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ABSTRACT. We present a number of classical proofs of the irreducibility of the n-th
cyclotomic polynomialΦn(x). For n prime we present proofs due to Gauss (1801), in
both the original and a simplified form, Kronecker (1845), and Schönemann/Eisenstein
(1846/1850), and for generaln proofs due to Dedekind (1857), Landau (1929), and Schur
(1929).

Let Φn(x) denote then-th cyclotomic polynomial, defined by

Φn(x) = ∏(x−ζ )

whereζ ranges over the primitiven-th roots of unity.Φn(x) is also given inductively by

Φn(x) =
xn−1

∏Φd(x)

whered ranges over the proper divisors ofn. In casen= p is prime,Φp(x) = (xp−1)/(x−
1) = xp−1 +xp−2 + · · ·+x+1.

It is a basic result in number theory thatΦn(x) is irreducible for every positive integer
n. It is our objective here to present a number of classical proofs of this theorem (certainly
not all of them).

The irreducibility ofΦp(x) for p prime was first proved by Gauss [4, article 341], with
a simpler proof being given by Kronecker [5] and even simplerand more general proofs
being given by Scḧonemann [8] and Eisenstein [3]. We give these proofs here. (The last
of these has become the standard proof.) Gauss’s proof is rather complicated, so we also
give a simpler proof along the same lines. The irreducibility of Φn(x) in general was first
proved by Kronecker [6], with simpler proofs being given by Dedekind [2], Landau [7],
and Schur [9]. We give the last three of these proofs here. (A variant of Dedekind’s proof
has become the standard proof.)

With the exception of Schur’s proof, which uses some resultsabout algebraic integers,
these proofs all just use basic results about polynomials. We have organized this paper to
collect background material about polynomials in a preliminary section, to have it available
when we present the main results.

BACKGROUND MATERIAL

The first result we need about polynomials is Gauss’s Lemma [4, article 42], which we
state in the form in which we will use it.

Lemma. Let f(x) be a monic polynomial with integer coefficients, and supposethat f(x) =
g(x)h(x) where g(x) and h(x) are monic polynomials with rational coefficients. Then g(x)
and h(x) have integer coefficients.
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Proof. See [11, Corollary 4.1.6].

Now let f (x) be an arbitrary monic polynomial,f (x) = xm+am−1xm−1 + . . .+a0. Let
f (x) have rootsr1, . . . , rm, so thatf (x) = (x− r1) · · ·(x− rm). Expanding this last expres-
sion we see thatf (x) = xm + ∑m

i=1(−1)isi(r1, . . . , rm)xm−i wheresi(r1, . . . , rm) is the i-th
elementary symmetric polynomialin the rootsr1, . . . , rm, i.e., the sum of product of these
roots takeni at a time. Thus

s1(r1, . . . , rm) = r1 + . . .+ rm,

s2(r1, . . . , rm) = r1r2 + . . .+ rm−1rm,

. . .

sm(r1, . . . , rm) = r1 · · · rm.

Comparing these two expressions we see that, up to sign, the coefficients of f (x) are the
values of these polynomials; more preciselyam−i = (−1)isi(r1, . . . , rm).

In general a polynomial inmvariables issymmetricif it is invariant under any permuta-
tion of the variables. The second result we need is the fundamental theorem on symmetric
polynomials, which was already well-known in the eighteenth century and perhaps earlier.

Theorem. Let f(x) be a monic polynomial with integer (respectively, rational) coefficients.
Let g(x) be any symmetric polynomial in the roots of f(x) with integer (respectively, ratio-
nal) coefficients. Then g(x) can be written as a polynomial in the elementary symmetric
polynomials of the roots of f(x), and hence as a polynomial in the coefficients of f(x), with
integer (respectively, rational) coefficients.

Proof. See [11, Lemma 3.1.14 and Lemma 3.1.15].

THE RESULTS THEMSELVES

Theorem 1. Let p be a prime. Then the cyclotomic polynomialΦp(x) is irreducible.

Proof (Gauss).This is trivial for p = 2 so we supposep is odd. We begin with some
general considerations.

First, let f (x) be an arbitrary monic polynomial with rational coefficients, with roots
r1, . . . , rm, so thatf (x) = (x− r1) · · ·(x− rm), and letg(x) be the monic polynomial whose
roots are thek-th powers of the roots off (x), for some positive integerk, so thatg(x) = (x−
rk
1) · · ·(x− rk

m). Then the coefficients ofg(x) are symmetric polynomials in{rk
1, . . . , r

k
m},

and hence are symmetric polynomials in{r1, . . . , rm}. Then by the fundamental theorem
on symmetric polynomials they can be expressed as polynomials with rational coefficients
in the coefficients off (x). Henceg(x) has rational coefficients as well.

Second, letϕ(x1,x2, . . .) be any polynomial with integer coefficients and letζ be any
primitive p-th root of unity. Substitutingxi = ζ ki for eachi, we obtain a value for this
polynomial that we may write as

ϕ(ζ k1,ζ k2, . . .) = A0 +A1ζ + . . .+Ap−1ζ p−1

for some integersA0, . . . ,Ap−1, and then for anyt

ϕ(ζ tk1,ζ tk2, . . .) = A0 +A1ζ t + . . .+Ap−1ζ (p−1)t .

Then
ϕ(1,1, . . .) = ϕ(ζ pk1,ζ pk2, . . .) = A0 +A1 + . . .+Ap−1
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and
ϕ(ζ k1,ζ k2, . . .)+ϕ(ζ 2k1,ζ 2k2, . . .)+ . . .+ϕ(ζ pk1,ζ pk2, . . .) = pA0,

and in particular this sum is divisible byp.
Now suppose thatΦp(x) = f (x)g(x) for nonconstant monic polynomialsf (x) andg(x),

with f (x) a polynomial of degreed. Then f (x) andg(x) each have integer coefficients.
(This is Gauss’s Lemma. Note thatΦp(x) itself has integer coefficients.) Writef (x) =

xd + ad−1xd−1 + . . .+ a1x+ a0. Let Ω be the set of primitivep-th roots of unity. LetF
be the set of roots off (x) and letG be the set of roots ofg(x). ThenF ∪G = Ω and
F ∩G = {}. Let F ′ be the set of reciprocals of the elements ofF and letG′ be the set
of reciprocals of the elements ofG. Then similarlyF ′ ∪G′ = Ω andF ′ ∩G′ = {}. Let
f ′(x) be the monic polynomial who roots are the elements ofF ′. Observe thatf ′(x) =
xd +(a1/a0)xd−1 + . . .+(ad−1/a0)x+(1/a0). We have four cases:

Case 1:F ′ = F . Then f ′(x) = f (x). In this case the roots off (x) occur in conjugate
pairs, sof (x) is a product ofd/2 factors each of the form(x− ζ )(x− ζ−1) = x2− (ζ +
ζ−1)x+1, and each of these factors is positive for every real numberx. Let Fk be the set
of k-th powers of the elements ofF , and fk(x) the monic polynomial whose roots are the
elements ofFk, for eachk = 1, . . . , p−1. Then the same property holds for eachfk(x). Let
qk = fk(1) for k = 1, . . . , p−1. Thusq1, . . . ,qp−1 are all positive rational numbers. But
in fact each polynomialfk(x) has rational coefficients, by the first observation above, and
hence integer coefficients (by Gauss’s Lemma), soq1, . . . ,qp−1 are all positive integers.

If ϕ(x1, . . . ,xd) = (1− x1) · · ·(1− xd), thenqk = ϕ(ζ k
1 , . . . ,ζ k

d), for k = 1, . . . , p− 1,
whereF = {ζ1, . . . ,ζd}, andϕ(ζ p

1 , . . . ,ζ p
d ) = ϕ(1, . . . ,1) = 0, so from the second observa-

tion above we see thatq1+ . . .+qp−1 is divisible byp. But alsof1(x) · · · fp−1(x) = Φp(x)d,
as every primitivep-th root of unity is a root of the left-hand side of multiplicity d. Hence,
lettingx = 1, we obtainq1 · · ·qp−1 = pd.

Sincep is a prime andd < p−1, we must haveg of the integersq1, . . . ,qp−1 equal to
1 for someg > 0, and then the rest of them are powers ofp. But thenq1 + . . .+ qp−1 ≡
g (modp), and so this sum is certainly not divisible byp, a contradiction.

Case II:F 6= F ′ but T = F ∩F ′ 6= {}. Let t(x) be the monic polynomial whose roots
are the elements ofT. Thent(x) is the greatest common divisor (gcd) off (x) and f ′(x).
Then by the argument of Case It(x) cannot have all of its coefficients rational. Butf (x)
and f ′(x) are polynomials with rational coefficients, and hence theirgcd is a polynomial
with rational coefficients, a contradiction.

Case III:G∩G′ 6= {}. Applying the arguments of cases I or II tog(x) yields the same
contradiction.

Case IV:G = F ′ andF = G′. Then

Φp(x) = f (x) f ′(x)

= (xd +ad−1xd−1 + . . .+a1x+a0)(x
d +(a1/a0)x

d−1 + . . .+(ad−1/a0)x+(1/a0)),

and settingx = 1 we obtain

a0p = (1+ad−1 + . . .+a0)
2.

But (by Gauss’s Lemma)f ′(x) has integer coefficients, soa0 = ±1 and we obtain that±p
is a perfect square, a contradiction.

Proof (in the spirit of Gauss).We have the identity
d

∏
i=1

(x− r i) =
d

∑
i=0

(−1)isi(r1, . . . , rd)x
d−i ,
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where thesi are the elementary symmetric functions.
Let ϕ(r1, . . . , rd) = ∏d

i=1(1− r i). Then we see that

ϕ(r1, . . . , rd) =
d

∑
i=0

(−1)isi(r1, . . . , rd).

The theorem is trivial forp = 2 so we may supposep is an odd prime.
Suppose thatΦp(x) is not irreducible and letf1(x) be an irreducible factor ofΦp(x) of

degreed. Then f1(x) = (x− ζ1) · · ·(x− ζd) for some set of primitivep-th roots of unity
{ζ1, . . . ,ζd}. Fork = 1, . . . , p−1, let fk(x) = (x−ζ k

1) · · ·(x−ζ k
d). The coefficients offk(x)

are symmetric polynomials in{ζ k
1 , . . . ,ζ k

d}, hence symmetric polynomials in{ζ1, . . . ,ζd},
hence polynomials in the coefficients off1(x), and sofk(x) has rational coefficients. Since
eachfk(x) dividesΦp(x), by Gauss’s Lemma in fact eachfk(x) is a polynomial with integer
coefficients.

(It is easy to see that eachfk(x) is irreducible, thatd must dividep−1, and that there
are exactly(p−1)/d distinct polynomialsfk(x), but we do not need these facts.)

Since fk(x) has leading coefficient 1 and no real roots,fk(x) > 0 for all realx. Also,

Φp(x)
d =

p−1

∏
k=1

fk(x)

since every primitivep-th root of 1 is a root of the right-hand side of multiplicityd. Then

pd = Φp(1)d =
p−1

∏
k=1

fk(1)

andd < p−1, so we must havefk(1) = 1 for someg > 0 values ofk, and fk(1) a power
of p for the remaining values ofk, and hence

p−1

∑
k=1

fk(1) ≡ g 6≡ 0 (mod p).

But

ϕ(ζ k
1 , . . . ,ζ k

d) = fk(1) for k = 1, . . . , p−1, andϕ(ζ p
1 , . . . ,ζ p

d ) = ϕ(1, . . . ,1) = 0.

Thus
p−1

∑
k=1

fk(1) =
p−1

∑
k=1

ϕ(ζ k
1 , . . . ,ζ k

d)

=
p

∑
k=1

ϕ(ζ k
1 , . . . ,ζ k

d)

=
p

∑
k=1

d

∑
i=0

(−1)isi(ζ k
1 , . . . ,ζ k

d)

=
d

∑
i=0

(−1)i
p

∑
k=1

si(ζ k
1 , . . . ,ζ k

d).

But si(r1, . . . , rd) is a sum of terms of the formr j1 · · · r j i , so each term in the inner sum
above is a sum of terms

p

∑
k=1

ζ k
j1 · · ·ζ

k
j i =

p

∑
k=1

(ζ j1 · · ·ζ j i )
k = 0 or p
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according asζ j1 · · ·ζ j i is a primitivep-th root of unity or is equal to 1. Thus

p−1

∑
k=1

fk(1) ≡ 0 (mod p),

a contradiction.

Proof (Kronecker).We first prove the following lemma: Letf (x) be an arbitrary polyno-
mial with integer coefficients. Letζ be a primitivep-th root of 1. Thenf (ζ ) · · · f (ζ p−1)
and f (1) are both integers and

f (ζ ) · · · f (ζ p−1) ≡ f (1)p−1 (modp).

To prove that the productf (ζ ) · · · f (ζ p−1) is an integer, observe that it is a symmetric
polynomial in{ζ , . . . ,ζ p−1} so, by the fundamental theorem of symmetric functions, is an
integer polynomial in the coefficients of the polynomial having {ζ , . . . ,ζ p−1} as roots. But
this polynomial is simplyΦp(x) = xp−1 + . . .+1. To prove that the congruence holds, let
g(x) = f (x) · · · f (xp−1) = ∑nAnxn and consider∑p−1

i=0 g(ζ i). The first expression forg(x)
gives the valuef (1)p−1+(p−1) f (ζ ) · · · f (ζ p−1) for this sum while the second expression
for g(x) gives the value∑n a multiple ofpAnp. Thus f (1)p−1+(p−1) f (ζ ) · · · f (ζ p−1) ≡

0 (modp) and the lemma immediately follows.
Now supposeΦp(x) is not irreducible and writeΦp(x) = f (x)g(x), a product of non-

constant polynomials. By Gauss’s lemma,f (x) andg(x) both have integer coefficients.
Then p = Φp(1) = f (1)g(1). One of these factors must be±1, so supposef (1) = ±1.
On the one hand,f (ζ k) = 0 for somek that is nonzero(modp) (as these are the roots of
Φp(x)), so f (ζ ) · · · f (ζ p−1) = 0, but on the other handf (1)p−1 ≡ 1 (modp), contradicting
the above congruence.

Proof (Scḧonemann).We have the following irreducibility criterion: Letf (x) be a polyno-
mial of degreek with integer coefficients. Suppose that, for some primep, and some integer
a, f (x) = (x−a)k+ pg(x) for some polynomialg(x) with integer coefficients withg(a) not
divisible by p. (As we might phrase this nowadays, suppose thatf (x) ≡ (x−a)k (modp)
and f (a) is not divisible byp2.) Then f (x) is irreducible. Now, by the binomial theo-
rem,xp−1≡ (x−1)p (modp), soΦp(x) = xp−1

x−1 ≡ (x−1)p−1 (modp), and alsoΦp(x) =

xp−1 + · · ·+1 soΦp(1) = p, and henceΦp(x) satisfies the hypotheses of this criterion.

Proof (Eisenstein).We have the following irreducibility criterion: Letf (x) = ckxk + · · ·+
c0 be a polynomial with integer coefficients. Suppose that, forsome primep, ck is not
divisible by p, ck−1, . . . ,c0 are divisible byp, andc0 is not divisible byp2. Then f (x)
is irreducible. NowΦp(x) is irreducible if and only ifΦp(x+ 1) is irreducible. But,

by the binomial theorem,Φp(x+ 1) = (x+1)p−1
x = xp−1 + ap−2xp−2 + · · ·+ a1x+ p, with

ap−2, . . . ,a1 all divisible by p, which satisfies the hypotheses of this criterion.

Remark.Scḧonemann’s irreducibility criterion and his proof of the irreducibility of Φp(x)
are little remembered now, with Eisenstein’s irreducibility criterion and his proof of the
irreducibility of Φp(x) being very well known. But in fact these two are equivalent. A
beautiful discussion of this point (both the mathematics and the history) has been given by
Cox [1].

Theorem 2. Let n be an arbitrary positive integer. Then the cyclotomic polynomialΦn(x)
is irreducible.
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Proof (Dedekind). Let f (x) be an irreducible factor ofΦn(x). Since f (x) divides the
polynomialxn−1, it follows from Gauss’s Lemma thatf (x) has integral coefficients. Let
ζ be ann-th root of 1 with f (ζ ) = 0. It suffices to prove that ifp is any prime not dividing
n, then f (ζ p) = 0 (as by repeated applications of this result, we obtain thatf (ζ j) = 0 for
any j relatively prime ton).

Suppose this is not the case. Letf (x) have rootsζ1 = ζ , . . . ,ζk, so that f (x) = (x−
ζ1) · · ·(x−ζk) = xk−ck−1xk−1+ . . .±c0. Letg(x) = (x−ζ p

1 ) · · ·(x−ζ p
k ) = xk−dk−1xk−1+

. . .±d0. Thenci = si(ζ1, . . . ,ζk) anddi = si(ζ p
1 , . . . ,ζ p

k ) for eachi, wheresi is thei-th ele-
mentary symmetric function. By the multinomial theorem, wehave the polynomial identity
si(x

p
1, . . . ,xp

k)≡ si(x1, . . . ,xk)
p (modp), i.e.,si(x

p
1, . . . ,xp

k)−si(x1, . . . ,xk)
p = pti(x1, . . . ,xk)

for some polynomialti(x1, . . . ,xk) with integral coefficients. Thus, for eachi, di − cp
i =

si(ζ p
1 , . . . ,ζ p

k )− si(ζ1, . . . ,ζk)
p = pti(ζ1, . . . ,ζk). But ti(x1, . . . ,xk) is a symmetric polyno-

mial, so by the fundamental theorem on symmetric polynomials ti(ζ1, . . . ,ζk) is a polyno-
mial in {sj(ζ1, . . . ,ζk) = c j} with integer coefficients. Hencedi ≡ cp

i ≡ ci (modp) for each
i, where the last congruence is Fermat’s Little Theorem, and so g(x) is also a polynomial
with integer coefficients and furthermoreg(x) ≡ f (x) (modp).

The polynomialg(x) is also irreducible (a fact which follows from the observation that
ζ = (ζ p)q whereq is an integer withpq≡ 1 (modn)), andg(x) 6= f (x). Hencef (x)g(x)
divides m(x) = xn − 1. Let e(x) denote the(modp) reduction of the polynomiale(x).
Then f (x)g(x) = f (x)2 dividesm(x), which is impossible asm(x) and its formal derivative
m(x)′ = nxn−1 are relatively prime.

Remark.This proof can be simplified to remove the argument about symmetric functions.
It follows immediately from the multinomial theorem and Fermat’s Little Theorem that for
any polynomialk(x) with integer coefficients,k(x)p ≡ k(xp) (modp) for any primep. Let
f (x) be as above and letg(x) be an irreducible polynomial havingg(ζ p) = 0. Clearlyζ
is a root of the polynomialg(xp), so f (x) dividesg(xp). Reducing(modp), f (x) divides
g(xp) = g(x)p, so f (x) andg(x) have a common irreducible factorh(x). But thenh(x)2

dividesm(x), which is impossible as above. This simplification is already to be found in
van der Waerden [10, article 53].

Proof (Landau).Let f (x) be an irreducible polynomial with integer coefficients of degree
d with f (ζ ) = 0 for somen-th root of unityζ . By the division algorithm, for anyj there are
unique polynomialsq j(x) andr j(x) with f (x j) = f (x)q j(x)+ r j(x) andr j(x) of degree less
thand (perhapsr j(x) = 0). Since the value off (ζ j) only depends onj (modn), we have
a finite set{r0(x), . . . , rn−1(x)} of polynomials such that, for any integerj, f (ζ j) = r(ζ )
for r(x) some polynomial in this set. Furthermore, ifs(x) is any polynomial of degree less
thand with f (ζ j) = s(ζ ), then we must haves(x) = r(x) (as otherwiseζ would be a root
of the nonzero polynomials(x)− r(x) of degree less thand, which is impossible).

In particular, for any primep, f (ζ p) = f (ζ p)− f (ζ )p = r(ζ ) for some such polynomial
r(x). But f (xp) ≡ f (x)p (modp), so f (xp)− f (x)p = pg(x) for some polynomialg(x).
But, again by the division algorithm, there is a unique polynomial h(x) of degree less than
d with h(ζ ) = g(ζ ). Thusr(ζ ) = ph(ζ ) with r(x) andph(x) both of degree less thand, so
r(x) = ph(x). In particular, all the coefficients ofr(x) are divisible byp. Now if A is the
largest absolute value of the coefficients of all of the polynomials{r j(x)}, we must have
f (ζ p) = r(ζ ) = 0 for p> A, and sof (ζ m) = 0 for any integermnot divisible by any prime
p≤ A.

Now letk be any integer relatively prime ton, and considerm= k+n∏q, whereq runs
over all the primes≤ A that do not dividek. Let p be any prime≤ A. If p dividesk, then,
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sincek andn are relatively prime,p does not dividen∏q and hence does not dividem. If
p does not dividek, thenp dividesn∏q and hence does not dividem. Thus we see thatm
is such an integer, andm≡ k(modn), so f (ζ k) = f (ζ m) = 0. ThusΦn(x) hasζ k as a root
for everyk relatively prime ton, and soΦn(x) is irreducible.

Remark.This proof, written in Landau’s usual telegraphic style, takes 8 lines in the origi-
nal.

Proof (Schur).Let g(x) = xn−1, and let∆ be the discriminant ofg(x), i.e., the product
of the squares of the differences of the distinct roots. Then∆ = ±nn, as we see from the
following computation:

∆ = ∏
i< j

(ζ i −ζ j)2

= ±∏
i 6= j

(ζ i −ζ j)

= ±∏
i 6= j

ζ i(1−ζ j−i)

= ±∏
i

ζ i(∏
k6=0

(1−ζ k)
)

= ±∏
i

ζ i(n) = ±nn.

In this computation, the equality∏k6=0(1−ζ k) = n comes from the fact that the left-hand
side is the valueh(1) for h(x) the polynomialh(x) = ∏k6=0(x− ζ k) = (xn−1)/(x−1) =

xn−1 + . . .+1.
Now suppose thatf (x) is a factor ofxn − 1. Let ζ be a root of f (x) and let p be

any prime not dividingn. We claim thatζ p is also a root off (x). Suppose not. Then
f (x) = (x− ζ1) · · ·(x− ζk) for somen-th roots of unityζ1 = ζ ,ζ2, . . . ,ζk, not including
ζ p. Thus 06= f (ζ p) is a product of differences ofn-th roots of unity, so is an algebraic
integer dividingnn. But f (xp) ≡ f (x)p(modp), so f (ζ p) ≡ f (ζ ) = 0 (modp), i.e., p
divides f (ζ p). But that impliesp dividesnn, a contradiction. (A rational integera divides
a rational integerb as rational integers if and only ifa dividesb as algebraic integers.)

Remark. Schur observes that Landau’s proof and his proof are both simplifications of
proofs due to Mertens.
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[7] Landau, E.Über die Irreduzibiliẗat der Kreisteilungsgleichung, Math. Zeit. 29 (1929), 462.



8 STEVEN H. WEINTRAUB
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