Optical and Photonic Glasses

Lecture 4:

Glass Composition and Preparations

Professor Rui Almeida

International Materials Institute For New Functionality in Glass Lehigh University

For a given, selected value of V (in fact, it makes little difference whether this is 10^{-6} or 10^{-8} , for example), the T-T-T curve is built by calculating, for each temperature in a range of interest, the time which a fraction V takes to crystallize at a temperature T (at which the nucleation and growth rates are I_v and u, respectively).

The "nose" of the curve, which has the coordinates (t_n, T_n) , defines the **critical cooling rate**, $(dT/dt)_c$, as the *slope* of the line drawn between T_m and the "nose":

$$(dT/dt)_{c} \sim \Delta T_{n} / t_{n}$$

which means that, when the melt reaches T_n after a cooling time $t_n (\Delta T_n = T_m - T_n)$, the crystallized fraction will not exceed the chosen value of V. Actual continuous cooling conditions correspond to lower real values of V and easier vitrification.

Another empirical criterion is: $(dT/dt)_c \sim 10^5 / \eta_f$ (°C/s)

where η_f is the melt viscosity at T_m , in Pa.s .

Note that the "melting" temperature, T_m , may actually be well over T_L .

Spring 2005

Lecture 4

In general, **glass formation** will be favored by: (1) a cooling rate as high as possible; (2) a high viscosity at the nose of the T-T-T curve (and at T_m); (3) absence of heterogeneous nucleation sites; (4) a large liquid-crystal interfacial energy γ ; (5) in multicomponent systems, a large compositional change between liquid and crystalline phase formed (in such systems, glass formation is also favored by a *deep eutectic*, at "low T", where the melt viscosity is higher).

	I I and a second second	Heterogeneous nucleation contact angle (deg)							
Material	nucleation	100	60	40					
SiO ₂ glass ^a	9×10^{-6}	10^{-5}	8×10^{-3}	2×10^{-1}					
GeO ₂ glass ^a	3×10^{-3}	3×10^{3}	1	20					
Na ₂ O·2SiO ₂ glass ^a	6×10^{-3}	8×10^{-3}	10	$3 \times 10^{+2}$					
Salol	10								
Water	107								
Ag	1010								
Typical metal ^a	9×10^{8}	9×10^{9}	1010	5×10^{10}					

^a After P. I. K. Onorato and D. R. Uhlmann, J. Non-Cryst. Sol., 22(2), 367-378 (1976).

(Adapted from: Fundamentals of inorganic glasses, A.K. Varshneya, Academic Press, 1994)

Spring 2005

Lecture 4

Glass composition and preparation

Commercial glass compositions are based on complex mixtures of *glassforming* compounds, glass *modifiers* and *intermediates*, in the Zachariasen/Sun sense previously discussed.

Although most industrial glasses are based on the glass former SiO_2 , many other compounds are normally added, whether also glass formers like B_2O_3 , or other modifiers and intermediates.

We will start by considering the most important case, from an industrial viewpoint, of glasses prepared by cooling from the molten state.

Glass formers

A Partial List of Glasses Formed by Cooling from a Melt^a

Elements	
S, Se	
Te(?)	
Р	
Oxides	
B_2O_3 ,	SiO_2 , GeO_2 , P_2O_5 , As_2O_3 , Sb_2O_3
\ln_2O_3 ,	Tl_2O_3 , SnO_2 , PbO_2 , SeO_2
"Condi	tional" TeO_2 , SeO_2 , MoO_3 , WO_3 , Bi_2O_3 , Al_2O_3 , Ba_2O_3 ,
V_2O_5	SO ₃
Sulfides	
As ₂ S ₃ ,	Sb ₂ S ₃
various	compounds of B, Ga, In, Te, Ge, Sn, N, P, Bi
CS_2	
Selenides	
various	compounds of Tl, Sn, Pb, As, Sb, Bi, Si, P
Tellurides	
various	compounds of Tl, Sn, Pb, As, Sb, Bi, Ge
Halides	
BeF2, A	AIF ₃ , ZNCl ₃ , Ag(Cl, Br, I), Pb(Cl ₂ , Br ₂ , I ₂), and multicomponent mixtures
Nitrates	
KNO3-	-Ca(NO ₃) ₂ and many other binary mixtures containing alkali and alkaline earths
nitrat	tes
Sulfates	
KHSO.	and other binary and ternary mixtures
Carbonat	es
K ₂ CO ₃	-MgCO ₃
Simple or	ganic compounds
O-Terp	henyl, toluene, 3-methyl hexane, 2,3-dimethyl ketone, diethyl ether,
isobu	tyl bromide, ethylene glycol, methyl alcohol, ethyl alcohol, glycerol, glucose
As drop	olets only: m-xylene, cyclopentane, n-heptane, methylene chloride
Polymeric	organic compounds
Exampl	le-polyethylene (-CH ₂ ·-), and many others
Aqueous	solutions
Acids, b	bases, chlorides, nitrates, and others
Metallic a	llovs by "splat cooling"
Au ₄ Si.	Pd₄Si
Te -Cu	25-Au5

^a After R. H. Doremus, *Glass Science*, p. 12. Wiley-Interscience, New York, 1973. Reproduced with permission of J. Wiley & Sons.

(Adapted from: *Fundamentals of inorganic glasses*, A.K.Varshneya, Academic Press, 1994)

Abundance of chemical elements in earth crust (on a mol% basis):

O -	50 %	
Si -	25 %	
Al -	7 %	Minerals:
Fe -	4 %	
Ca -	3 %	silicates
Na -	2.5 %	alumino-silicates
К-	2 %	other oxides
Mg -	2 %	

95.5 %

Typical oxide glass compositions (in weight %)

container: 72 SiO₂-2 Al₂O₃-10 CaO-0.8 K₂O-13.7 Na₂O ...

borosilicate: 80 SiO₂-12 B_2O_3 -2 Al₂O₃-5 Na₂O ... ("pyrex glass",...)

fiber: 54 SiO₂-10 B_2O_3 -14 Al₂O₃-17.5 CaO-4.5 MgO

optical: $46 \text{ SiO}_2-45 \text{ PbO-7 } \text{K}_2\text{O-1.7 } \text{Na}_2\text{O} \dots$

Spring 2005

	Typical compositions of commercial glasses (wt %)																
Glass	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	BaO	Na ₂ O	K ₂ O	SO ₃	F ₂	PbO	B ₂ O ₃	ZnO	TiO ₂	Cr ₂ O ₃	As ₂ O ₅	CeO ₂
Flint container	72.6	1.6	0.05	11.0	0.1		13.7	0.5	0.2	-				0.1	_	-	_
Amber container	72.7	1.9	0.22	10.0			13.8	1.0	0.03	—	-				_		
Green container	72.0	1.1	0.96	8.4	2.1	—	15.1	_	-		—		-		0.19	-	
Flat	72.8	1.4	0.1	8.2	3.8	—	12.8	0.8	0.3		-	-	_	-	-	-	
Borosilicate	80.2	2.6	0.07	0.1			4.5	0.3			-	12.3			_		-
Lighting ware (opal)	59.9	6.1	0.05	—		1.3	14.9	2.3		5.8		0.8	2.4				—
Full lead crystal	54.9	0.1	0.02	—	-		0.2	12.3		—	31.9	0.5	—		-	0.5	—
Lead crystal	58.5		0.02	—			1.3	13.1	_	—	25.2	1.5	—	<u> </u>	—	0.5	
Glass fibre, "A" glass	72.0	2.5	0.5	9.0	0.9		12.5	1.5				0.5	_	0.1	_		—
Glass fibre, "E" glass	55-2	14.8	0.3	17.7	4.3	_	0.3	0.2		0.3		7.3					
Colour TV screen	63·2	3.3		1.8	1.1	12.7	9.9	7.5		-	—		-		—	_	0.21
Aluminosilicate	57.0	20.5	0.01	5.5	12.0		1.0			-		4.0					_
Light barium crown	57.1	0.2	-	0.3		26.9		13.7		—	-	1.8	-	-	_		_
Dense barium crown	36.2	3.5	-	0.2	-	44.6		0.2			_	7.7		-	-		
Light flint	52.5	0.2	_	0.3				9.5			37.5		—	-			
Dense flint	48.0	0.2		0.3		-	5.2	1.2		-	45.1	-	-	—	-		-

(Adapted from: Glass-making today, P.J. Doyle, Portcullis press, 1979)

<u>Note</u>: the term *flint* is normally used for glasses which contain significant amounts of PbO, including the so-called lead *crystal* glasses (24-32 wt% PbO) and the optical *flint* glasses, containing even higher amounts of PbO (light flint, with up to ~ 44 wt% PbO) and dense flint, with up to ~ 60 wt% PbO); *crown* glasses usually have BaO or La₂O₃.

Raw materials

Molecular Name Formula weight oxide Boric acid H₃BO₃ 61.84 B₂O₃ Borax Na2B4O7.10H2O 381.43 B₂O₃ Na₂O Anhydrous borax Na2B4O7 201.27 B₂O₃ Na₂O Limestone CaCO₃ CaO 100.09 Dolomite, pearlspar MgCO3. CaCO3 184.42 CaO MgO Hydrated lime Ca(OH)₂ 74.10 CaO Magnesite MgCO₃ 84.33 MgO Barium carbonate, BaCO₃ 197.37 BaO witherite Barium sulphate, BaSO₄ 233.43 BaO barytes SO₃ Red lead, minium Pb₃O₄ 685.43 PbO Litharge PbO 223.19 PbO Soda ash Na₂CO₃ 106.00 Na₂O Sodium sulphate, Na₂SO₄ 142.06 Na₂O saltcake SO₃ Sodium nitrate. NaNO₃ 85.01 Na₂O chili-saltpetre Potash, pearl ash K2CO3 138.21 K₂O Glassmakers' potash K2CO3.11H2O 165.24 K₂O Potassium nitrate, KNO₃ 101.10 K₂O saltpetre Lithium carbonate Li₂CO₃ 73.89 Li₂O Fluorspar CaF₂ 78.08 CaO F₂ Cryolite AlF₃.3NaF 209.97 Al₂O₃ Na₂O F₂ Sodium silico-Na2SiF6 188.05 Na₂O fluoride, sodium SiO₂ fluosilicate F₂ Sodium fluoride NaF 42.00 Na₂O F_2 Calcium sulphate, CaSO₄ 136.15 CaO anhydrite, gypsum, SO3 finaglass Sodium chloride, NaCl 58.45 Na₂O salt Cl₂

(Adapted from: Glass-making today, P.J. Doyle, Portcullis Press, 1979)

Spring 2005

Lecture 4

Preparation of oxide glasses

- A) Industrial scale
- B) Laboratory scale

MAIN FAMILIES OF OXIDE GLASSES:

- silicates
- borates
- germanates
- phosphates

Fabrication methods

- **melting** (and casting: stones, striae, cords)
- **sol-gel** (and densification: cracking)
- chemical vapor deposition (CVD, and densification)
- flame hydrolysis deposition (FHD, and densification)
- physical vapor deposition (PVD: thermal or e-beam evaporation, sputtering, PLD)

Types of glass

- A) Flat glass (window)
 - Horizontal draw (Libbey-Owens, 1905)
 - Vertical draw (Fourcault, 1902; Pittsburgh, 1926)
 - Float glass (Pilkington, 1965)
- B) Hollow glass (container, tubing)
 - Blowing
 - Drawing (tubing)
 - IS machines (bottles, ...)
- C) Fiber glass

(Adapted from: *Glass-making today*, P.J. Doyle, Portcullis press, 1979)

4. Manufacture of thick float ribbol(~ 10 - 25 mm)

5. Vertical section through float bath

Molten Sn bath in a $N_2 / 10\% H_2$ reducing atmosphere.

(Adapted from: Glass-making today, P.J. Doyle, Portculis Press, 1979)

Spring 2005

Lecture 4

- for insulation (sieve-like Pt bushing)
- continuous fiber (drawn from Pt bushing)
- optical fiber (high silica fibers)

Sol-gel glasses

The colloidal route designated by *sol-gel* is a method for preparing glasses, either in bulk or thin film form, which assumes special importance in the case of optical and photonic glasses.

The traditional sol-gel process, whose origin dates back to the 19^{th} century, may be exemplified in the case of the preparation of SiO₂ glass. This starts with the hydrolysis and polycondensation of an alkoxide such as tetraethoxysilane (TEOS) in an acidic medium:

 $Si(C_2H_5O)_4 + 2 H_2O = SiO_2 + 4 C_2H_5OH \xrightarrow{\Delta} dry gel \xrightarrow{\Delta} dense SiO_2 glass$

A coloidal solution (the "sol") is first obtained, which polymerizes further ("ageing") and turns into a "gel" (through solvent evaporation); this is further dried and finally densified (at a temperature near T_g) into a solid, dense glass.