

Sealing Glasses for Electrochemical Devices

Richard K. Brow Missouri S&T

IMI Conference on Functional Glasses: Properties and Applications for Energy and Information January 8, 2013 Siracusa, Sicily, Italy

MISSOURI

Outline

- Background- and opportunities
 - Low volume, high value technologically enabling glasses
- •Ambient temperature devices
- •Na/ β -Al₂O₃ batteries
- Solid oxide fuel cells
- •What's next?
 - Research focus areas

Function and requirements of hermetic seals

- Isolate components from environment
- Mechanically bond different components
- Electrically insulate one component from another
- Weak link/strong link functions

- Thermo-mechanical compatibility
 - CTE requirements (matched vs. compression)
 - Sealing temperature
- Environmental stability (ambient and other component materials)
- Component functionality (dielectric, optical, etc. properties)

Why use glasses for hermetic seals?

- Superior hermeticity
 - >10³ lower permeation rates than polymers
- Compositional flexibility to tailor specific properties
 - E.g., CTE ranges to match fused silica and copper....
- High temperature stability
- Electrically insulating
- Processing flexibility
 - Viscous flow for complex shapes
 - Solid, powder preforms; thin films
 - Glass-ceramic options
- Brittle- CTE mismatches
- Temperature limitations
- Incompatible chemistries

Example: High-strength seals for pyrotechnics

- High yield strengths
 - >100 kpsi
- good fracture toughness
- excellent corrosion resistance

Problem:

Hermetic seals are required to isolate air-sensitive materials.

•Glass-ceramics are the solution

- good mechanical properties
- CTE-matches to many alloys
- good chemical properties
- convenient manufacturing

Conventional glass-ceramic process profile

IMI Conf on Functional Glasses 8 January 2013

RK Brow brow@mst.edu MISSOURI

Li-silicate glass ceramics have the requisite CTEs for super-alloy seals

brow@mat adu

High temperature heterogeneous nucleation leads to desirable glass-ceramics

The heterogeneous nucleation mechanism has important application ramifications

- poorly crystallized interface
- Cr-phosphide crystallites

$$Cr_{(metal)} + Li_3PO_4 \rightarrow Cr_xP_y + Li_2O_{(gl)}$$

• 25% lower CTE

detonators, actuators, bolt cutters, high-voltage connectors, etc.

Materials issues for designing a sealing glass

- CTE requirements
- Other desirable physical and chemical properties
- Sealing and operational temperatures
 - Viscosity and process-required properties
 - Long-term stability of properties
 - Interactions with seal components

We will consider three types of electrochemical devices

- Lithium batteries (ambient temperatures, liquid electrolyte)
 - Lithium stability
- Alkali storage batteries (intermed. temperatures, 200-400°C)
 - Long-term alkali stability
- Solid oxide fuel cells (high temperatures, 600-900°C)
 - Long-term thermo-chemical stability
 - Failure from thermal cycling

Glass is an enabling technology to produce robust devices

12

Glasses have been developed as electrolytes for Li-batteries

Example: Lithium D-cell

Li anode od, Separator er di William Cathode fil Collector ²⁰¹ ne

- electrical isolation
- encapsulates reactive electrolyte

MISSOURI

Lithium and other alkali metals react with silicate glasses

Li thin film on silica at 75° C

 $4Li + SiO_2 \rightarrow 2Li_2O + Si$

Maschoff, et al., Appl. Surf. Sci. 27 (1986) for Li/SiO₂ heated to 75°C for given times after

Silicate glass seals are attacked by lithium

Conventional silicate sealing glass after three months at 70° C, Li/SOCI₂ electrolyte-

Bunker et al., J. Mat. Res. 2 (1987)

IMI Conf on Functional Glasses 8 January 2013 RK Brow brow@mst.edu

A mechanism for glass corrosion has been established

Underpotential Deposition

Reaction limits the shelf-life of Li liquid electrolyte cells

(Bunker et al., J. Mater. Res., 1987.)

MISSOURI

Corrosion resistant glasses have been developed

Applications include Li-batteries for cameras, computers, and biomedical components.

These glasses are used in designs for long-life Li cells

United States Patent Howard et al. LITHIUM-ION BATTERY Howard et al.		(10) Patent No.:(45) Date of Patent:	US 7,803,481 B2 Sep. 28, 2010	
		es Patent	(10) Patent No.:(45) Date of Patent	US 7,641,992 B2 t: Jan. 5, 2010
	MEDICAL DEVICE BATTERY	HAVING LITHIUM-ION	4,446,212 A 5/1984 4,464,447 A 8/1984	Kaun Lazzari et al.
United States Larson et al.	Patent	(10) Patent No.:(45) Date of Patent:	US 6,498,951 B1 Dec. 24, 2002	
IMPLANTABLE MEDICAL DEVICE EMPLOYING INTEGRAL HOUSING FOR A		5,199,428 A 4/1993 C 5,207,218 A 5/1993 C 5.312,453 A 5/1994 S	Dbel et al 128/419 C Carpentier et al 128/419 PG Shelton et al	
FORMABLE FLAT BATT	United Sta Patent Ap Lasater et al.	ntes plication Publica	tion (10) Pub. No.: US (43) Pub. Date:	2005/0255380 A1 Nov. 17, 2005
	LITHIUM-ION B	ATTERY SEAL	(60) Provisional application 9, 2001.	No. 60/346,031, filed on Nov.

Alkaline earth aluminoborate glasses have the requisite properties for lithium battery seals

- Range of CTEs for variety
 of pin materials
- Relatively low sealing temperatures (<800° C)
- CABAL glasses are used in Na-vapor lamps
- Resist attack by lithium
 - kinetic stability (Li reduces B₂O₃ to boride)
 - >20 year projected battery lifetime

 B_2O_3

How does structure affect useful properties?

Glass properties depend structure

Alumina coordination also depends on composition

Brow and Tallant, 1997

IMI Conf on Functional Glasses 8 January 2013

MISSOURI

The most durable glasses have tetrahedral networks

Spin-Off Development: Titanium Sealing Glasses

- Titanium alloys have a variety of useful properties
 - High strength-to-weight ratio
 - Superior corrosion resistance
 - Reasonable weldability
- Potential Sealing Applications:
 - Satellite connectors, actuators
 - Implanted biomedical components (pacemakers, insulin pumps, etc.)
 - Biocompatible coatings on prosthetic alloys

Limitation: Reliable, commercial hermetic sealing technology

- conventional silicate sealing glasses are reduced by titanium
 - silicide formation leads to weak glass/Ti interfaces

Silicate bio-glass coatings for titanium require very short processing times 800°C/1 minute: no deleterious reactions between silicate glass and Ti.

900°C/1 minute: excessive interfacial reactivity between Bioglass and Ti.

Pazo et al (1998)

Glass Ti 10 µm 100 50 Si 80

um

IMI Conf on Functional Glasses 8 January 2013

```
RK Brow
brow@mst.edu
```

MISSOURI

Borate glasses are now being used in a variety of titanium biomedical applications

Orthopedic pressure sensors

Bioactive borate glass coatings have been developed for titanium

L. Peddi, RK Brow and RF Brown, J. Mater. Sci. Mater Med (2008) 19, 3145

Saos-2 cell compatibility

IMI Conf on Functional Glasses 8 January 2013 RK Brow grow@mst.edu

Alkali Thermal Battery Seals

MISSOURI

Electrochemical energy storage for the green energy grid

Yang, et al., Chem. Rev. (2011)

Advanced batteries will be part of the green energy grid

IMI Conf on Functional Glasses 8 January 2013 RK Brow brow@mst.edu

MISSOURI

8 January 2013

Still, there is an opportunity for new sealing materials

"Major obstacles to demonstrating long-life liquid metal batteries center on ... the engineering of robust, high temperature, insulating seals."- Kim et al., Liquid Metal Batteries: Past, Present, and Future, Chemical Reviews (2013)

"Chemically stable sealants" are one of the outstanding materials problems remaining for Na/S batteries- Cheng et al. Advanced Materials (2011)

New designs face more complex sealing challenges

Planar Na/NiCl₂ stack for load-leveling applications: same α -to- β alumina seal, but added alumina-steel seal

Lu et al., High Power Planar Sodium-Nickel Chloride Battery, ECS Trans. 28(22) 7 (2010)

MISSOURI

Solid Oxide Fuel Cells

From I. Donald, et al., J Mater Sci (2011) 46:1975–2000

Fig. 6 SOFCs. Experimental unit. Julich Research Centre 13.3 kW

Interconnect Plate

Pen Cell

Designing glasses for SOFC seals is a significant challenge

Air Flow

Glass Seal

Fuel Flow

Function:

- Prevent mixing of fuel/oxidant within stack
- Prevent leaking of fuel/oxidant from stack
- Electrically isolate cells in stack
- Provide mechanical bonding of components Challenges:
- Thermal expansion matches to a variety of materials
- Relatively high operational temperatures (>700°C)
 - Long lifetimes (>10000' s hrs)
 - Maintain stability over range of P_{O2} , P_{H2O}
- Relatively low sealing temperatures (<900°C)
 - Avoid altering other SOFC materials

For some designs, glass-ceramics may be suitable, others may require viscous seals

Ba-silicate glass-ceramics have shown promise

IMI Conf on Functional Glasses 8 January 2013

Candidate sealing glasses have 'invert' structures

- SiO4 tetrahedron
- Bridging oxygen ion
 Conventional modifying ion
- Si-ion
- ⊙ Non-bridging oxygen ion

IMI Conf on Functional Glasses 8 January 2013

"Invert Glasses": discontinuous silicate anions tied-together through modifying cations.

- •Greater CTE's
- More fragile viscosity behavior
 - 'shorter' glasses
- •More 'basic' reaction chemistries
- •Metasilicates (chains): [O]/[Si]~3.0
- Polysilicates (short chains): [O]/[Si]>3.0

• Greater CTEs from polysilicate crystalline phases

- Pyrosilicates
 - CaSrAl₂SiO₇, Ca₂ZnSi₂O₇
- Orthosilicates
 - Sr₂SiO₄, Zn₂SiO₄
- The crystalline phases appear to be thermally stable.

MISSOURI

Thermo-mechanically robust seals can be made to SOFC component materials

750° C/two weeks in air

One potential problem is deleterious reactions with chromia

CTE mismatches occur at the glass-metal interface:

BaCrO₄: 18 ppm/K Steel/Glass: 12ppm/K

IMI Conf on Functional Glasses 8 January 2013

Yang et al., JMEPEG 13, 327 (2004)

MISSOURI

A second problem with 'rigid' glass-ceramic seals involves the thermal stresses associated with slight CTE mismatches

One solution may be to use a 'viscous' seal that will 're-heal' on heating

Self-repairable glass seals for solid oxide fuel cells

Raj N. Singh^{a)}

School of Materials Science and Engineering, Oklahoma State University, Tulsa, Oklahoma 74106-0700

brow@mst.edu

IMI Conf on Functional Glasses 8 January 2013

Hermetic Sealing Tests

- Glass pastes were made from powders (-45 μm) mixed with PVB binder and acetone, and used to bond NiO/YSZ bi-layer to aluminized steel (SS441) substrate (materials from PNNL)
- Sandwich seals fired in air at 850° C for 8 hours

Viscous seals survey >100 thermal cycles from 750° C without failing

Temperature (°C)

Pressure

Thermally shocked sample "re-seals" when re-heated

Original hermetic seal

Cracked on quenching (>25° C/s)

Resealed (2 hrs at 725°C)

Foaming in soapy water

Samples re-seal in two hours with viscosities of 10⁶ Pa-s

IMI Conf on Functional Glasses 8 January 2013 RK Brow brow@mst.edu

Viscous seals may be more reactive that the glassceramics

IMI Conf on Functional Glasses 8 January 2013 RK Brow brow@mst.edu

Long-term crystallization will affect glass viscosityand so the self-sealing properties

Summary

 As a materials science platform, sealing glasses offer opportunities to explore new compositions and to study glass phenomena

MISSOUR

- Chemically stable non-silicate compositions
- Crystallization around the liquidus temperature
- High temperature compatibility with metals
- Glass seals are enabling materials for many technologies
 - Reliable Li-batteries → biomedical devices
 - Optimization still required for Na/S, Na/NiCl₂ and SOFC systems
- The ability to model sealing processes may be the key to 'scaling up' technologies to useful products
 - Accurate viscoelastic properties
 - Well-controlled manufacturing process parameters
 - Well-understood 'application' conditions

Acknowledgments

- Department of Energy/SECA
 - Mo-Sci Corp. (Rolla)- CW Kim
 - Signo Reis, Teng Zhang, Rick Hsu
- National Institutes of Health
 - Laxikanth Peddi, Heather Teitlebaum, Roger Brown
- Sandia National Labs

MISSOURI

Grazie!

1111