

The ability to write M as a stretched exponential isn’t obvious ! Why ? T, is a function of T(t) and T(t).
This non-trvial temperature dependence needs to be taken into account. This was the problem facing
Narayanaswamy !

He invoked TRS on Mp I How did he do this ?



T
Recall that for TRS the reduced time is given by & = Tj’,)f
How can € be modified to account for a temperature that is changing with time ?

If we assume that during an infinitesimal change in time, dt, that T doesn’t vary much, we can write the
differential of the reduced time as

Tr

= 0]

dt Integrating thisfromOtot yields &= f dt' = Trf

o|7(1)]

_ T (E)-T.
Rewriting eq. J), M (r)= Ll)-T. we obtain M, in terms of the reduced time & M,(§)= TE)-T.



We can rewrite eq. H), P(TJ) =P, (T)+0‘S(Tf (f)—T) interms E as p(T,E) = peq(T)+OtS(Tf (E)—T)

]

Rewrite M, as T,(§)-T,=-M (§)AT where AT=T,T, p(T..€) = p(T,,®)-a ATM (&)

and substituting, we obtain



