Appendix A — Level densities in terms of measured fluorescence signals

We have established that the combinations of observed fluorescence intensities,
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(with units of Watts/emitted into solid angle d€2) are proportional to the number density in the

upper level, e, when the probe laser polarization is perpendicular to, or parallel to, the pump laser

polarization, respectively. However, our goal is to study M- and J- changing collisions in the

intermediate state i. Thus we must determine how the upper level density, n, = Zn . » relates
Me

to the directly excited intermediate level density, n,_ , _,, and to the densities of sublevels

populated through M-changing collisions, n and J-changing collisions, n for the

J=1,M,=+1> J;=3.5,7°
various pump/probe excitation schemes.
According to Eq. (16) of Jones et al. [1], the density in the upper level of a probe

transition is given by
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Here Py . and P are the probe laser excitation and stimulated emission rates, which are

related to the Einstein B coefficient. Because we are considering excitation of individual M,
levels, it isn’t necessary to include statistical weight factors, and the absorption and stimulated

emission rates can be set equal: P, =P . [, = ZAHz , k2%, and k2* are the upper level
l

total radiative rate, and the upper level total quenching rate coefficients due to collisions with
noble gas and lithium atoms, respectively (n,, and n,, are the densities of the noble gas and

lithium atom collision partners).
In the weak probe limit, P < T, +kSin,, +k2n,., Eq. (A3) reduces to Eq. (18) of

probe
Jones et al. [1]

eI

probe
n,= n,. (A4)
0, 0, !
(Fe + ke g ki ny, )




The probe laser excitation rate P is given by [2, 3],
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Here the Einstein B coefficient is defined in terms of laser intensity, which is related to the more
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Eq. (9.44), page 283 of Corney [4], g(v—va_l.) is the molecular absorption lineshape function

common B coefficient defined in terms of radiation density by Be(—z( )=B"
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for the e «— i transition (typically homogeneously broadened since the pump laser only excites
one velocity group in level i), and I, (V)dv is the laser intensity in the frequency interval

between v and v+dv. We don’t include the intermediate level degeneracy factor (2Jl. +1)

given in Eq. (9.46) of Corney, because we consider the contribution from pumping each
individual M, sublevel separately and sum over the M, contributions at a later stage. The laser
has very narrow bandwidth (which can be considered to be a delta function) and is tuned to line
center of the probe transition. Therefore we can take IProbe( ) VA (V —VeH) , and Eq. (AS)

reduces to
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where g( 0) is the lineshape function evaluated at line center (with units frequency™") and I,

is the total probe laser intensity (W/m?).
The electric dipole matrix element can be written as
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where CDj.l, /Y‘b, and w;(’t represent electronic, vibrational and rotational wave functions,

respectively, and the integration is over all nuclear and electronic coordinates. The molecular
electric dipole operator can be written as /& :ZZneRn —Zefj (here e is the charge on the

electron and Z, is the atomic number of nucleus ), where the first term is a sum over nuclear

coordinates while the second is a sum over electron coordinates. For electronic transitions (as
studied here) only the second term contributes because the electronic wave functions are
orthogonal. Consequently, we can rewrite (A7) as
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where ¢, and ¢, represent all other quantum numbers necessary to describe the upper (excited)

and lower (intermediate) states. We sum over all possible excited state sublevels.
The probe laser intensity is related to probe laser electric field vector &,,E,, by [Corney

Egs. (2.47) and (9.45)]
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where &, is a unit vector describing the probe laser polarization. To take into account the probe

laser polarization in absorption we must first take the dot product of the electric field vector with
the dipole matrix element before these terms are squared in Eq. (A6). Combining this with (A7)

through (A9) and defining 7 EZFJ (note that for alkali molecules we are generally only
j

concerned about transitions involving a single electron), we find that
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Plugging (A4) and (A10) into (A1) and (A2), and noting that we must also sum over all
intermediate levels M, that may contribute to the signal, we find:
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where we have used the fact that €, =/ when pump and probe laser polarization vectors are

perpendicular, but &, = k when they are parallel.
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In our experiments using G'II, (v, =5,J,)« A'Z, (v,=5,J,) probe transitions, we
probe on Q-line transitions (i.e., J, =J,) and observe fluorescence on Q-line transitions (i.e.,
J,=J,). Eq. (11) in Chapter 3, Sec. 9 of Condon and Shortley [5] states that quantum

mechanical matrix elements of a vector operator such as 7, with respect to angular momentum
wave functions, obey the following relations when J, = J, :
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where (ae,ve,Je

r| @,,v,,J;) is called the “reduced matrix element” (which is independent of the
M values). Thus (A11) and (A12) reduce to

1 VH VH HY
I:] :I EI:IPe +1Par +1Pe ]
Probe J;, —.J,=J; P ™ _IProbe J,—.J,=J;

2

VA8 e g(0) dQ, . » ~ s
T Balt (T, +kGing +kCn,) 47 L RTINS NNE

JEM, +1)(J, £ M,
<Y n ., ( )( )

M! ’MF ii i 4

Ovs. w5

M F1



144 144 HH
I ] = [1 +17 +1 ]
I: Probe J;,—J,=J; Perp Par Perp_probe Ji—=J,=J;

_ v VA_E. e g(0) dQ
487h’ (re + kz%cenivc + kg’e”u ) 4

|EL2|2‘(aL”U€’Je :Ji|r|ai’vn*]i)

‘2

(A16)
X Z Ry g, M isze,M,'
MM,

However, in our experiments using F'Y’ (v, =12,J, =0)« A'Z; (v,=5,J,=1) probe
transitions, we probe on P-line transitions (i.e., J, =J, —1) and observe fluorescence on P-line
transitions (i.e., J, =J,+1). In this case, Eq. (11) in Chapter 3, Sec. 9 of Condon and Shortley

[5] states that quantum mechanical matrix elements of a vector operator such as 7, with respect
to angular momentum wave functions, obey the following relations when J, =J, —1:
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Therefore, in this case, (A11) and (A12) reduce to
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i) M-changing collisions — Probe G'T1, (v, =5,J, =J, =1) < A%, (v, =5,J, =1)

For M-changing collisions studied using Gng (ve =5,J,=J,= 1) — AT (vl. =5,J, = 1)

probe transitions, we can evaluate the sums in Egs. (A15) and (A16)
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which leads directly to the proportionalities
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in the weak probe limit. These are Eqs. (8) and (9) of the main text. In our studies of M-
changing collisions using the G'I1, (v, =5,J, =J, =1) < A'S} (v,=5,J, =1) probe transitions,
the intermediate state is always AIZ:(UZ. =5,J, :1), the upper (excited) level of the probe

transition is always G'TI . (v,=5,J,=J,=1), and the lower (final) level of the fluorescence

transition is always A4'S} (vf =6,J,=J,= 1) . The detection volume and detection solid angle
also remain the same. Thus the factor
hl/HfVAHfé‘er2 2(0) dQ ‘(
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Taking a ratio of fluorescence intensities, as in Egs. (10) and (11) of the main text, we see

that the proportionality factors cancel completely (we maintain the probe laser intensity constant
over a series of measurements). Thus we arrive at
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which are Egs. (10) and (11). These equations describe the ratio of densities of collisionally
populated and directly populated M levels of the intermediate state J, =1, in terms of ratios of

measured fluorescence intensities.

if) M-changing collisions — Probe F'Y’ (v, =12,J,=0)« A'Z! (v, =5,J, =1)

For M-changing collisions studied using FIZ; (v,=12,J,=0) « A2 (v,=5,J, =1)

probe transitions, we can evaluate the sums in Egs. (A19) and (A20)
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our studies of M-changing collisions using the
F's! (ve 12,J, 0) — AT (v =5,J, —1) probe transitions, the intermediate state is always
AT (v,=5,J,=1), the upper (excited) level of the probe transition is always
F IZ+ v,=12,J, 0) and the lower (final) level of the fluorescence transition is always

Az (v =6,J,=J,+1= 1) The detection volume and detection solid angle also remain the

same. Thus the factor
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constant.

Plugging the sums determined in (A27) and (A28) into the intensity expressions (A19)
and (A20) and taking a ratio, we see that the proportionality factors again cancel completely and
we arrive at
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in the weak probe limit. This is Eq. (12). Again note that n,_, ,, _,, represents the population in
either the M; =—1 or the M; =—+ I sublevel (not the sum).

iii) J-changing collisions

In our studies of J-changing collisions, the situation is slightly more complicated because
the intermediate and excited levels involve different values of J; and J, for different probe
transitions. We still probe on Q-line transitions (i.e., J, =J,) and observe fluorescence on Q-

line transitions (i.., J, =J,). Therefore, we evaluate matrix elements using (A13) and (A14).
However, since J, #1 and J, #1 for all probe transitions, it is not obvious that proportionality

factors relating level densities to measured intensities will still cancel. In this case, we consider
the specific combination
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The delta functions eliminate the sums over M, and we obtain:
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According to Eq. (2), chapter 3 of Kovacs [6], the Einstein A coefficient for a molecular
transition from upper level e to lower level i is given by

_ 2
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where in the last step we used the fact that each of the 2J, +1 upper state M, levels must decay

with the same rate [note: Eq. (A32) agrees with Bernath [3] Eq. (1.52), Corney [4] Eq. (4.23),
and Herzberg [2] Eq. (1,47)]. For Q-line transitions (J, = J,) we can again use (A13) and (A14)
to write this as
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This establishes the relationship between the reduced matrix element and the Einstein A4
coefficient for Q-line transitions:

_ 3¢, A4, . (A34)
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Finally, going back to (A32), we can now determine how the Einstein 4 coefficient varies
with upper and lower level rotational quantum numbers. Using the Born-Oppenheimer
approximation, the electronic, vibrational, and rotational motions can be taken to be mutually
independent and we can separate the square of the matrix element as

2

J.;(:*;(;’dRJ. O FDdT,|

“, (A35)
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where the rotational level dependence is contained in the Honl-London factors, S, ;. Inserting
this into (A32) we find
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In our J-changing collision experiments, the probe and fluorescence channels both involve Q-

line transitions between an upper 'I1 state and a lower 'Y state. The Honl-London factor for
such transitions is given by Eq. (IV,82) (page 208) of Herzberg [2]:

11
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where A, =1 and A, =0 are the projections of electron orbital angular momentum onto the
internuclear axis for the upper and lower levels, respectively. Plugging (A37) into (A36), we see
that, to good approximation, the molecular Einstein A4 coefficients for Q-line transitions between
the same electronic and vibrational levels are approximately independent of rotational quantum
number. We also note that, according to Eq. (IV,82) (page 208) of Herzberg [2], the Honl-
London factors for P- and R-line transitions between an upper 'I1 state and a lower 'Y state are
J,/4 and (J,+1)/4, respectively. Thus the sum of Einstein 4 coefficients for P- and R-line
transitions is also independent of rotational quantum number to a good approximation.

IVH 1 VH

In the J-changing collision studies, we measure the fluorescence intensities /., Ip,,

IHV [VV IVV

ban> Toap> o> and Ipit when probing either the directly excited (J;/=1) or one of the

collisional populated (J, =3, 5, or 7) levels and determine the quantities 2/* + /' using (A11),
(A12), (A15), and (A16). We then calculate the ratio
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where we used (A34) in the final step.

Negligible error is introduced if the Q-line probe laser transition frequencies in (A38) are
taken to be identical since these transitions are part of the same vibrational band and differ by
less than 0.01% for the transitions studied in the current work. The same is true for the Q-line
fluorescence frequencies v, contained in the factor 4, , . The detection system efficiencies

are also nearly identical at these closely spaced frequencies. Other factors, such as the probe
laser power (and hence the laser electric field amplitude), detection volume, and detection solid
angle are also unchanged over the course of a series of measurements. The factors
J,(J,+1) J(J]+1)

1 1

=1 and ———~ =1 for Q-line probe transitions. And as can be inferred from Egs.
J,(J,+1) J.(J.+1)
(A36) and (A37) and the subsequent discussion, the total radiative rates are approximately equal
for neighboring rotational levels of the same vibrational state. Finally, following Jones ef al. [1],
we assume that the quenching rates are approximately independent of rotational level (this
approximation was theoretically verified to be approximately true by Price [7]). Introducing this

information into Eq. (A38) we obtain
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This is Eq. (13) in the main text.

Appendix B - Error Analysis

The fitting functions used to determine the M-changing collisional rate coefficients are
given by Egs. (22) and (23) in the published manuscript:
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and
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(=) 1 Probe J,=1>F'%} I perp + Lo ]Perp Probe J;=1-F'%}
/gj’ :1,Mi:0Hi1n +C
— NG NG 1 , (B 2)

1+ k% ny + C,

for data obtained using the G'T1, (v, =5,J, =J, =1) <= A'Z, (v, =5,J, =1) probe transition, and
for data obtained using the F'Z} (v, =12,J,=0)« A'Z;(v,=5,J, =1)probe transition,
respectively.

Error bars for each data point depend on the uncertainties in the measured intensities and

uncertainty in the noble gas density. The contributions to the uncertainty in each RJ.=1(c‘n ) or

RJ,:](Flz;

) value, due to the uncertainty in the measured intensities, are calculated directly from
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the expressions for R, in terms of the intensities Eq. (B1) or (B2) [Eq. (22)

=1(¢'m,) or RJ

=1(F'z;)

or (23) in the main text] according to
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The derivatives are straightforward to calculate. From Eq. (B1) we obtain
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‘ dhs, || d H dl e, ‘_‘[2(1155? A I )= (1 1 e ) | o
B4)

and

‘dRJ,:I(G‘Hg) _‘dRJ,:l(G]Hg) _‘dRJ,:l(GIHg) _‘ 2(1§gp+1§§+1£;) ‘

‘ dlye, H dly,, H dl e, ‘_‘[2(1@) +1§j{+1§§fp)—(1§§p+1§§+1;§f’p)}2 o

(BS)

Inserting these expressions into (B3) we find

Perp Par Perp

J=1(6'my) H:Z(IVH e )_(]VV ey

Perp Par Perp Perp Par Perp

‘ 2(1VV + 17 4 1 ) ‘

Perp Par Perp

(NVH +A]VH +A]HV)
):| Probe J;=1-G'II,

‘ 2(1VH L L ) ‘

Perp Par Perp

‘[2(1”’ S S o B VS L fod

Perp Perp Perp Par Perp

(AIVV + ALY + AL )

):| Perp Par Perp
Probe J;=1-G'I,,

(B6)
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Assuming that all the measured intensities have the same absolute uncertainty (this is a good
approximation based on measured noise levels),

AIVH =AIVH ZA]HV =AIVV =AIVV =AIHH EA], (B7)

Perp Par Perp Perp Par Perp

we find the contribution to AR, _ (om,) due to the uncertainty in the measured intensities is

4

‘ IVH +[VH _I_]HV +IVV +]VV +]HH ‘

— 6 Perp Par Perp Perp Par Perp ( AI)
J=1(a'm,) VH VH HV v 144 m \ P
H:z (IPerp + ]Par + ]Perp ) - (]Perp + IPar + ]Perp )j| Probe J =1 G
(B8)
I+
=6l———— (AI).
(21t -1")
ProbeJ/=]—>G]l'[g
Similarly, using Eq. (B2) we calculate the derivatives in (B3) to obtain:
‘dRJ,:l(F'z;) _‘ J=(FE)| ‘dRJ,:l(F'zg) _| 1 | (B9)
VH - VH - HV v Vv HH
‘ dIPerp ‘ ‘ dIPar ‘ ‘ dIPerp ‘ ‘[Per‘p + ]Par + [Perp Probe J,=1— FIZ;
and
‘dRJ,:l(F‘z;,) _‘dRJl.:l(Flzg) _‘dRJ,:l(F'zz,) _‘ ]]I,/gp + 10 +]]fg; ‘ B10
dr’’ - dr’” N dr - YA Ly 2 ( )
Perp Par Perp |: Perp + A, T Perp] N
Inserting these expressions into (B3) we find
_ | 1 | VH VH HY
ARJl.:l(Fl):g) - ‘IVV +[VV +]HH (NPcrp +A]Par +A]Pcrp)
Perp = “Par = TPerp [probe g, =15 x5}
(B11)
[VH +IVH +1HV ‘
‘ Perp Par Perp ( AIPVeI;p + AIPVaI; + AIIZI; )

‘[IVV Loy 2

Perp © “Par © = Perp } Probe J, =1 F's*
i g

Again, assuming that all the measured intensities have the same absolute uncertainty (B7), we

find the contribution to ARJ () due to the uncertainty in the measured intensities is
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]VH +[VH +1HV +IVV +IVV +[HH

J.:I(Fly) — Perp Par —~ Perp — PerpHH l;ar Perp (A])
I ¢ [lPerp+IPar+IPerp:| Probe J =1 FIs*
(B12)
1 I
i1 (A1)

2
]II )
( Probe J;=1->F's},

For J-changing data obtained using the GIHg (ve =5,J,= Ji) — A% (vi =5,J, = 3,5,7)
and G'T1, (v, =5,J. =J)« A'S; (v,=5,J]=1) probe transitions, the fitting function is given
by Egs. (24) in the published manuscript:

21 +1'] [2 A Ly LU TN (R (N £ ]
R _ [ Probe J;=3,5,7—G', _ ( Perp * *Par Per”) ( Perp © Par Perp) Probe J,=3,5,7-G'II,
J=3.57 = 1 H] = VH VH HV 114 2% HH
[21 +1 ProbeJ,'=1—>G]1_lg |:2 (IPcrp + IPar + IPCrp ) + (IPCrp + IPar + IPcrp ):|ProbeJ;=1—>Glng

7~ Ji=1-J,=3,5,7
|:kNG Ny t+ C3,5,7 J

1+ kZny; +C,

(B13)

In this case, we must consider derivatives with respect to twelve different intensities (six when
probing J, =3, 5, or 7 and six when probing J, = 1). The necessary derivatives are

‘ dRJ,-:3,5,7 ‘ ‘ dRJ,-:3,5,7 ‘ ‘ dRJ,-:3,5,7 ‘
‘d (IVH

Perp )Probe J;=3,5,15G'T,

( VH) ( HV)
Par /probe J,=3,5,7-G'T1, Perp Jprobe /,=3,5,7-G'T1,

(B14)

| ) |
‘[2(1”* FI L ) (D0 1 I

Perp Par Perp Perp Par Perp

2

):|Pr0be J{:l—)Gll'Ig
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‘ dRJ,. =3,5.7 ‘ ‘ dRJ,.=3,5,7 ‘ ‘ dRJ,=3,5,7 ‘

d(IVV) ( VV) ( HH)
Perp Jprobe J,=3,5,7G'1, Par /probe J,=3,5,7-G'I,, Perp Jprobe 723,576,
(B15)
- )
2L+ I+ 1 )+ (Lo, + o+ 12 )]
H: Perp Par Perp Perp Par Perp Probe J,-':l—)Gll—Ig
‘ dRJ,:3,5,7 ‘ _‘ dRJ,:3,5,7 ‘ _ ‘ dRJ,:3,5,7 ‘
d(IVH) - ( VH) - ( HV)
Perp Jprobe J/=15G'T1,, Par Jprobe Ji=1-5G'T1, Perp Jprobe J/=156'1,,
(B16)
VH VH HY 144 144 HH
‘2[2 (IPerp + ]Par + [Perp ) + (]Perp + IPar + IPerp ):|Probej-:3 575G
_ 1=3.5, <
- )
VH VH HY vy 144 HH
(L2 4 L+ I Y+ (Lt + I + 1 )}
‘ |: Perp Par Perp Perp Par Perp Probe J/=1—> Gll'lg
and
‘ dRJ, =3,5,7 ‘ _ ‘ dRJ, =3,5,7 ‘ _ ‘ dRJ,=3,5,7 ‘
d(]VV) d(IVV) ( HH)
‘ Perp Jprobe J;=15G'1,, Par /probe J/=15G'1, Perp Jprobe J/=1G'1,,
(B17)

Perp Par Perp Perp Par Perp

‘[2(1”’ S (S 8 B U S fod

)]probe J;=3,5,7-G'T,

Perp Par Perp Perp Par Perp

‘ [2(1”’ S (R i PR U A he

):|Probe Ji=l-G6'm, ‘

Inserting these into an appropriately modified version of (B3) yields
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| | |

VH VH | yHV 44 vV | pHH
‘[2 (]Pcrp Loy + IPCIP ) + (]PCYP o ]Pcrp ):|Pr0be Ji=l-6'm,

VH VH HV Vv Vv HH
><|:2(AIPerp + A[Par + A]Perp ) + (A]Perp + A]Par + A[Perp ):|Proch,-:3,5,7—>Gll_Ig

(B18)

Perp Par Perp Perp Par Perp

‘[2(1”* I I )+ (L + L+ I

):|Probe J;=3,5,75G'Tl,

+
VH VH HV |44 |44 HH
‘ [2 (1 4+ 1+ 1 ) (1 + 1+ 1 )]Pmb”,_HGlH ‘
i g

VH VH HV 44 44 HH
X |:2 (AIPerp + AIPar + AIPerp ) + (AIPerp + A]Palr + AIPerp ):|Probe J,’:l%Gll_Ig :

Again, assuming that all the measured intensities have the same absolute uncertainty (B7), we
find the contribution to AR, _; ., due to the uncertainty in the measured intensities is

VH VH HV 424 44 HH
|:2(]Perp + IPar + ]Pexp ) + (]Perp + IPar + ]Perp ):|Pr0ch-:3 575G
im0 g

Perp Perp Perp Par Perp

+[2(]VH + Lo+ L )+ (Lo, + o + T )]Pmbe#:l_@ng}

ARJI:3,5,7 =9

B

VH VH HV 424 44 HH
|:2 (IPerp + ]Par + ]Perp ) + ([Perp + IPar + ]Perp )j|Prober'=lﬁGll_[
i g

(B19)

(21" +1"] +[21 +1"]

Probe J;=3,5,7-G'I,

2
[2rt+1"]
Probe Ji=1-GTI,

The right hand sides of Egs. (B1), (B2), and (B13) [Egs. (22), (23), and (24) of the main

text] are all of the same form. Therefore, the contribution to the uncertainty in each RJ-:I(GIH )

Probe J/=1-G'I,

‘(AI).

and R, () value due to the uncertainty in the noble gas density is calculated using the right

hand side of Egs. (B1) and (B2) according to
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~g = ~Q ~J’.:1,Ml_:0_>i1
dR, ~ ‘ M=ot e ( s o Cl)
dn nNG - 1+]€Q n +C - ~0 3 AnNG
NG NG''NG 0 (1 +kZ n,. + CQ)

=1 M, =051 o) =1 M, =041
kyg kyg kyg ny +C

= (IEZ\J['GI’M’O_)HnNG+C1)_(1+lgianNG+CQ)‘( 1+]€1€G”NG+CQ jAﬂNG.

(B20)

Combining the contributions from the uncertainties in the intensities (B8) or (B12) with those
from the uncertainty in the noble gas density (B20), we obtain

rJ;=1,M;=0—%1 70 rJ;=1,M;=0—%1

‘ kye kye ‘[kNG Ny +C } An

Ji=1(G'm 7 Ji=1,M;=0—%1 20 NG
(o'm) ‘(kNG nNG+C1) (1+kNGnNG+CQ)‘

1+k%n, + C,

I+
+6————— (AI)
(21 -1")
Probe J;=1-G'I,
(B21)
and
_ k]\J[,G=1,M,.=o—>¢1 B k}gc lg/é'czlei:O_)ﬂ”NG +C, N
J=(Fs) (IEJ,:I,MI:O—&In +C ) (1+1€Q i C ) 14k +C NG
NG NG T ™1 ne T o NG T 0
I'+1'
(A1).
(1)
Probe J,=1>F'S}

(B22)

RJ,. =3,5,7

For the J-changing data, a similar calculation of An,,; yields

e
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~ _ 70 (7.J/=1-J,=3,5,7
dR; 5, B ‘ kT kye (kNG Ny + C3,5,7) A
dn Y N4k +C, pte 2 e
NG N6'vG 0 (1+ NGnNG+CQ)
o ~ ~T=157,=3.5,7
‘ k]{,’g]_”"*}’sﬂ kzgc ‘ (kNG Ny +Css5 ) A
T 7rmos= - ~ ~ NG s
‘(k]{,"G_HJ"J’SJ”NG +Cys5 ) (1 + ket +Co )‘ L+ kg + G
(B23)
and hence
~ = - ~ [ Ji=1-J,=3,5,7
AR B fei AT k2. (kNG Ny +Cis ) A
ST (frai sty v\ (1482 n 4 C 1+kn,.+C e
NG My T 4357 ~vellve T Lo nellve T 40
‘[ZIL +IH:|P be J,=3,5,7G'Tl +[21L +IH]P be J/=1—G'TI
robe J;=3,5,75G'I1, robe J/=1-G'T1,
+9 T (AI).
lart+1']
Probe J/=1->G 11,
(B24)

Appendix C — Results from the fits using the “single collision approximation”

Using the single collision approximation as described in Section III.C.i. of the main text,
we simultaneously fit all of the argon and helium data with Egs. (22), (23), and (24) for the M-

changing data obtained using the GTI,(v,=5,J,=J,=1)« AX (v,=5,J,=1) probe
transition, M-changing data obtained using the F'X!(v,=12,J,=0)« A% (v, =5,J,=1)
probe transition, and J-changing data obtained using the
G, (v, =5,J,=J,) A% (v,=5,J,=3,5,7) and
G, (v, =5,J,=J])« A} (v,=5,J/=1) probe transitions, respectively, with weightings
given in Egs. (26), (27), and (28) [(B21), (B22), and (B24)], respectively. As explained in the
text, the lithium parameters C,, C,, C,, C,, and C, were all set to zero in this fit. Results are

given in Table C.1 and the data are plotted against the fitting functions in Figs. C.1 and C.2 here.
Note that these results are not the “final” values since they do not include multiple collision
corrections. The latter are discussed in Sec. III.C.ii of the main text.
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* Ardata, G state
* Ardata, F state
|l ¢ He data, G state
0.09 +|— Argon fit

1 Helium fit

T T T T v T L B
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Noble Gas Density (x 10" cm™)

Figure C.1. Data and fitting function for elastic (M-changing) collisions of Li,
A'Z! (v,=5,J,=1) molecules with noble gas atoms. The plot shows the density in either
collisionally populated level J, =1,M,=+1 or J,=1,M,=-1 divided by the density in the
directly excited level J, =1,M,=0 vs. noble gas density. Black and red data points were
recorded using the G'I1, (v, =5,J, =J, =1)« A'Z; (v, =5,J, =1) probe transition with argon
or helium buffer gas, respectively. Blue data points were recorded using the
F'Y! (v,=12,J,=0)« A% (v, =5,J,=1) probe transition with argon buffer gas. The black

curve is a fit to all argon data (including both probe transitions), while the red curve is a fit to the
helium data. These fits were obtained using the analysis based on the single collision
approximation. Final results based on the more complete model that includes multiple collision
effects are shown in Figs. 6 and 7 of the main text.
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Figure C.2. Data and fitting function for elastic (M-changing) and inelastic (J-changing)
collisions of Li, 4'X! (v, =5,J,=1) molecules with noble gas atoms. The black data points
show the density in either collisionally populated level J, =1,M, =+1 or J, =1,M, =-1 divided
by the density in the directly excited level J, =1,M, =0 vs. noble gas density. Red, blue, and
green data points show the density in the collisionally populated levels J, =3, 5, or 7,
respectively, divided by the density in the directly excited level J/ =1 vs. noble gas density. The

red, blue, and green solid lines represent fits obtained using the analysis based on the single
collision approximation for J, =3, 5, or 7, respectively. Final results based on the more

complete model that includes multiple collision effects are shown in Figs. 6 and 7 of the main
text. (a) Argon data, (b) Helium data.
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Table C.1 — Preliminary values of rate coefficients (k7 7;"™"*' and &_;;”~>*") divided by the

radiative rate I' and in units of cm’s™" [the latter obtained by multiplying the fitted parameters
(k/EM=02% and k2% by T = 5.45 x 107 s7' [8]] for M-changing (elastic) collisions,

Ar,He Ar,He
A% (v,=5,J,=1,M,=0)—> A3 (v,=5,J,=1,M,=%1), and for J-changing (inelastic)
collisions, A'Z! (v, =5,J/=1)— A'Z} (v,=5,J,=3,5,7), of Li, molecules with argon and

helium atoms. Quenching rate coefficients are also given. Note that these results are based on
the single collision approximation that is not a good approximation for the higher pressure J-
changing collision data. Quoted uncertainties represent statistical errors only. Systematic errors
due to neglect of multiple collision effects are much larger. Final values, corrected for multiple
collision effects, are given in Table I of the main text.

ngl-:l,M,:Oﬁil j{'],-:l,Mi:Oﬁil Jo =M =0 Jm M =01
Ar He Ar He
M-changing

(10"18 cm3) (10_18 cm3) (107ll cm3s’l) (10’ll cm3s’l)
J,=lLM,=0—->J =LM,=%1 | 126 + 0.05]090 + 0.05|685 + 026|489 = 0.25

lgj;:HJ[:3,5,7 ]€J;:14J[:3,5,7 [T =35

J-changing Alflg ; He,lg 3 A_rn 31 Iien 31
(10 cm ) (10 cm ) (10 cm’s ) (10 cm’s )
Ji=1—>J =3 623 + 024|467 £ 024|339 + 13 |254 + 13
Ji=1—>J =5 443 + 0.17 1421 + 021|241 £ 09 (229 + 1.2
J=1>J =7 386 + 0.15]4.07 £ 021 21.0 =+ 08 |222 =+ 1.1

kS ki kS, K

Quenching (10‘18 cm3) (10"18 cm3) (10"11 cm3s"1) (10"11 cm3s_1)
115 + 07 129 £ 1.0 [629 + 37 |70.1 = 5.6
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Appendix D — Multiple collision corrections

Starting from Eq. (29) of the main text, and truncating the sum at J <7 we obtain the
following set of equations:

~ n ~ n ~ n ~
0.J,=3 J=3(7=550=3 J=5 7215023 Ji=1 _ 7 a=lsd=3
(1 +hkye nNG) kye Nyg kyg gy = kyo Ry - (D1)
Uy . ny._
(== 1= (14 o= My=s FI=10=s =7 _ =i, (D2)
NG Ny ve e NG NG = Kne RyG
My My My
and
_ ]'C’J=3_>JI=7 Ry _ ]€J=5—>J,.=7 1)=s + 1+]€Q,J,-=7 M= _ ng,-'=1—>J‘=7 (D3)
NG ove NG Rye N6 Pve = Ky Ry -
ny_ Ny Uy

As discussed in the main text after Eq. (29), we introduce the assumption that k]{,ZHJ':S:
k2= = ki7" since these all correspond to AJ =2 collisions, and k2"~ =kJ=""= since
these both correspond to AJ = 4, and we set kyg 7 =(7/11)k;s "= =(1/11)kj5 "=,
kg " =(1118) k" = (115) ks ™7, and kg /= =(7/15) kg™ = (T/15) kg™

from the principle of detailed balance. Finally, we make the same approximations that were used
in the single collision analysis; i.e., that the radiative decay rates and quenching rate coefficients
are the same for the four levels under investigation. Consquently, Egs. (D1)-(D3) reduce to

~ n,_ 7~ n,_ 7~ n,_. o~

0 = Ji=l5J,=3 J=5 Ji=l5J,=5 J=T _ 7J=lsd=3

(1 +kyng ) kye Ve kye Nye =kyg Rye (D4)
PR n,, \15 N,

- n,_ - n,_ 11~ n,_, o~
Ji=l>J,=3 J,=3 0 5= Ji=1o>J,=3 J=1 _ Tri=losd=s
_(kzvc g ) * (1 +kygMyg ) (E kg ”ch ——=kye Ny (D3)
s s oy
and
- n - n - n -
Ji=l5J,=5 ;=3 Ji=157,=3 J;=5 0 S )
- (kNG Nyg ) - (kNG Ve ) + (1 +kyehe ) =kyg Ny - (D6)
My My M=

Now we have three equations for three unknown density ratios 7, _, / Ryys My _s / Ny s

and n, _, / n,, . Using the following shorthand notation
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— (=103
23 = (kNG nNG) )

~=15,=5
Zs (kNG ove: ) )

Fo==a=,
Zy7 NG

v )
and
0= (1+l€lanNG) >

we can write the solutions to Egs. (D4)-(D6) as

ny 3 _165Q2213 +1050z,,2,s + 7702,s2,, — 1212 + 772}z, + 77 2,2}
e 165Q° —2260z%, =770z, — 154z}, 2, ’

n_s _165Q2215 +1650z7, +121Q0z,,2,, + 1212}z, + 172,,2,52,, — 77 ;5
e 165Q° —2260z;, - 7170z, —154z],z, ’

and

n,_; | 1650%z,,+3300z,,z,; +165z, =105z.,z,, +105z,,z;
165Q° —2260z), =770z, =154z 2, '

As before, the density ratios are related to the measured intensity ratios by

1
p 2+ 1] 1
J=3 _ Probe J;=3—G l'Ig
= n s
20
i Probe Ji=1-G'I1,
L
po |2+ 1
Ji=5 Probe J;,=5—G l'Ig
- ’
ny, o (200 +1"] 1
i Probe J/=1-G TI,
and
no 200+ 1
J;i=1 Probe J;=7—>GI1,

nyy (200 +1']

Probe J;=1-G'T1,
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(D10)
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(D13)
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Thus, Egs. (D11)-(D13) become

1 I
= [2] +1 ]Prochl-:3—>Glng — 165Q2213 +1050z,2,5 + 770z 52, _1212133 + 772123217 + 772132125
" |:le + ]” :'Prochf:l—>Gll‘[ 165Q3 - 226Q2123 - 77Q2125 - 1542123215
(D17)
1 Il
R - [2] +1 :IProbeJi:S%Gll'[g _ 1650z, 1650z}, +1210z,,z,, +1212],z,s + T72,32,52,, — 17 25
" |:2IJ_ + ]” :IProbe J=1-G'T1 165Q3 - 226Q2123 - 77QZ]25 - 1542123215 ,
(D18)
and
1 Il
R - [21 +1 ]pmbeJFHG‘Hg _| 1650°z,, +3300z,z; +165z); —105z;,z,, +105z,,2); (D19)
" [2]l +1||}Probc]’:1—>611‘[ 165Q3 - 226Q2123 - 77Q2125 _1542123215 .

Egs. (D17)-(D19) [(31)-(33) of the main text] for the J-changing data obtained using

G, (v, =5,J,=J,) A% (v,=5,J,=3,5,7) and
G, (v, =5,J,=J])« A2, (v,=5,J=1) probe transitions, along with Eqgs. (22) and (23) of
the main text for the M-changing data obtained using

G, (v,=5J,=J,=1)« A%, (v,=5,J,=1) and  M-changing data obtained using
F IZ; (v,=12,J,=0) « A'Z! (v, =5,J, =1) probe transitions, respectively, served as the fitting

functions in the analysis that includes multiple collision corrections.

Appendix E — Error bars for use in the analysis that includes multiple collision corrections

Uncertainties in the dependent variable [left hand sides of Egs. (22), (23), (31), (32), and
(33) of the main text] due to uncertainties in the intensity measurements are given by Egs. (BS),
(B12), and (B19). Again, we incorporate the effects of the uncertainty in the noble gas density
into the overall uncertainty in the dependent variable using the same methods employed in

dRJ, =1

Appendix B. The calculation of An,. in Eq. (B20) remains unchanged, so that the

RyG
overall error bars associated with the AM-changing data obtained using
G'TI . (v,=5,J,=J,=1)« A'Z! (v,=5,J, =1) probe transitions and M-changing data obtained

using F'E} (v, =12,J, =0) « A'S; (v, =5,J, =1) probe transitions, respectively [Egs. (26) and

(27) of the main text], remain the same as in the single collision analysis. However, the form of
the right hand sides of Egs. (D17)-(D19) [Egs. (31)-(33) of the main text] are much more
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R, _
complicated than the right hand side of Eq. (24), so the derivatives AT An,,; are also more
Ny

complicated. Nevertheless, they are straightforward to calculate, and we find

330k2,Qz,, +165k]-77730% 4105k 2,2, + 105k 7770z, +105k57" 7 0z,
YITkS 2,5z, + 7Tk ™20z + 77k 7777 Oz, — 363k 22

~J;:1—>Jl-:3 ~J,-':1~>J,-:7 2 ~Jl-':l—>Jl-:3 2 ~J,':l—>J,:5
+154k;;. 2,32, + 17k z,+ 17k, z;5 + 154k, Z,32;s

[4951€§GQ2 — 226k 2% — 452k /P 0z, —T7k2 2 -1 541;1{,;51_>Jf‘5Q215j

~ =3 = Ji=1J,=3 s =
dR,; N = —308kys " 7z5z5 —154kyg " An
dny, | " 1650Q° —226Qz% — 770z —154z2],z, e
(E1)
330k2. 0z, +165k5 "0 +165k%,22 +330k "7 0z, +121k2, 2,42,
121k 2 0z, + 121k 077 Oz + 242k 22, +121k05 70 22
VTP 2+ Tl P 2z 4 1T T 22, = 231k 22
B 495k% 0% —226k2 2% — 452k 0z, ~ 1Tk, 2,
dR,s| | TSR0z, 308K a2~ 154k o
dny, | ¢ 165Q° —2260z2 — 770z —154z22 2, Ne
(E2)
and
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330k2,0z,, + 165k "0 +330k2 2,2, + 330k} 770z,
+330k;="77 0z, + 495k 2 = 210k 05 P 2,z — 105k 777 22

LJi=1—>J,=3_2 L Ji=1—-J,=5
+105k,; z;s + 210k Z132,5

{495/2,€GQ2 —226kC 2% — 452k 0z, — 7Tk, 2

dRJ ~ A J;=7 _154];].\];:1—>Ji=5QZIS _ 308]%;&;;:1_)%:3213215 _1541’5].6;;1%./,:52123 A
- n,.= 7N
dn NG 1650° — 2260z —770z% —154z% 2 NG
NG 13 15 1315
(E3)

These results are combined with Egs. (26), (27), and (B19) to provide overall error bars
for the various types of data:

_ ‘ ig;gl,Ml:Oﬁil ~ IESG ‘ IEXZG:LM,:OailnNG + C1 o
() ~ = = G
) 4 ) (14 kG +C )|\ 1R+ Gy )
(E4)
L1 I
+6 I~ +1 : (AI),
(2t -1")
Probe J;=1-G'I1,,
‘ IEJ,-:l,M,-:O—)il ]EQ ‘ IEJ,-:I,M,-:O—&I +C
ARJ:l(F'z+) === Ayio_)ﬂ _ = NG NG — e 1 Any,
B ‘(kN’G o ”NG+C1) (l+kNGnNG+CQ)‘ I+ kyony +Cy
(E5)

I+

(A7),

(1)
Probe J;=1-F'S}
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+

+9‘

and

330k2 0z, +165k}-77730% 4105k 2,2, +105k)577 0z, +105k 7" 0z,
YTTkE 2oz, + 1Tk 20z + 7Tk Oz, — 363k )7 22

1 J=1-J,=3 L Ji=1-J,=7_2 L Ji=1—>J,=3_2 L J=1—J,=5
+154k;;. 232y, + 17k Zy + 17k, z,s +154ky; Z132,s

J;=3

i

L J=1J,=5 _ [ Ji=1o5J,=3 _ LJi=lsJ,=5 2
—154k;;. Oz, —308k,;. z,,2,s — 154k} Zp,

(49SI€§GQ2 —226k2 2% — 452k 0z~ 77k 22 J

165Q° —226Qz/, - 770z, —154z/ 2,

‘[2# +1'] +[21"+1"]

9\

Probe J;=3—G'TI,

(21 +1'T

Probe J;=1->G'TI,

Probe J/=1-G'T1
i = (AT

(E6)

330k2, 0z, + 165k 0% +165k2. 22 + 330k "7 0z, +121k, 2,2,
121605772 0z, + 12160577 0z, + 24200577 2 2+ 121k 2

L Ji=1-J,=3 L J=1—>J,=5 L J=1—>J,=7 _ rJi=1-J,=5_2
+7 7k 2,52y, + 1Tk 232y, + 17k 2,25 — 231k Zs

[4951€§GQ2 —226k2 2% — 452k 0z, ~TTkS 22 J

J.=5 ~ ~p ~
J{=1oJ;=5 _ Jj=1J,=3 _ Ji=1oJ;=5 2
—154k;;. Oz, —308k;; z,,2,s — 154k, Zp,

An
1650° — 2260z, — 770z, —154z],z, e

(21" +1"] +[2r"+1"]
Probe J;=5—G'TI,, Probe J;=1>G'TI,

[2]l +

2 (AI) s
)i ]
Probe J;=1>G'TI,,

(E7)
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330k2,0z,, + 165k "0 +330k2 2,2, +330k; "7 0z,
+330k;: 77 0z, + 495Kk 057 2 — 210k P 2 2, — 105k 22

~Ji=1J,=3 _2 ~Ji=1-J,=5
+105k,; Z;s + 210k Z32;s

{4951€§GQ2 —226k2 2% — 452k /=2 0z, — 7Tk, 2 J

AR _ i —154]%‘6;;1_)][:5Q215—308]%\?;;:1—)][:3213215_154]%\?;;:1—)][:52123 An
51 1650 =2260z;, =770z —154z,2,5 :

‘[2Il+l”] I 2y

Probe J;=7—G 11 Probe J;=1-G TI

+9 : 2 ] (M)
‘ [2rt+1"] ‘
Probe J;=1-G Hg
(E8)

Note that in Egs. (E1), (E2), and (E3), and also in Egs. (E6), (E7), and (ES8), one should

use expressions for R, ,, R, ., and R,_, in terms of the rate coefficients as written on the right

hand sides of Egs. (D17), (D18), and (D19) [Egs. (31), (32), and (33) of the main text],
respectively.
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Appendix F — Single collision model fits in which high pressure data points for inelastic
collisions were excluded

We carried out a series of fits, using the single collision approximation, Egs. (22), (23),
and (24) for the M-changing data obtained using the

G'TI . (v,=5,J,=J,=1)« A% (v,=5,J,=1) probe transition, M-changing data obtained
using the F'Z; (v, =12,J,=0)« A'Z} (v, =5,J,=1)probe transition, and J-changing data
obtained using the G, (v, =5,J,=J,) A%, (v,=5,J,=3,57) and
G, (v, =5,J,=J]) A% (v,=5,J/=1) probe transitions, respectively, with weightings

given in Egs. (26), (27), and (28) [(B21), (B22), and (B24)], respectively. In these fits inelastic
collision data for pressures above a chosen cutoff pressure were excluded from the
corresponding fit. These high pressure inelastic collision data are most susceptible to multiple
collision effects. Therefore, the validity of the single collision approximation increases as the
cutoff pressure decreases. Cutoff pressures of 10, 7, 5, and 3 Torr were chosen. Results of the
single collision model fits, with these cutoff pressures, are presented in Tables F.1, F.2, F.3, and
F.4 below.
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Table F.1 — Results of the single collision model fit with inelastic collision data corresponding to
pressures above 10 Torr excluded. Rate coefficients (k] 77 and k. ;>"~>*") divided by

the radiative rate I and in units of cm’s™" [the latter obtained by multiplying the fitted parameters
(kM=% and k7277357 by T = 5.45 x 107 s7' [8]] for M-changing (elastic) collisions,

Ar,He Ar,He
A% (v,=5,J,=1,M,=0)—> A3 (v,=5,J,=1,M,=%1), and for J-changing (inelastic)
collisions, A'Z! (v, =5,J/=1)— A'Z} (v,=5,J,=3,5,7), of Li, molecules with argon and
helium atoms are reported. Quenching rate coefficients are also given. Quoted uncertainties

represent statistical errors only. Systematic errors due to neglect of multiple collision effects are
expected to be much larger.

é/ﬁ:l,M,:(Hil Elﬁé:l,Mi:Oﬁil kj;:l,M,:OHil k}{[,ezl,M,:Oﬁirl
M-changing

(10"18 cm3) (10_18 cm3) (107ll cm3s’l) (10’11 cm3s’l)
J=1LM,=0—>J =LM,=%1 | 140 + 0.06]099 £ 0.05|7.65 £ 031|538 + 0.28

]gJ;:HJ[:3,5,7 ]€J;:14J[:3,5,7 kJ,’:HJ,.:3,5,7 kJ{:HJ,.:3,5,7

J—changing Alfls 3 Hefls 3 A—rll 3 -1 H_e“ 3 -1
(10 cm ) (10 cm ) (10 cm’s ) (10 cm’s )
J;=1—>Jl, =3 697 £ 026510 £ 025|380 £ 14 278 £ 14
J; =1—J =5 473 £ 0.18 452 £ 023258 = 1.0 (247 £+ 1.2
J;=1—>Jl, =7 380 = 0.15(4.15 £ 0211207 £ 08 |226 £+ 1.1

kS kg, kS, kg,

Quenching (10‘18 cm3) (10"18 cm3) (10"11 cm3s"1) (10‘11 cm3s‘1)
13.7 £ 08 [ 150 £ 12 |748 £ 4.6 |82.0 £ 6.7
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Table F.2 — Results of the single collision model fit with inelastic collision data corresponding to
JLM=052 gnd k7=-%=37Y divided by the

pressures above 7 Torr excluded. Rate coefficients (k7 o He
radiative rate I' and in units of cm’s™' [the latter obtained by multiplying the fitted parameters

(k/7EM=02% and k77277357 by T = 5.45 x 107 s7' [8]] for M-changing (elastic) collisions,

Ar,He Ar,He
A% (v,=5,J,=1,M,=0)—> A3 (v,=5,J,=1,M,=%1), and for J-changing (inelastic)
collisions, A'Z! (v, =5,J/=1)— A'Z} (v,=5,J,=3,5,7), of Li, molecules with argon and
helium atoms are reported. Quenching rate coefficients are also given. Quoted uncertainties

represent statistical errors only. Systematic errors due to neglect of multiple collision effects are
expected to be much larger.

é/ﬁ:l,M,:(Hil Elﬁé:l,Mi:Oﬁil kj;:l,M,:OHil k}{[,ezl,M,:Oﬁirl
M-changing

(10"18 cm3) (10_18 cm3) (107ll cm3s’l) (10’11 cm3s’l)
J=1LM,=0—>J =LM,=%1 | 153 + 0.06|1.09 £ 0.06|835 £ 0.33]59 =+ 032

]gJ;:HJ[:3,5,7 ]€J;:14J[:3,5,7 kJ,’:HJ,.:3,5,7 kJ{:HJ,.:3,5,7

J—changing Alfls 3 Hefls 3 A—rll 3 -1 H_e“ 3 -1
(10 cm ) (10 cm ) (10 cm’s ) (10 cm’s )
J; =1—J,=3 741 + 027555 £ 026404 £+ 15 1303 £ 14
J; =1—J =5 478 £+ 0181472 £ 023261 = 10 (257 £ 1.2
J;=1—>Jl, =7 359 = 0.14(4.14 £ 020|196 £ 08 |226 £+ 1.1

kS kg, kS, kg,

Quenching (10‘18 cm3) (10"18 cm3) (10"11 cm3s"1) (10‘11 cm3s‘1)
156 + 09 (177 £ 14 |8.1 £ 49 1962 + 75
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Table F.3 — Results of the single collision model fit with inelastic collision data corresponding to

pressures above 5 Torr excluded. Rate coefficients (k77 ~"*" and k7 ;") divided by the

radiative rate I' and in units of cm’s™' [the latter obtained by multiplying the fitted parameters
(k/7EM=02% and k77277357 by T = 5.45 x 107 s7' [8]] for M-changing (elastic) collisions,

Ar,He Ar,He
A% (v,=5,J,=1,M,=0)—> A3 (v,=5,J,=1,M,=%1), and for J-changing (inelastic)
collisions, A'Z! (v, =5,J/=1)— A'Z} (v,=5,J,=3,5,7), of Li, molecules with argon and
helium atoms are reported. Quenching rate coefficients are also given. Quoted uncertainties

represent statistical errors only. Systematic errors due to neglect of multiple collision effects are
expected to be much larger.

é/ﬁ:l,M,:(Hil Elﬁé:l,Mi:Oﬁil kj;:l,M,:OHil k}{[,ezl,M,:Oﬁirl
M-changing
(10"18 cm3) (10_18 cm3) (107ll cm3s’l) (10’11 cm3s’l)
J=ILM,=0—>J =LM,=%1 [ 159 + 0.06]|1.14 £ 0.06|8.67 + 035|620 + 035
. . ]gi;.’:HJ[:asi 15}/;;:144:3,5,7 kj;=1aJ,=3,5,7 k;;:HJ,:lsj
-changin
ging (10’18 cm3) (10’18 cm3) (10"11 cm3s"1) (10"11 cm3s‘1)
J;=1—>Ji:3 751 +£ 030(573 +£ 0291409 + 16 |31.3 £ 1.6
J;=1—>Ji:5 469 + 020474 +£ 025256 + 1.1 |[258 + 14
J;=1%Jl,:7 334 + 0.15{394 + 021|182 + 08 |215 + 1.2
kS, ki, kS, kg,
. 10—18 3 10—18 3 10—11 3 -1 10—11 3 -1
Quenching (07 em) | (107 em) | (107" ems) | (107 ems”)
165 £+ 1.0 | 187 £ 151900 + 52 |102 + 84
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Table F.4 — Results of the single collision model fit with inelastic collision data corresponding to
JLM=052 gnd k7=-%=37Y divided by the

pressures above 3 Torr excluded. Rate coefficients (k7 ;, o He
radiative rate I' and in units of cm’s™' [the latter obtained by multiplying the fitted parameters

(k== and kj5.77") by T = 5.45 x 10" s™' [8]] for M-changing (elastic) collisions,

Ar,He
A% (v,=5,J,=1,M,=0)—> A3 (v,=5,J,=1,M,=%1), and for J-changing (inelastic)
collisions, A'Z! (v, =5,J/=1)— A'Z} (v,=5,J,=3,5,7), of Li, molecules with argon and
helium atoms are reported. Quenching rate coefficients are also given. Quoted uncertainties

represent statistical errors only. Systematic errors due to neglect of multiple collision effects are
expected to be much larger.

é/ﬁ:l,M,:(Hil Elﬁé:l,Mi:Oﬁil kj;:l,M,:OHil k}{[,ezl,M,:Oﬁirl
M-changing
(10"18 cm3) (10_18 cm3) (107ll cm3s’l) (10’11 cm3s’l)
J=1LM,=0—>J=LM,=%1 | 161 + 006|120 £+ 0.07]876 £ 035|653 + 0.38
]gi;.’:HJ[:asi 15}/;;:144:3,5,7 kjizHJiZlSJ ké;=lﬁji=3,5,7
J-changin
ging (10’18 cm3) (10’18 cm3) (10"11 cm3s"1) (10"11 cm3s‘1)
Ji=1—>J =3 770 £ 050591 £ 041420 £ 2.7 (322 + 22
Ji=1—>J =5 449 + 0321459 £ 033|245 + 1.7 |250 £+ 1.8
J=1>J =7 291 +£ 0221348 + 027|159 £ 12 |190 = 1.5
kS, ki, kS, kg,
Quenching (10‘18 cm3) (10"18 cm3) (10"11 cm3s"1) (10‘11 cm3s‘1)
168 £ 1.0 (202 + 1.7 {914 + 53 | 110 £+ 93
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