
January 7, 2007

Jim,

This relates to material that we discussed some time ago. I am not assuming
that you recall the discussion.

The question will be “which of the pieces below have appeared in the literature?”
If any, then references or hints to references would be nice, and I am willing to search
by myself on even the vaguest of hints.

If C is a category with (functoral) mutliplication ⊗, then inside the operad EndC

there is a suboperad
⊗

derived from the multiplication ⊗ and an obvious surjective
map of operads h : T →

⊗
whose domain is the operad of finite binary trees. This

map will take, for example, the tree
????��
�� to the functor

(1) (X, Y, Z) 7→ X ⊗ (Y ⊗ Z)

in EndC and the tree ����
??

?? to the functor

(2) (X, Y, Z) 7→ (X ⊗ Y ) ⊗ Z

in EndC.
If there is a natural isomorphism α given from the functor (1) to the functor

(2) in EndC, then the isomorphisms generated in the usual way from (composites
of expansions of instances of) α and α−1 and the identity isomorphisms on the
functors in

⊗
gives a category structure to

⊗
.

There are now two category structures that we can put on the operad T of finite
binary trees. One is a “pullback” category structure that we get from the category
structure on

⊗
where we use h : T →

⊗
to do the pullback. (Morphisms from T1

to T2 are just the morphisms from h(T1) to h(T2).) The other category structure on
T is the trivial structure in which every pair of trees with the same number of leaves

gets a uniqe (iso)morphism between them in each direction. We let
⊗

h denote the
pullback category and reuse the notation T for the trivial category structure.

There is a forgetful functor from
⊗

h
to T that is the identity on objects.

At this point we probably leave the realm that might exist in the literature you
are familiar with. However, I will press on in case the “probably” is wrong, and to
tell you what the point of all this is.

Particularly pleasant properties of the operad T allow one to compute two groups:

one T (
⊗

h
) from

⊗
h

and another F from T. The second group is well known and
is usually referred to as “Thompson’s group F” so we have kept the letter F for it.

There is a surjective homomorphism (call it a comparison homomorphism) σ

from T (
⊗

h
) to F . The surjectivity is standard and the arguments are in [1].

Under the assumption that the multiplication ⊗ has an identity (an object K in
C with a natural isomorphism ι from the identity on C to the functor X 7→ X ⊗ K

with no further restrictions such as the satisfaction of a coherence property on the
isomorphism ι), then one proves easily that the associativity morphism α makes
the pentagonal diagrams commute if and only if the comparison homomorphism σ

is an isomorphism. In fact, once a certain “non-collapsing” fact is proven from the
existence of the identity K, the rest is just a quote of definitions.

Thus C is a monoidal category if and only if the “identity isomorphism” ι satisfies
the usual coherence conditions on identities and the comparison homomorphism σ

is an isomorphism.
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One can do exactly the same thing with symmetric, monoidal categories (in
which case the comparison homomorphism is to a well known group known as
Thompson’s group V ) and braided tensor categories (in which case the comparison
homomorphism is to a group BV of mine that I call the braided version of V ). In
the case of symmetric, monoidal catetgories, the argument again boils down to a
check of definitions once certain basic facts are established. In the case of braided
tensor categories, there are real calculations that must be done since the definition
of braided tensor categories reads very differently than it does for monoidal and
symmetric, monoidal categories.

This ends the summary.
I can clarify my question a bit. I am familiar with the paper of MacLane below.

I am familiar with little else. This pretty much identifies the scope of my question.
The language of operads does not appear in MacLane’s paper and I am wondering

how much of MacLane’s results have been reworked to exploit operads and their
structures. Referring to the summary above, I am curious about the structures
that preceed the introduction of the group T (

⊗
).
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Thank you for anything that you can point me at.

Sincerely,
Matt


