SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC
POLYNOMIALS

STEVEN H. WEINTRAUB

ABSTRACT. We present a number of classical proofs of the irredugibiit the n-th
cyclotomic polynomial®,(x). For n prime we present proofs due to Gauss (1801), in
both the original and a simplified form, Kronecker (1845), amtid®emann/Eisenstein
(1846/1850), and for generalproofs due to Dedekind (1857), Landau (1929), and Schur
(1929).

Let ®d,(x) denote then-th cyclotomic polynomial, defined by

®n(x) = [1x— Q)
where( ranges over the primitive-th roots of unity.®,(x) is also given inductively by
x1—1
ol M®a(x)
whered ranges over the proper divisorsrofin casen = pis prime,®p(x) = (X —1)/(x—
1) =xP 4 xP2 4. x4 1.

It is a basic result in number theory thé§(x) is irreducible for every positive integer
n. It is our objective here to present a number of classicadfgrof this theorem (certainly
not all of them).

The irreducibility of®,(x) for p prime was first proved by Gauss [4, article 341], with
a simpler proof being given by Kronecker [5] and even simpledd more general proofs
being given by Sobnemann [8] and Eisenstein [3]. We give these proofs heree (@st
of these has become the standard proof.) Gauss’s proohisrredmplicated, so we also
give a simpler proof along the same lines. The irreducibdit ®,(x) in general was first
proved by Kronecker [6], with simpler proofs being given bgd2kind[[2], Landau [7],
and Schur [9]. We give the last three of these proofs here.affamt of Dedekind’s proof
has become the standard proof.)

With the exception of Schur’s proof, which uses some resiitsut algebraic integers,
these proofs all just use basic results about polynomiaksh&ve organized this paper to
collect background material about polynomials in a pratiany section, to have it available
when we present the main results.

BACKGROUND MATERIAL

The first result we need about polynomials is Gauss’s Lemmarfitle 42], which we
state in the form in which we will use it.

Lemma. Let f(x) be a monic polynomial with integer coefficients, and supsief(x) =
g(x)h(x) where dx) and h(x) are monic polynomials with rational coefficients. Thér)g
and h(x) have integer coefficients.
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Proof. See|[11, Corollary 4.1.6].

Now let f(x) be an arbitrary monic polynomiaf,(x) = X"+ am_1xX™ 1 4... +ap. Let
f(x) have rootgy,...,rm, so thatf (x) = (x—r1)---(x—rm). Expanding this last expres-
sion we see that (x) = X"+ 5™, (=1)'s(r1,...,rm)X™ wheres(ry,...,rm) is thei-th
elementary symmetric polynomialthe rootsrs,...,ry, i.e., the sum of product of these
roots taken at a time. Thus

S1(r1y..yfm) =r1+...+rm,
S(r1y...yfm) =r1r2+...+rm-1rm,

Sm(r1,...,fm) =r1---Im.

Comparing these two expressions we see that, up to signptféotents off (x) are the
values of these polynomials; more precisaly ; = (—1)is(r1, ooy m).

In general a polynomial imvariables issymmetridf it is invariant under any permuta-
tion of the variables. The second result we need is the fuedémhtheorem on symmetric
polynomials, which was already well-known in the eight&ecgntury and perhaps earlier.

Theorem. Let f(x) be a monic polynomial with integer (respectively, ratigralefficients.
Let g(x) be any symmetric polynomial in the roots ¢k with integer (respectively, ratio-
nal) coefficients. Then(g) can be written as a polynomial in the elementary symmetric
polynomials of the roots of(k), and hence as a polynomial in the coefficients ©f) fwith
integer (respectively, rational) coefficients.

Proof. See [11, Lemma 3.1.14 and Lemma 3.1.15].

THE RESULTS THEMSELVES

Theorem 1. Let p be a prime. Then the cyclotomic polynondigl(x) is irreducible.

Proof (Gauss). This is trivial for p =2 so we suppose is odd. We begin with some
general considerations.

First, let f(x) be an arbitrary monic polynomial with rational coefficientgth roots
ri,...,rm, SO thatf (X) = (x—r1)--- (Xx—rm), and letg(x) be the monic polynomial whose
roots are thé-th powers of the roots dff(x), for some positive integés; so thag(x) = (x—
rk)--- (x—rK). Then the coefficients aj(x) are symmetric polynomials ifrk,...,rk},
and hence are symmetric polynomials{in,...,rm}. Then by the fundamental theorem
on symmetric polynomials they can be expressed as polyh®mith rational coefficients
in the coefficients off (x). Henceg(x) has rational coefficients as well.

Second, letp(xq,x2,...) be any polynomial with integer coefficients and {ebe any
primitive p-th root of unity. Substitutingg = ¢ for eachi, we obtain a value for this
polynomial that we may write as

$(24,2%,..) = Ao+ Al + ...+ Ap 1P
for some integersy, ..., Ap_1, and then for any
d(q™ g™ ) = Ao+ Al .+ Ay g PTIL
Then
$(L,1,...)=¢(IP4, P2, ) =Ao+AL+...+Ap 1
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and
93,02, )+ 9(02, 0% ) .+ 9(0P, 0P, ) = phy,
and in particular this sum is divisible by

Now suppose thab,(x) = f(x)g(x) for nonconstant monic polynomiafgx) andg(x),
with f(x) a polynomial of degred. Then f(x) andg(x) each have integer coefficients.
(This is Gauss’s Lemma. Note thd,(x) itself has integer coefficients.) Write(x) =
X3 +ag_ 314+ +ax+ap. LetQ be the set of primitivgs-th roots of unity. LetF
be the set of roots of (x) and letG be the set of roots of(x). ThenFUG = Q and
FNG={}. LetF’ be the set of reciprocals of the elementsofind letG’ be the set
of reciprocals of the elements &. Then similarlyF' UG = Q andF' NG’ = {}. Let
f’(x) be the monic polynomial who roots are the element&of Observe thaf’(x) =
X+ (ag/ag)xd~ 14 ... + (ag_1/a0)x+ (1/a0). We have four cases:

Case 1:F' =F. Thenf’(x) = f(x). In this case the roots df(x) occur in conjugate
pairs, sof (x) is a product ofd/2 factors each of the fortx — )(x— 1) = x> — ({ +
{~Yx+ 1, and each of these factors is positive for every real numbket K be the set
of k-th powers of the elements &f, and fx(x) the monic polynomial whose roots are the
elements ofy, for eachk=1,..., p— 1. Then the same property holds for edgtx). Let
ok = fi(1) fork=1,...,p—1. Thusq,...,qp—1 are all positive rational numbers. But
in fact each polynomiafy(x) has rational coefficients, by the first observation abovd, an
hence integer coefficients (by Gauss’s Lemma)yso..,qp_1 are all positive integers.

If ¢(x,....xa) = (L=x1)--- (L —xq), thenck = ¢ ({5, ), fork=1,...,p—1,
whereF = {{1,...,4q}, andp (Z}, ..., de) =¢(1,...,1) =0, so from the second observa-
tion above we see thgg + ... +qp_1 is divisible byp. Butalsofy(x)--- fp_1(X) = ®p(x)9,
as every primitivep-th root of unity is a root of the left-hand side of multipligid. Hence,
lettingx = 1, we obtaing; - --gp_1 = p%.

Sincep is a prime andl < p— 1, we must haveg of the integersyy,...,qp_1 equal to
1 for someg > 0, and then the rest of them are powergpofBut thengy + ... +gp-1 =
g (modp), and so this sum is certainly not divisible pya contradiction.

Case ILF #F butT =FNF’ # {}. Lett(x) be the monic polynomial whose roots
are the elements af. Thent(x) is the greatest common divisor (gcd) Bfx) and f’(x).
Then by the argument of Casé(k) cannot have all of its coefficients rational. Biuix)
and f/(x) are polynomials with rational coefficients, and hence thei is a polynomial
with rational coefficients, a contradiction.

Case II:GNG' # {}. Applying the arguments of cases | or Il ¢¢x) yields the same
contradiction.

Case IV:G=F’andF = G'. Then

Pp(x) = F()f'(x)
= (@ +ag T anxt-a0) (X + (aa/a0)x T+ + (80 -1/80)X+ (1/20)),
and settingc = 1 we obtain
aop=(1+ag_1+...+a0)>.
But (by Gauss’s Lemmal)’(x) has integer coefficients, sg = +1 and we obtain thatp
is a perfect square, a contradiction.

Proof (in the spirit of Gauss\We have the identity
d

.rl(x— )= (=1)'si(r,...,rg)xd",

o
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where thes are the elementary symmetric functions.
Letd(ry,...,ra) = 1L, (1—ri). Then we see that

d

Y (V8(0nro)

The theorem is trivial fop = 2 so we may suppogeis an odd prime.

Suppose tha®(x) is not irreducible and lef; (x) be an irreducible factor app(x) of
degreed. Thenfi(x) = (x—{1)---(x— {q4) for some set of primitivep-th roots of unity
{Za,....qa}. Fork=1,...,p—1, letfi(x) = (x— ) -- (x— ). The coefficients ofi(x)
are symmetric polynomials ik, ..., Z(‘j}, hence symmetric polynomials {1, ...,4q4},
hence polynomials in the coefficients 3 x), and sofk(x) has rational coefficients. Since
eachfy(x) divides®,(x), by Gauss’s Lemma in fact eadg(x) is a polynomial with integer
coefficients.

(It is easy to see that eadh(x) is irreducible, that must dividep— 1, and that there
are exactly(p — 1)/d distinct polynomialsfy(x), but we do not need these facts.)

Sincefy(x) has leading coefficient 1 and no real rodigx) > O for all realx. Also,

¢(ra,....ra)

p-1
®p(x% = [ ful¥)
k=1
since every primitivep-th root of 1 is a root of the right-hand side of multiplicidy Then
p-1
p'=p(1)" = I!'|l fk(1)

andd < p—1, so we must havé (1) = 1 for someg > 0 values ofk, and f(1) a power
of p for the remaining values df and hence

z f(1) =g # 0 (mod p).

But

$(Z8,..., 35 = f(1) fork=1,...,p—1, andp(ZP,....Z0) = ¢(1,...,1) = 0.
Thus

p—1 p-1
PR P2t 28)
=1

k=1

p
= z¢<z1k7...,z§>

20 TN ¢))
Z) ZS Zlv ,Zd

But s(ry,...,rq) is a sum of terms of the form;, ---rj,, so each term in the inner sum
above is a sum of terms

P P
szkl“[}?: Z(Zjl...zji)kZOOrp
k=1 k=1
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according agj, - - - {j; is a primitive p-th root of unity or is equal to 1. Thus

p—1
Y fk(1) = 0 (mod p),
K=1
a contradiction.

Proof (Kronecker).We first prove the following lemma: Left(x) be an arbitrary polyno-
mial with integer coefficients. Lef be a primitivep-th root of 1. Thenf ({)--- f({P1)
andf (1) are both integers and

f(Q)- £(ZP) = f(1)P (modp).
To prove that the product(Z)--- f(¢P1) is an integer, observe that it is a symmetric
polynomial in{{,...,ZP} so, by the fundamental theorem of symmetric functions, is an
integer polynomial in the coefficients of the polynomial imay{ ¢, ...,{P~*} as roots. But
this polynomial is simply®p(x) = xP~14 ..+ 1. To prove that the congruence holds, let
g(x) = f(x)--- F(xP"1) = 3, AnX" and considels”'g({'). The first expression fog(x)
gives the valud (1)P~1 4 (p—1)f({)--- f({P1) for this sum while the second expression
for g(x) gives the valug , 3 multiple ofp”nP- Thusf (1) Pl (p—1)f(Q)---f(P Y =
0 (modp) and the lemma immediately follows.

Now supposeb,(x) is not irreducible and writ@p(x) = f(x)g(x), a product of non-
constant polynomials. By Gauss’s lemnfgx) andg(x) both have integer coefficients.
Thenp = ®p(1) = f(1)g(1). One of these factors must kel, so supposé (1) = £+1.
On the one hand (ZX) = 0 for somek that is nonzergmodp) (as these are the roots of
Dp(x)), sof({)--- f({P~1) =0, but on the other hant{1)P~1 = 1 (modp), contradicting
the above congruence.

Proof (Scldnemann)We have the following irreducibility criterion: Left(x) be a polyno-
mial of degree& with integer coefficients. Suppose that, for some prpr@nd some integer
a, f(x) = (x—a)k+ pg(x) for some polynomiag(x) with integer coefficients witly(a) not
divisible by p. (As we might phrase this nowadays, suppose fif&l = (x—a) (modp)
and f(a) is not divisible byp?.) Then f(x) is irreducible. Now, by the binomial theo-
rem,xP — 1= (x—1)P (modp), soPp(x) = ijll = (x—1)P~1 (modp), and alsaPp(x) =
xP~14 ... +1s0®p(1) = p, and hencebp(x) satisfies the hypotheses of this criterion.

Proof (Eisenstein)We have the following irreducibility criterion: Left(x) = O+

co be a polynomial with integer coefficients. Suppose that,sfime primep, ¢ is not
divisible by p, ¢ _1,...,Co are divisible byp, andcy is not divisible byp?. Then f(x)

is irreducible. Now®,(x) is irreducible if and only if®(x+ 1) is irreducible. But,
by the binomial theorenPy(x+ 1) = XL —yp-1 4 a) ,xP-2 ... L ax+ p, with

ap—2,...,a all divisible by p, which satisfies the hypotheses of this criterion.

Remark.Schonemann’s irreducibility criterion and his proof of thesiducibility of ®p(x)

are little remembered now, with Eisenstein’s irreducipiliriterion and his proof of the
irreducibility of ®,(x) being very well known. But in fact these two are equivalent. A
beautiful discussion of this point (both the mathematias thie history) has been given by
Cox [1].

Theorem 2. Let n be an arbitrary positive integer. Then the cyclotomatypomial®,(x)
is irreducible.
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Proof (Dedekind). Let f(x) be an irreducible factor ofP,(x). Since f(x) divides the
polynomialx" — 1, it follows from Gauss’s Lemma thdix) has integral coefficients. Let
{ be ann-th root of 1 withf({) = 0. It suffices to prove that i is any prime not dividing
n, thenf({P) = 0 (as by repeated applications of this result, we obtain that) = 0 for
any j relatively prime ton).

Suppose this is not the case. Lfgk) have roots(1 = ¢, ..., ¢, so thatf(x) = (x—
{1) - (X— Q) =X~ X1 £eo. Letg(x) = (x— ) - (x—P) =X~ dy_1x 1+
...%do. Thenci =s({a,. .., 4) anddi =5 (/. ..., {p) for eachi, wheres is thei-th ele-
mentary symmetric function. By the multinomial theorem,iveee the polynomial identity
s, .. xP) =s (X, ... %)P (modp), i.e., (X, ... X)) =S (Xa, ..., %) P = Pi(Xq,. .., X)
for some polynomiat;j(xs,...,xc) with integral coefficients. Thus, for eachd; — cip =
s(¢F,- .40 —s(da,. .. 4P = pti({a,.... &) Butti(xq,...,X) is a symmetric polyno-
mial, so by the fundamental theorem on symmetric polynaigs, ..., k) is a polyno-
mial in {sj({1,. .., k) = ¢} with integer coefficients. Henak = c” = ¢; (modp) for each
i, where the last congruence is Fermat's Little Theorem, arg(» is also a polynomial
with integer coefficients and furthermogéx) = f(x) (modp).

The polynomialg(x) is also irreducible (a fact which follows from the obsereatthat
{ = ({P)9 whereq is an integer withpg= 1 (modn)), andg(x) # f(x). Hencef (x)g(x)
dividesm(x) = x" — 1. Letg(x) denote the(modp) reduction of the polynomiag(x).
ThenT (x)g(x) = T(x)? dividesm(x), which is impossible agi(x) and its formal derivative
m(x)’ = nxX"~* are relatively prime.

Remark.This proof can be simplified to remove the argument about sgtrienfunctions.
It follows immediately from the multinomial theorem and Fext’s Little Theorem that for
any polynomiak(x) with integer coefficientd(x)P = k(xP) (modp) for any primep. Let
f(x) be as above and lg(x) be an irreducible polynomial having({P) = 0. Clearly{
is a root of the polynomiag(xP), so f(x) dividesg(xP). Reducing(modp), f(x) divides
9(xP) = g(x)P, so T(x) andg(x) have a common irreducible factbfx). But thenh(x)?
dividesm(x), which is impossible as above. This simplification is algesabe found in
van der Waerden [10, article 53].

Proof (Landau).Let f(x) be an irreducible polynomial with integer coefficients ofoee
d with f({) = 0 for somen-th root of unity{. By the division algorithm, for any there are
unique polynomialsjj (x) andr(x) with f(x1) = f(x)qj(x) +rj(x) andrj(x) of degree less
thand (perhaps j(x) = 0). Since the value of ({) only depends orj (modn), we have
a finite set{ro(x),...,rn_1(x)} of polynomials such that, for any integgr f({}) =r()
for r(x) some polynomial in this set. Furthermores(k) is any polynomial of degree less
thand with f(Z1) = s(¢), then we must havs(x) = r(x) (as otherwis& would be a root
of the nonzero polynomia(x) — r(x) of degree less thamh, which is impossible).

In particular, for any primep, f({P) = f({P)— f({)P =r({) for some such polynomial
r(x). But f(xP) = f(x)P (modp), so f(xP) — f(x)P = pg(x) for some polynomiaf(x).
But, again by the division algorithm, there is a unique polyial h(x) of degree less than
d with h({) = g({). Thusr({) = ph({) with r(x) andph(x) both of degree less thah so
r(x) = ph(x). In particular, all the coefficients afx) are divisible byp. Now if Ais the
largest absolute value of the coefficients of all of the polyials{rj(x)}, we must have
f(¢P)=r({)=0forp> A, and sof ({™) =0 for any integemnot divisible by any prime
p<A

Now letk be any integer relatively prime tg and considem= k+n[] g, whereq runs
over all the primes< A that do not dividek. Let p be any prime< A. If p dividesk, then,
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sincek andn are relatively primep does not divide1[] g and hence does not divide If
p does not dividek, thenp dividesn[]q and hence does not diviske Thus we see thah
is such an integer, amd = k(modn), so f (ZX) = f(¢™) = 0. Thus®,(x) hasZk as a root
for everyk relatively prime ton, and so®,(X) is irreducible.

Remark.This proof, written in Landau’s usual telegraphic styl&es 8 lines in the origi-
nal.

Proof (Schur).Let g(x) = X" — 1, and letA be the discriminant ofj(x), i.e., the product
of the squares of the differences of the distinct roots. Then+n", as we see from the
following computation:
A=T](E" -2
<]
=+ -2)
I#]
=+[<¢'@-¢)
i#]
—+[12(a-29)
el
=+[12'(n)=+n".
Il
In this computation, the equaliffjy .o(1 — Z") = n comes from the fact that the left-hand
side is the valud(1) for h(x) the polynomialh(x) = [yzo(X — )=x-1)/(x—-1) =
Xl 4L
Now suppose thaf(x) is a factor ofx" — 1. Let be a root off(x) and letp be
any prime not dividingn. We claim that{® is also a root off (x). Suppose not. Then
f(x) = (x—{1) -+ (x—¢) for somen-th roots of unity{s = ¢, {,...,{k, not including
{P. Thus 0+ f({P) is a product of differences af-th roots of unity, so is an algebraic
integer dividingn". But f(xP) = f(x)P(modp), so f({P) = f({) = 0 (modp), i.e., p
divides f (¢P). But that impliesp dividesn", a contradiction. (A rational integerdivides
arational integeb as rational integers if and only & dividesb as algebraic integers.)

Remark. Schur observes that Landau’s proof and his proof are botplgications of
proofs due to Mertens.
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