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The 80 years since Zachariasen’s famous paper, 20 years before

Stephen Elliott was born, on the random network theory of glass

structure have seen remarkable progress in our understanding of

the structure of glassy materials through the construction of

models and comparison with experiment. In the early days,

models were hand-built with plastic units and had free boundary
conditions. Today, very much larger computer models have

periodic boundary conditions. We recount the progress that has

been made in the last 80 years, and discuss the current

agreement between models and experiments that remains

imperfect. Stephen Elliott’s work on medium range order

forms an important part of the history of this subject.
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1 Introduction The year 2012 marks the 80th anni-
versary of the publication of the most famous paper in
glass science, viz. The Atomic Arrangement in Glass by
Zachariasen [1]. Zachariasen’s paper is always quoted as the
origin of the random network theory of glass structure; an
example of which is shown in Fig. 1, although the concept of
a disordered array of atoms linked by directional bonding
had been introduced 5 years earlier (but not referenced by
Zachariasen) in a now long-forgotten paper by Rosenhain
[2], and the term random network hypothesis was only
introduced a year later by Warren [3] – but such are the
vicissitudes of history.

The main reason for Zachariasen’s lasting fame is his
two-dimensional schematic diagram of an A2O3 vitreous
network, which has been reproduced in countless papers and
textbooks throughout the intervening years. His original
figure is instantly recognisable, since two oxygen atoms on
the right-hand side were chopped off by the publisher,
although these have been restored and colour added (blue for
the A atoms and red for the O atoms) in the version shown
here in Fig. 2. We should note that such a two-dimensional
network has never been synthesised and there are good
chemical reasons why it may never be, although some clever
chemist in the future will perhaps manage it. This however
detracts nothing from the importance of Zachariasen’s
paper that included his rules for glass formation, which are
topological in nature and specify the requirements for a
random network to be relatively strain free. Thus the AO3

structural units in Zachariasen’s figure are regular equilateral
triangles, and it is amusing to note that, as (poor) copies of his
figure have passed down through generations of textbooks,
the AO3 triangles have become more and more distorted and
hence further from reality. A particularly bad example is
afforded by a well-known solid-state physics textbook that
was popular during the authors’ student days, but it is left as a
challenge to readers to identify it.

Much of the background and history of glass structure
and science is covered in the very influential 1984 book by
Stephen Elliott Physics of Amorphous Materials [5]. The
original much-used book remains something often given to
new graduate students to introduce them to the field.

Before proceeding, it will be helpful to establish exactly
what is meant by a random network; i.e., whether there is
anything about it that is indeed completely random. For
example, the idealised structure of vitreous silica comprises
a continuous (no defects in the form of broken bonds)
network of corner-sharing SiO4 tetrahedra, which maintains
the local chemical bonding requirements of the atomic
elements everywhere, but with small local distortions
achieves a non-crystalline network topology. This random
network is not periodic, and hence has no long range order
and associated Bragg peaks in the diffraction pattern. The
distortions mainly involve departures for the oxygen bond
angle, b (see figure), from its equilibrium value. In a later
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 (online colour at: www.pss-b.com) Part of Bell and
Dean’s 1972 model of vitreous silica [4]. (Courtesy of the Science
Museum, London.)

Figure 3 Definition of the oxygen bond angle, b, and the torsion
angles, a1 and a2, for corner-linked SiO4 tetrahedra.
paper, Mozzi and Warren [6] assumed that the distribution of
bond torsion angles, a1 and a2, as defined in Fig. 3, is
completely random. However, this neglects the requirements
imposed by ring closure and steric hindrance and perhaps in
hindsight a more neutral term like amorphous network would
have been preferable to continuous random network.

The random network theory has been supported in the
West by many X-ray and neutron diffraction studies,
although for many years Russian scientists preferred the
(modern nano-) crystallite theory, and this argument still
breaks out, most recently in 2010 by Gibson, Treacy and
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
coworkers [7] using fluctuation electron microscopy
results – however most scientists today accept the random
network model as being the basis for understanding single-
component glassy structures – indeed the words glass and
random network have almost become synonymous to
the glass structure community. It was not until the 1960s
that the question began to be asked as to whether it is indeed
possible to generate a three-dimensional arrangement of
atoms that is simultaneously consistent both with the random
network theory and diffraction data.

2 Table top models These early ideas led to the
advent of structural modelling: the most famous early model
being that constructed for vitreous silica by Bell and Dean [4]
in 1966, shown in Fig. 1, which was specifically constructed
Figure 2 (online colour at: www.pss-b.com)
Frederick William Holder Zachariasen (1906–
1979) with his two-dimensional schematic
diagram with added colour [1].
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Figure 4 (online colour at: www.pss-b.com) A comparison of
the relaxed [9] Bell and Dean [4] model (1980) for vitreous
silica (red histogram) with X-ray data (blue curve). The histogram
does not include thermal broadening, nor the experimental broad-
ening in real space, whilst the X-ray data of Mozzi and Warren [6]
have been Fourier transformed to simulate the earlier (1936)
Radial Distribution Function of Warren et al. [10].
to validate the random network theory and marked the
beginning of the modern era of modelling of glass at the
atomic level. Bell and Dean’s model has been used by many
other authors, mainly because a later paper [4] includes a
complete list of their atomic co-ordinates. It is salutary to
note that a much larger contemporary model by Evans and
King [8] received very little attention because these authors
always refused to publish their co-ordinates, which are now
lost forever. Indeed as scientists, particularly when sup-
ported by public funding, there is responsibility to save
model coordinates so they are available to all, although this
still often does not happen. Perhaps materials scientists can
learn from biophysicists here, where most journals insist
that the atomic coordinates of published protein structures
are deposited with the protein data bank and so are available
to all.

Bell and Dean’s original model was constructed by hand,
using polystyrene balls for the atoms and wire for the bonds,
although a much more elegant version was later constructed
by Crystal Structures from Bell and Dean’s co-ordinates, and
it is part of this latter model that is illustrated at the head of
this paper. Building an atomistic model by hand gives a ‘feel’
for the structure that it is difficult to obtain in any other way
and may lead to the conclusion that a postulated structure is
sterically possible, even if no quantitative information is ever
extracted from the finished model. The disadvantage of hand
building is that the construction and quantitative measure-
ment of large models is extremely tedious and it is difficult to
control the distribution of the various structural parameters
during construction in a systematic way. The introduction
of computer relaxation techniques (molecular mechanics),
however, reduced the accuracy with which it is necessary
to measure the atomic co-ordinates and also removed any
anisotropy that might result from the effects of gravity on a
large model. Computer modelling fixes the topology and
subsequent geometrical adjustments find a local minimum in
the potential energy. Thus the region of configuration space
available to the network of a glass such as vitreous silica
is restricted by the energy and steric factors that limit the
distortion of the basic structural units and the allowed
distribution of bond and bond torsion angles. It is such factors
that determine the extent of the intermediate-range order for
a random network – the more restricted these degrees of
freedom, the greater the distance from any given origin atom
before the atomic correlations can be considered truly
uncorrelated or random.

The Bell and Dean model clearly demonstrated that it
was indeed possible to construct a three-dimensional
structure consistent with the tenets of the random network
theory, but the question remained as to whether such a
structure could also accurately predict the radial distribution
function obtained from X-ray diffraction measurements.
Initially, the comparison of structural models with diffrac-
tion data was at a very superficial level, and did not include
the broadening arising from the atomic thermal vibrations
and the experimental real-space resolution. This is illustrated
in Fig. 4, which shows the interatomic distances from the
www.pss-b.com
model as a histogram and the X-ray radial distribution
function obtained from the slightly later X-ray data of Mozzi
and Warren [6] published in 1969.

Although the random network theory was developed for
glasses quenched from a thermodynamically metastable
super-cooled melt, it was later proposed as a model for
other amorphous network solids that were developed during
the second half of the 20th century, even though their
preparation involved processes that are much further from
thermodynamic equilibrium. As a result, the structures of
such materials involve increased strain, which can lead to
significant numbers of broken bonds, and it was less obvious
that a random network model was appropriate.

The amorphous network solids that have received
most attention are amorphous silicon and germanium, and
again the question arose as to whether it was possible to
generate a three-dimensional random network structure for
these materials. Note that, with the oxygen atoms removed
between neighbouring silicon atoms, the link between them
is defined by a single torsion angle and so the number of
degrees of freedom is very much reduced relative to vitreous
silica. Indeed each atom has three translational degrees of
freedom, but they are four shared bonds for each atom with
the associated five independent angular degrees of freedom
making seven constraints – far more than the number of
degrees of freedom. Something has to give and this turns out
to be the weaker angular constraints, where the strain is
carried via an angular distribution of 1098� 108. That
such a (random) network structure could be constructed
for amorphous silicon, with no broken bonds, was first
demonstrated by Polk [11] in 1971, from units such as those
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 5 (online colour at: www.pss-b.com) Plastic tetrahedral
units and aluminium sleeves used in the construction of the Polk
model (1971) of amorphous Si or Ge [11].

Figure 6 (onlinecolour at:www.pss-b.com) Wootenand Weaire’s
1987 model showing an epitaxial amorphous layer (top) attached
to crystalline silicon (bottom) [14].

Figure 7 (online colour at: www.pss-b.com) Comparison of the
100 000-atomcomputermodelofBarkemaandcoworkers [15] from
2001 (red) compared with the X-ray structure factor for amorphous
Si, as determined by Simon Moss and coworkers [17] in 1999
[(as implanted (blue) and annealed (black)]. Insert shows blow up
of region around the origin [18].
shown in Fig. 5. However, Polk’s model beautifully
illustrates the necessity of using appropriate units that reflect
experimental parameters such as bond length and angle
distributions – unlike cheaper drinking straws; the rigid
aluminium sleeves used for the bonds restricted the
flexibility in the silicon bond angle and hence the bond
angle distribution for Polk’s model was actually much too
narrow!

As an amusing anecdote, a random network model was
built by Connell [12] in 1974 in his hospital bed as he
recovered from a broken leg, and this model has only even
membered rings of atoms, to simulate III–V amorphous
semiconductors, such as GaAs. This surprising achievement
shows the wide diversity of models that come under the
general heading of random network models. All hand built
models of glasses have a diameter of just under a meter – this
of course is so that the builder can move the model through
the doorway to impress his or her colleagues down the
corridor, etc. Hand-built models of biological macro-
molecules, which very much parallel random network
models in time [1950–1990] also stayed within the rough
one meter diameter limit; the most famous of course being
the Watson–Crick model of DNA [13].

3 Computer modelling Computer-generated models
have now replaced hand-built models, overcoming both the
tedium and any unintentional bias associated with hand-built
models. The increase in computer power and techniques,
such as classical molecular dynamics, have led to much
larger models that are better able to predict the various
distributions of structural parameters with sufficient statisti-
cal accuracy. An early computer model of amorphous silicon
and germanium (‘sillium’) was generated in 1987 by Wooten
and Weaire [14], using a bond-switching algorithm together
with energy minimisation (relaxation). Crystalline silicon
has only 6-membered shortest-path rings of atoms and, by
changing the local connectivity to incorporate 5-, 7- and
a few higher-fold rings, the network structure can be
� 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
disordered, as shown in Fig. 6, where the upper part of the
sample has been ‘amorphised’ and remains epitaxially
attached to the crystal below.

This kind of computer modelling has been further
extended in recent years and very much larger models with a
periodic boundary have been constructed by Barkema and
Mousseau [15], and also by Vashishta and coworkers [16].
The structure factor for the Barkema and Mousseau [15]
model is shown in Fig. 7, together with the X-ray data of
Moss and coworkers [17] for as-implanted and annealed
amorphous silicon.
www.pss-b.com
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Figure 8 (online colour at: www.pss-b.com) A comparison of the
thermally- and resolution-broadened Radial Distribution Function
for the Wooten and Weaire ‘Sillium’ model [14] (red) with neutron
diffraction data for amorphous germanium (blue) [19].
The real space correlation function for one of Wooten
and Weaire’s models is compared with that obtained from
neutron diffraction data for evaporated amorphous germa-
nium by George Etherington and collaborators (1982) [19]
in Fig. 8. The agreement with experiment is significantly
improved over that for the 1971 Polk model, especially in
respect of the width of the second peak that reflects the bond
angle distribution around the mean tetrahedral angle of 1098.
Annealing the sample is thought to relieve strain and
minimise the number of broken bonds, and so should be
closer to computer models. The medium range order shown
as oscillations going out to 8 Å in Fig. 8, actually extends two
or three times further out and is known as medium range
order; an important distinguishing feature of glasses when
compared to liquids, and as stressed by Stephen Elliott [20].

4 The future Whilst the continuous random network
model has been widely used and accepted as the basis for
the structure of glasses and amorphous materials, it must be
used with caution. Just as a crystal with no defects is an
idealisation, so is an amorphous network with no broken
bonds. However, with carefully prepared samples, this limit
can be more and more closely approached for both vitreous
silica and amorphous silicon. We say this notwithstanding
that the ghosts of the crystallite model of Leningrad from the
early twentieth century re-appear occasionally. Indeed there
is a wide and rich variety of disordered materials, some of
which certainly do consist of nanocrystals of various sizes
embedded in an amorphous matrix, but we view these as
mixed phase materials. On the other hand, there is no
definitive experimental evidence for order in single-
component network glasses in excess of that predicted by
the random network hypothesis [21]. There is a beauty in the
atomic continuous random networks that is irresistible and
hard to deny – identical local units strung together to form a
disordered whole so that, despite almost perfect local order,
www.pss-b.com
there is no long range order and no Bragg peaks seen in
diffraction experiments.

Whilst it is clear that the present computer models of
vitreous silica are in very much better agreement with
experiment than the original (relaxed) table-top models, the
discrepancies between model and experiment are still
outside the experimental uncertainty, especially with respect
to the spatial extent of the ordering around any given atom.
Hence, it is necessary to question whether the algorithms
employed to generate these models are capable of yielding
such a network, even with an improved inter-atomic
potential.

This raises an interesting philosophical question.
Supposing an extremely large model (say 1 000 000 atoms)
could be generated, which was in perfect agreement with all
of the experimental data within their given uncertainties.
Even in this case, it would still be only one of a potentially
infinite number of possible atomic arrangements, and there is
no way of telling whether it is indeed the ‘correct’ structure.
A much more important question, however, is how could it
be established whether the model actually comprises a
random network as defined above? Obviously, it would be
possible to check the distributions of bond and torsion
angles, but what about the network topology? Thus it may be
concluded that, even though an ideal Warren–Zachariasen
random network is easy to define theoretically, it is still
unclear as to how best such networks can be generated
in practice, and similarly it remains unknown as to how
closely this first-order model approaches the structure of
real network glasses.

After 80 years, experiments and theory do not yet agree
as well as one would like. This is probably due to the
difficulty of exploring all the possible distributions of rings
of bonds and correlations between adjacent rings of bonds,
etc. Indeed our inability to get compelling direct experimen-
tal information about rings remains a continuing road
block. This may be finally solved by going back to a two-
dimensional glass like amorphous graphene [22], where the
rings can be imaged directly, in a way not possible for three-
dimensional networks. This has been recently accomplished
in some remarkable experiments for a bilayer of vitreous
silica using TEM imaging [23, 24]. When this happens,
Zachariasen’s famous sketch of a glassy network will finally
be fully demonstrated (although without the oxygen atoms)
with a full two-dimensional atomic network topology,
including medium range order, visible to all.
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