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Abstract

We present a unified approach to goodness-of-fit testing in Rd and on lower-dimensional manifolds embedded in
Rd based on sums of powers of weighted volumes of kth nearest neighbor spheres. We prove asymptotic normality
of a class of test statistics under the null hypothesis and under fixed alternatives. Under such alternatives, scaled
versions of the test statistics converge to the α-entropy between probability distributions. A simulation study shows
that the procedures are serious competitors to established goodness-of-fit tests. The tests are applied to two data sets
of gamma-ray bursts in astronomy.
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1. Introduction and summary

Nearest neighbor methods have been successfully applied in a variety of fields, such as classification [15], density
and regression function estimation [6, 11], and multivariate two-sample testing [18, 33, 39]. Moreover, nearest neigh-
bor methods have also been employed in the context of testing the goodness-of-fit of given data with a distributional
model; see [7, 17, 21].

This paper is devoted to a class of universally consistent goodness-of-fit tests based on nearest neighbors. These
tests can be applied not only to test for uniformity on a compact domain in Rd, but also to test for a specified density
on a m-dimensional manifold embedded in Rd, where m ≤ d. The problem of testing uniformity on manifolds has
been considered in [16, 23]. Here, prominent special cases are testing for uniformity on a circle or on a sphere. For an
overview of existing methods and modern techniques; see Section 6 of each of the monographs [29, 31]. Regarding
related literature to statistics on manifolds, see [5, 12], as well as the references therein.

To be specific, letM denote a C1 m-dimensional manifold embedded in Rd, where m ≤ d.M is endowed with the
subset topology and is a closed subset of Rd. Let dx be the Riemannian volume element onM. A probability density
function on M is a measurable non-negative real-valued function f on M satisfying

∫
M

f (x) dx = 1. The support
K( f ) of f is the smallest closed set K ⊂ M such that

∫
K f (x) dx = 1.

Let P(M) denote the class of bounded probability density functions f onM, and write Pb(M) ⊂ P(M) for the
subset of probability density functions f such that K( f ) is compact and either (i) K( f ) has no boundary or (ii) K( f )
is a C1 submanifold-with-boundary of M; we refer to Section 2 of [36] for details. Notice that K( f ) could be an
m-sphere (or any ellipsoid) embedded in Rd. Let Pc(M) denote those probability density functions f ∈ Pb(M) which
are bounded away from zero on their support.
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In what follows we let Xi, i ≥ 1, be independent and identically distributed (iid) random variables with density f ,
defined on a common probability space (Ω,A,P), and we put Xn = {X1, . . . , Xn}. Given a locally finite subset X ofM
and x ∈ X, we write x(k) for the kth nearest neighbor (with respect to the Euclidean norm | · |) of x among X \ {x}. Let
vm = πm/2/Γ(m/2 + 1) be the volume of the unit m-sphere.

Given a fixed α ∈ (0,∞) and a fixed positive integer J, consider the volume score function induced by the J-nearest
neighbor distances

ξ(α)
J (x,X) =

J∑
k=1

(vm|x − x(k)|m)α, (1)

i.e., sums of volumes (to power α) of the k nearest neighbor balls around x, k ∈ {1, . . . , J}. When x < X, we
write ξ(α)

J (x,X) in place of ξ(α)
J (x,X ∪ {x}). When X consists of Θ(n) elements in a compact subset of M, where

an ≤ Θ(n) ≤ bn, n ≥ 1, for some 0 < a < b < ∞, we study the re-scaled volume scores

ξ(α)
n,J(x,X) =

J∑
k=1

{vm|n1/m(x − x(k))|m}α.

Recalling that Xn = {X1, . . . , Xn}, we consider the random measure

µ(α)
n,J =

∑
Xi∈Xn

ξ(α)
n,J(Xi,Xn)δXi , (2)

with δx denoting the Dirac point mass at x. If h is an arbitrary measurable bounded function onM, we write 〈µ(α)
n,J , h〉

for
∫
M

h(x) dµ(α)
n,J(x).

Given a fixed f0 ∈ P(M), this paper considers testing goodness-of-fit of the hypothesis

H0 : the unknown density of Xi is f0, (3)

against general alternatives, based on the statistic

T (α)
n,J = 〈µ(α)

n,J , f α0 〉 =
∑

Xi∈Xn

ξ(α)
n,J(Xi,Xn){ f0(Xi)}α. (4)

Notice that for the special case m = d and J = 1, this type of statistic has been studied in [7, 21], but without allowing
for lower-dimensional manifolds, and without considering fixed alternatives toH0.

In Section 2, we prove the asymptotic normality of T (α)
n,J as n → ∞ both under H0 and under fixed alternatives

to H0, and we show that T (α)
n,J /n has an almost sure limit under a fixed alternative to H0. When α ∈ (0, 1), this limit

is, apart from a multiplicative constant, the α-entropy between f and f0. As a consequence, the statistic T (α)
n,J yields

a universally goodness-of-fit test of H0 for each α ∈ (0,∞), α , 1, and each J. The versatility of this class of
tests is demonstrated in Section 3, which presents the results of a simulation study comparing our tests with several
well-known competitors. The paper concludes with some remarks and open problems.

2. Main results

The limit theory for the statistic (4) may be deduced from general theorems established in [36] and goes as follows.

Theorem 1. If f ∈ Pc(M), α ∈ (0,∞), then as n→ ∞ we have

T (α)
n,J /n→

J∑
k=1

Γ(α + k)
Γ(k)

∫
M

f0(x)α f (x)1−α dx (5)

in L2 and also P-a.s.
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Remarks. (i) Notice that the right-hand side of (1) is distribution-free if α = 1. Thus, in view of the testing problem
(3), it is indispensable to have α , 1.

(ii) If dimM = d, if the support K( f ) of f is a convex polyhedron, and if f0 is the uniform density overM, then
the asserted L2 convergence in (5) is given by Theorem 2 of [42]. That paper, which is based on [35], shows that

E ξ(α)
n,J(X1,Xn)→

∫
K( f )

E ξ(α)
J (0, ζ f (x)) f (x) dx (6)

holds in L2 as n → ∞. Here, 0 denotes a point at the origin of Rm, and ζτ with τ ∈ (0,∞) stands for a homogeneous
Poisson process of intensity τ in Rm, with Rm embedded in Rd so that the random variable ξ(α)

J (0, ζτ) is well-defined.
As will be shown in the upcoming proof, the paper [36] upgrades (6) to give convergence of the measures at (2), it
provides L2 and a.s. convergence, and also allows K( f ) to be replaced by a C1 m-dimensional submanifold of Rd.

(iii) Let X1, . . . , Xn be iid random variables with continuous distribution function F in the unit interval [0, 1]. To
test the hypothesis of uniformity on [0, 1], [25] introduced the statistic

∑n+1
i=1 Uα

i , where Ui = F(X(i)) − F(X(i−1)), and
0 = X(0) ≤ X(1) ≤ · · · ≤ X(n) ≤ X(n+1) = 1 are the order statistics of X1, . . . , Xn. If F has a continuous density f , we
have Ui ≈ f (Yi)(X(i) − X(i−1)), where Yi = (X(i) + X(i−1))/2. Since (X(i) − X(i−1)) is the volume of a ‘one-dimensional
sphere’ centred at Yi, the statistic T (α)

n,1 may be considered a multivariate analogue (not generalization) of
∑n+1

i=1 Uα
i ,

since in the univariate case some of the spacings are nearest neighbor distances. From the asymptotic distribution of∑n+1
i=1 Uα

i (see, e.g., [44]), it follows that

1
n

n+1∑
i=1

(nUi)α → Γ(α + 1)
∫ 1

0
f (x)1−α dx

in probability as n→ ∞. This result obviously corresponds to (5) for J = 1 and f0 being the uniform density overM,
where m = d andM has Lebesgue measure one.

(iv) If α ∈ (0, 1), the integral

rα( f0, f ) =

∫
M

f0(x)α f (x)1−α dx

figuring on the right-hand side of (5) is known as the α-entropy between (the distributions associated with) f0 and
f , see [41]. Notice that 1 − r1/2( f0, f ) = H2( f0, f ), where H( f0, f ) is the Hellinger distance between f0 and f . By
Hölder’s inequality, rα( f0, f ) ≤ 1, with equality if and only if the distributions pertaining to f0 and f coincide. If
α ∈ (1,∞), put W = f0(X1)/ f (X1), and recall that X1 has density f . Then rα( f0, f ) = E (Wα), and, by Jensen’s
inequality, rα( f0, f ) ≥ (E W)α = 1. As above, equality holds if the distributions associated with f0 and f are the same.

(v) It follows from (iii) and Theorem 1 that, for fixed α ∈ (0, 1), a test of fit that rejects the hypothesisH0 figuring
in (3) for small values of T (α)

n,J is consistent against each fixed alternative density f . If α ∈ (1,∞), rejection of H0 is
for large values of T (α)

n,J , and the resulting test is universally consistent.

Before stating variance asymptotics and a central limit theorem we introduce more notation from [36], especially
(3.8) and (3.9) of that paper. Given u ∈ Rm, let ζu

τ = ζτ ∪ {u} be the Poisson process ζτ together with a point added at
u. We consider an integrated ‘covariance’ of scores

V(τ) = Vξ(α)
J (τ) = E ξ(α)

J (0, ζτ)2 + τ

∫
Rm

[
E ξ(α)

J (0, ζu
τ )ξ(α)

J (u, ζ0
τ ) − {E ξ(α)

J (0, ζτ)}2
]

du

and an integrated ‘add-one cost’

δ(τ) = δξ
(α)
J (τ) = E ξ(α)

J (0, ζτ) + τ

∫
Rm

E {ξ(α)
J

(
0, ζu

τ

)
− ξ(α)

J (0, ζτ)} du.

As shown in Theorem 3.2 of [36], these integrals are finite. LetN(0, σ2) denote a mean zero normal random variable
with variance σ2.
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Theorem 2. If f ∈ Pc(M) is a.e. continuous and α ∈ (0,∞), then

lim
n→∞

n−1var(T (α)
n,J ) = σ2( f0, f ) =

∫
M

f0(x)2αV{ f (x)} f (x) dx −
[∫
M

δ{ f (x)} f0(x)α f (x) dx
]2

∈ (0,∞).

Moreover, as n→ ∞, {T (α)
n,J − E T (α)

n,J }/
√

n N[0, σ2( f0, f )].

Remark. Theorem 2.1 of [1] provides variance asymptotics and a central limit theorem for sums of functions of kth
nearest neighbor distances in the special case m = d.

We next extend the asymptotic normality results to situations where the Euclidean distance on a manifold is
replaced by the geodesic distance. We may do this in a general setting which goes as follows. Let (X,F ) be a
measurable space equipped with a σ-finite measure Q and a measurable metric d : X × X → [0,∞). Assume that
Q has density f and that there is a γ ∈ (0,∞) such that infx∈X Q{B(x, r)} ≥ crγ, r ∈ [0, diamX], where B(x, r) is the
closed ball centered at x ∈ X and having radius r.

Given a fixed α ∈ (0,∞) and a fixed positive integer J, consider the volume score function induced by the J-nearest
neighbor distances

ξ̃(α)
J (x,X) =

J∑
k=1

{d(x, x(k))m}α

as well as the random measures µ̃(α)
n,J =

∑
Xi∈Xn

ξ̃(α)
n,J(Xi,Xn)δXi .

Put
T̃ (α)

n,J = 〈µ̃(α)
n,J , f α0 〉 =

∑
Xi∈Xn

ξ̃(α)
n,J(Xi,Xn) { f0(Xi)}α .

The next theorem follows directly from Theorem 5.1 of [28] as well as Remark (iii) in Section 2 of that paper. It
shows that, at least in principle, one can also use intrinsic nearest neighbor distances for testing goodness-of-fit on
lower-dimensional manifolds embedded in Rd. We assume that f ∈ Pc(X), that is f is bounded away from zero and
infinity.

Theorem 3. If f0 ∈ P(X), α ∈ (0,∞), and varT̃ (α)
n,J ≥ Cn1−2α/γ, then as n→ ∞, {T̃ (α)

n,J − E T̃ (α)
n,J }/

√
varT̃ (α)

n,J  N(0, 1).

Remarks. (i) Showing the variance lower bound var T̃ (α)
n,J ≥ Cn1−2α/γ is a separate problem. Notice however that when

X is Rd, then we may put γ to be d, and we may set the metric d to be the Euclidean metric. Then the variance lower
bound holds (at least for the case J = 1), as shown in Theorem 2.1 and Lemma 6.3 of [34].

(ii) Theorem 5.1 of [28] shows a rate of normal convergence in the Kolmogorov distance equal to Cn−1/2, C a
generic constant.

Proof of Theorem 1. We deduce this from Theorem 3.1 of [36] with ρ = ∞, especially display (3.16) of [36], with the
f in (3.16) of [36] set to f α0 and with the κ in (3.16) of [36] set to f . Observe that ξ(α)

J belongs to the class Σ(k, r) of
that paper, and notice that

sup
n

E {ξ(α)
n,J(X1,Xn)}p < ∞

holds for all p ∈ [1,∞), i.e., the moment condition (3.4) of [36] holds for all p.
The limit (3.16) of [36] tells us that as n→ ∞ we have convergence in L2

T (α)
n,J /n→

∫
M

f0(x)αE ξ(α)
J (0, ζ f (x)) f (x) dx, (7)

where ξ(α)
J (0, ζ f (x)) is defined at (1). The last assertion in Theorem 3.1 of [36] also gives a.s. convergence in (7).
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Given τ ∈ (0,∞) and ζτ, we let X(k)
τ ∈ ζτ be the kth nearest neighbor to the origin. We compute

E ξ(α)
J (0, ζτ) =

J∑
k=1

E (vm|X(k)
τ |

m)α =

J∑
k=1

vαm(τ−1/m)αmE (|X(k)
1 |)

αm

=

(vm

τ

)α J∑
k=1

v−(αm)/m
m

Γ(k + α)
Γ(k)

= τ−α
J∑

k=1

Γ(k + α)
Γ(k)

,

where the penultimate equality follows by display (15) of [42] (with α replaced by αm, d replaced by m). We have
thus shown

E ξ(α)
J (0, ζτ) = τ−α

J∑
k=1

Γ(k + α)
Γ(k)

. (8)

Letting τ equal f (x) in (7) and applying (8) gives the claimed limit (5).

Proof of Theorem 2. This is an immediate consequence of Theorem 3.2 of [36] as well as remark (iv) on p. 2174 of
[36]. In that remark we may set the function f there to f α0 , we set ρ = ∞, and we put µξn,k,ρ equal to µ(α)

n,J . Keeping ρ

set to infinity, it is straightforward to show that µ(α)
n,J satisfies the moment conditions (3.5) and (3.6) of [36]. Since µ(α)

n,J
satisfies all the conditions of remark (iv) on p. 2174 of [36], Theorem 2 follows as desired.

3. Simulations

By means of a simulation study, this section compares the finite-sample power performance of the test based on
T (α)

n,J with that of several competitors. All simulations are performed using the statistical computing environment R,
see [38]. We consider testing for uniformity on the unit square [0, 1]2, on the unit circle S1 = {x ∈ R2 : |x| = 1}, and
on the unit sphere S2 = {x ∈ R3 : |x| = 1}. Since, strictly speaking, there is not only one new test, but a whole family
of tests that depend on the choice of the power α and the number J of neighbors taken into account, the impact on
finite-sample power of α and J will be of particular interest. In each scenario, we consider the sample sizes n = 50,
n = 100 and n = 200, and the nominal level of significance is set to 0.05. Throughout, critical values for T (α)

n,J under
H0 have been simulated with 100,000 replications (see Tables 7–9 in [13]), and each entry in a table referring to the
power of the test is based on 10,000 replications.

At least in principle, the result of Theorem 2 can be used to construct a region of rejection by means of the normal
distribution, or to specify approximate p-values. To this end, we first have to compute E T (α)

n,J , which depends on the
parameters as well as on the underlying manifold. As an example we consider the uniform density f0 = f for the three
mentioned cases. Straightforward calculations give

E T (α)
n,J = n1+α

J∑
k=1

k−1∑
j=0

(
n − 1

j

) ∫ 1

0
t j/α(1 − t1/α)n−1− j dt =

nα

α + 1
(n + 1)(J + 1 + α)

B(n, J + α)
B(n + α, J)

,

where B(·, ·) denotes the Beta function. If α is an integer this formula reduces to

E T (α)
n,J = α

nα∏α−1
`=1 (n + `)

J∑
k=1

k−1∑
j=0

α−1∏
i=1

( j + i).

Since the limit variance σ2( f0, f0) does not seem to be available in a closed form that would be amenable to com-
putations, we decided to estimate σ2( f0, f0) by means of simulations. Table 1 shows the resulting values for the
torus as well as the sphere based on 100,000 replications. With these estimated values we are able to approximately
standardize T (α)

n,J .
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Table 1: Estimated σ2( f0, f0) underH0 (torus, sphere)

α 0.5 2
n\J 1 2 3 4 5 1 2 3 4 5
50 0.22 0.75 1.60 2.77 4.25 13.8 93.7 355 995 2326
100 0.22 0.76 1.61 2.77 4.26 14.7 101 384 1085 2545
200 0.22 0.75 1.60 2.75 4.19 15.2 105 394 1099 2586
500 0.22 0.74 1.59 2.76 4.27 15.4 106 404 1138 2657

1000 0.22 0.76 1.62 2.81 4.33 16.0 109 412 1158 2736
1500 0.22 0.76 1.65 2.84 4.33 15.8 109 418 1177 2765

3.1. Unit square [0, 1]2

For testing the hypothesisH0 that the distribution of X1 is uniform over the unit square [0, 1]2, we considered the
following competitors to the new test statistic.

(i) The Distance to Boundary Test DB (see [4]), which is based on the distance of X1, . . . , Xn to the boundary
∂W of W = [0, 1]2. Writing DB(y, ∂W) = min{|x − y| : x ∈ ∂W} for the distance of y ∈ W to ∂W and
R = max{DB(x, ∂W) : x ∈ W} for the largest of such distances (which equals 0.5 in our case), the test statistic
computes, for each j ∈ {1, . . . , n}, Y j = DB(X j, ∂W)/R. UnderH0 the random variables Y1, . . . ,Yn have aB(1, 2)
distribution. The test employs the Kolmogorov–Smirnov type statistic

DBn =
√

n sup
y∈[0,1]

|Gn(y) −G0(y)|.

Here, Gn is the empirical distribution function of Y1, . . . ,Yn, and G0 is the distribution function of the B(1, 2)
distribution. Rejection of H0 is for large values of DBn, and critical values can be taken from the Kolmogorov
distribution. Note that this test is not consistent against some easily computable alternatives, e.g., the uniform
distribution on the subset [0.5, 1]2 of W.

(ii) The Maximal Spacing Test MS , see [2]. Writing B(x, r) for an open ball centered at x with radius r, this test
considers the maximum radius

∆n = sup{r > 0 : there is some x with B(x, r) ⊂ [0, 1]2 \ Xn}

of a ball that does not contain any of X1, . . . , Xn as an inner point. Rejection of H0 is for large values of the
test statistic Vn = π∆2

n. The limit distribution of Vn under H0 follows from (2.5) of [22], which states that, as
n→ ∞,

nVn − ln n − ln ln n G,

where the random variable G follows a Gumbel distribution with distribution function exp{− exp(−x)}, x ∈ R.
Letting uα denote the (1 − α)-quantile of this distribution, the test rejectsH0 at asymptotic level α if

Vn > n−1(uα + ln n + ln ln n).

A conceptual proof of the consistency of this test against general alternatives is given in [19].

Since dealing with nearest neighbors in the square involves boundary effects (see, e.g., [10]), we initially employed
both the Euclidean metric and the torus metric, i.e., the Euclidean metric on the 3d-torus, obained as the quotient of
the unit square by pasting opposite edges together via the identifications (x, y) ∼ (x + 1, y) ∼ (x, y + 1). Because
the power of the tests was in general somewhat higher for the torus metric than for the Euclidean metric, we decided
to use the torus metric. It should be stressed that this choice conforms to the general set-up adopted in [36] so that
Theorem 1 and Theorem 2 remain valid.

An empirical study of uniformity tests in several settings including the hypercube can be found in [37]. Guided by
the simulation study in [3], we used a contamination and a clustering model as alternatives to the uniform distribution.
The contamination model, denoted by CON, for the distribution of X1 is the mixture

(1 − ε1 − ε2)U[0, 1]2 + ε1N2(c1, σ
2
1) + ε2N2(c2, σ

2
2),
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Figure 1: Realization of the CON model (left) and the CLU model (right), n = 200

conditionally on X1 ∈ [0, 1]2. Here, ε1 = 0.135, ε2 = 0.24, σ1 = 0.09, σ2 = 0.12, c1 = (0.25, 0.25), c2 = (0.7, 0.7),
U[0, 1]2 is the uniform distribution over [0, 1]2, and N2(c j, σ

2
j ) stands for the bivariate normal distribution with

expectation vector c j and covariance matrix σ2
j I2, where I2 is the identity matrix of order 2. In other words, this model

produces a uniform background noise and two radially symmetric point sources of data, centered at the points c1 and
c2. The additional specification ”conditionally on X1 ∈ [0, 1]2” means that a realization was discarded whenever the
generated point did not fall into the unit square.

The clustering alternative CLU (say) considers an alternative toH0 in the non iid case, using a two step-technique.
In a first step, one simulates n1 = 10 iid random points with the uniform distributionU[0, 1]2, which are then discarded
but play the role of centers of clusters. In a second step, one generates, independently of each other, for each of those n1
centers n2 = n/n1 points that are uniformly distributed in a disc of radius 0.05, the midpoint being the center. Similar
to the CON alternative, each point was discarded if it fell outside [0, 1]2, and the point was simulated according to
U[0, 1]2 to describe a small uniform noise effect. Figure 1 shows a realization of the CON (left) and the CLU (right)
model.

Table 2 shows the percentages (out of 10,000 replications) of rejections ofH0 of the distance to boundary test and
the maximal spacing test, rounded to the nearest integer. Obviously, the latter test is sensitive to a cluster alternative,
but much inferior to the distance to boundary test against the contamination alternative.

Table 3 exhibits the corresponding percentages of the test based on T (α)
n,J . An asterisk denotes power 100%. As was

to be expected, rejection rates depend crucially on the power α and the number of neighbors J taken into account. In
each row, the maximum rejection rates have been highlighted using boldface ciphers. The beginning of a sequence of
asterisks has also been emphasized, thus indicating the smallest value of J for which the maximum power is attained.
A comparison with Table 2 shows the choice α = 0.5 yields a very strong test against cluster alternatives, even for
J = 1. Likewise, taking α = 0.5 and any J ≤ 25, the test based on T (α)

n,J outperforms both DB and MS .

Table 2: Empirical rejection rates of DB and MS, unit square

Alt. n DB MS Alt. n DB MS

CON
50 31 6

CLU
50 44 67

100 58 14 100 44 85
200 89 24 200 44 94
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Table 3: Empirical rejection rates of the test based on T (α)
n,J , unit square

Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

CON

0.5

50 14 22 29 36 43 48 53 56 59 61 66 65 60

100 19 27 36 45 53 60 66 71 76 79 90 93 94

200 25 38 50 60 68 75 81 86 89 91 98 99 ∗

CLU
50 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

200 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

CON

2

50 11 11 9 6 4 3 2 2 1 1 0 0 1

100 21 27 29 29 26 23 19 14 10 7 1 0 0

200 33 50 59 65 68 70 70 69 68 66 44 14 1

CLU
50 39 40 36 29 22 16 12 8 6 5 9 12 13

100 54 52 43 33 24 17 12 8 5 4 6 10 13

200 64 59 46 32 22 14 9 5 3 2 3 6 8

CON

5

50 13 18 19 20 20 19 17 15 14 12 10 11 13

100 23 34 44 51 56 59 61 63 63 63 53 35 20

200 36 58 74 83 89 92 94 96 97 97 98 98 98

CLU
50 54 63 65 65 63 61 59 57 55 61 64 61 56

100 78 87 88 86 85 83 80 77 74 76 83 81 81

200 93 98 97 97 96 95 93 91 89 89 94 92 92

3.2. The circle S1

A good overview of tests for uniformity on the circle is presented in the monograph [20]. We considered the
following classical procedures.

(i) The modified Rayleigh test, suggested in [24] and denoted by Ra in what follows, is based on the statistic

Ran =

(
1 −

1
2n

+
Tn

8n

)
Tn.

Here, Tn = 2n |Xn|
2, and Xn = n−1 ∑n

j=1 X j is the sample mean vector. Under H0, the limit distribution of Ran

as n→ ∞ is the χ2
3 distribution.

(ii) Kuiper’s test (see [26]), denoted by Ku, uses a transformation of X1, . . . , Xn to normed radial data U1, . . . ,Un,
as described in [20], p. 153. Writing 0 ≤ U(1) ≤ · · · ≤ U(n) ≤ 1 for the order statistics of U1, . . . ,Un, Kuiper’s
test is a Kolmogorov–Smirnov type test using the statistic

Kun =
√

n
{

max
1≤ j≤n

(
U( j) −

j − 1
n

)
+ max

1≤ j≤n

( j
n
− U( j)

)}
;

see [20], p. 153.

(iii) Using the same radial data transformation as in (ii), Watson’s test (see [43]), denoted by Wa, employs the
statistic (see [20], p. 156)

Wan =

n∑
j=1

U( j) −
2 j − 1

2n
−

1
n

n∑
`=1

U` +
1
2

2

+
1

12n
.
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The implementation and critical values of the Kuiper (ii) and the Watson (iii) test were taken from the R-package
Directional, as provided by [40]. As alternative distributions on the circle we considered the von Mises–Fisher (MF)
and the Bimodal von Mises–Fisher (BMF) distributions, see [20], Section 2.3 and [31], Section 9.3. Note that a
unit random vector has the (d − 1)-dimensional von Mises–Fisher distribution if its probability density function with
respect to the uniform distribution is given, for all |x| = 1, by

fµ,κ(x) = (κ/2)d/2−1 1
Γ (d/2) Id/2−1(κ)

exp(κµ>x). (1)

Here, κ > 0 is a concentration parameter, the unit vector µ denotes the mean direction, Iν is the modified Bessel
function of the first kind and order ν, and the prime stands for tranpose. For the simulations in Tables 4 and 5 we
chose µ = (1, 0)> and κ = 0.5. The Bimodal von Mises–Fisher distribution is a mixture of a von Mises–Fisher
distribution with µ = (1, 0)> and µ = (−1, 0)> with the same concentration parameter κ = 1.

A comparison of Table 4 and Table 5 shows that, among the values of α taken into account, the choice α = 5 and
J = 10 for n = 50, while J = 25 for n ∈ {100, 200}, yields the highest power of the new tests against the von Mises–
Fisher distribution. This power is comparable with that of Ra, Ku and Wa. Against the bimodal von Mises–Fisher
distribution, the choice α = 0.5 and J = 20 results in a test that outperforms Ku and Wa for n = 50 and is at least as
powerful as these tests if n = 100 or n = 200. Against this alternative, the Rayleigh test is not competitive.

3.3. Sphere S2

We now treat the case of testing for uniformity on a sphere in R3, for which many tests have been proposed. A
good overview, also for the corresponding testing problems in higher dimensions, is given in [14, 31]. We considered
the following procedures.

(i) The Rayleigh test (see [24]), denoted by R̃a, rejects the hypothesis of uniformity for large values of

R̃an =

(
1 −

1
2n

+
Tn

16n

)
Tn,

where Tn = 2n |Xn|
2. UnderH0, the limit distribution of R̃an as n→ ∞ is χ2

3.

(ii) The data-driven Sobolev test for uniformity applied to the sphere, here called the Jupp test and denoted by JT
(see [23]), computes

Bn(k) = S n(k) − k(k + 2) ln n,

where

S n(k) =
2k + 1

n

n∑
j,`=1

Pk(X′jX`),

and Pk is the Legendre polynomial of order k. The test statistic is then JTn = S n (̂k), where

k̂ = k̂(n) = inf
{

k ∈ N : Bn(k) = sup
m∈N

Bn(m)
}
. (2)

As suggested in [23], p. 1250, a suitable approximation of the supremum in (2) can be done by considering
sup1≤m≤5 Bn(m) instead. Critical values may be obtained from the χ2

3 distribution, since JTn  χ2
3 as n → ∞

under the hypothesisH0 of uniformity.

Table 4: Empirical rejection rates of the tests based on Ra, Ku and Wa, circle

Alt. n Ra Ku Wa Alt. n Ra Ku Wa

MF
50 58 53 58

BMF
50 6 63 61

100 88 84 88 100 6 97 99
200 ∗ 99 ∗ 200 6 ∗ ∗
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Table 5: Empirical rejection rates of the test based on T (α)
n,J , circle

Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

MF

0.5

50 8 9 10 12 13 15 16 18 19 21 32 42 50
100 10 12 13 15 17 19 20 21 23 25 34 43 53
200 12 15 18 20 23 25 27 30 31 33 43 54 63

BMF
50 28 44 56 67 76 82 87 90 93 95 98 98 97

100 37 56 71 80 87 92 95 97 98 99 ∗ ∗ ∗

200 55 77 88 94 97 98 99 ∗ ∗ ∗ ∗ ∗ ∗

MF

2

50 17 24 29 32 34 36 36 35 33 31 11 1 0
100 22 33 42 48 53 57 60 63 64 66 67 64 50
200 30 46 58 66 72 77 80 83 85 87 92 94 95

BMF
50 36 41 37 28 16 8 3 1 0 0 0 0 0

100 64 79 83 83 81 77 71 63 53 42 3 0 0
200 86 96 99 99 99 99 99 99 99 99 94 73 28

MF

5

50 19 27 33 37 41 44 46 48 50 51 50 39 15
100 24 36 46 52 59 63 67 70 72 75 82 85 86
200 32 50 62 71 78 83 86 89 91 92 96 97 98

BMF.
50 48 61 66 66 61 52 41 28 16 8 2 6 18

100 75 91 96 98 99 99 99 99 99 98 92 51 4
200 92 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Alt. n R̃a JT Alt. n R̃a JT

MF
50 36 36

Kent
50 10 99

100 66 66 100 13 ∗

200 94 94 200 22 ∗

Table 6: Empirical rejection rates of R̃a and JT , sphere.

As alternatives we considered the von Mises–Fisher distribution as in (1) with concentration parameter κ = 0.5 and
mean direction to µ = (1, 0, 0)>. A second alternative is the Kent distribution, see [31], p. 176, with density given, for
|x| = 1, by

fµ,κ,β(x) =
1

c(β, κ)
exp{κµ>x + βx>(τ1τ

>
1 − τ2τ

>
2 )x}.

Here, c(β, κ) is a normalizing constant, and τ1, τ2 and µ are mutually orthogonal vectors. The references to the Kent
distribution in Tables 6 and 7 use κ = 0.25, µ = (1, 0, 0)> and β = 2.

The results of the simulation study are given in Tables 6 and 7. The presented procedure is outperformed by
both procedures for the von Mises–Fisher distribution, although Table 7 indicates that for J > 25 and α = 0.5 (or
α = 5) better performances are possible. On the other hand, the new procedure is competitive to the other tests and
outperforms the modified Rayleigh test for the Kent distribution if α = 0.5 and J ≥ 7. Notice that the Rayleigh and
Jupp test have (nearly) the same power against the von Mises–Fisher distribution.

4. Gamma-ray burst data analysis

Gamma-ray bursts (GRB) are the brightest and most violent known events in the universe. They originate from
extremely energetic explosions in distant galaxies. In August 2017, a GRB and a gravitational-wave (GW) event, both
originating from the same collision of two neutron stars, were for the first time detected simultaneously; see [8]. The
gravitational-wave (GW) event GW 170817 was observed by the Advanced LIGO and Virgo detectors, and the GRB
170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for
the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous
temporal and spatial observation of GRB 170817A and GW 170817 occurring by chance is 5.0 × 10−8; see [30]. We
investigate two data sets of n = 44 and n = 1163 GRB events given in the galactic coordinate system, which is a
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Table 7: Empirical rejection rates of the test based on T (α)
n,J , sphere

Alt. α n\J 1 2 3 4 5 6 7 8 9 10 15 20 25

MF.

0.5

50 7 8 9 10 11 13 14 15 16 17 23 27 31
100 8 9 10 11 12 13 15 16 17 18 25 32 39
200 9 11 13 14 16 17 19 20 22 24 31 39 47

Kent
50 66 87 95 98 99 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗

100 83 97 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

200 96 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

MF.

2

50 10 12 13 13 13 13 12 11 10 8 3 2 1
100 13 17 19 22 24 25 26 26 25 25 20 14 6
200 17 24 30 36 40 43 46 48 50 51 55 54 50

Kent
50 14 9 4 1 0 0 0 0 0 0 0 0 0

100 41 42 36 27 18 10 5 2 0 0 0 0 0
200 77 87 88 86 83 78 71 62 51 41 4 0 0

MF.

5

50 12 15 18 21 23 25 26 27 27 27 26 20 11
100 15 22 28 33 38 42 44 48 50 51 57 59 59
200 19 31 41 50 57 63 67 71 74 76 84 87 90

Kent
50 29 35 34 30 25 18 12 7 4 2 2 8 29

100 63 79 86 88 88 87 86 83 80 76 40 1 0
200 91 99 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 97 96

celestial coordinate system giving points on the sphere S2; see Figure 2. The first data set (n = 44) are GRB observed
by the Fermi telescope, the second (n = 1163) by the Swift telescope; see [9, 27]. Both data sets were obtained from
the NASA website

https://swift.gsfc.nasa.gov/archive/grb_table/.

The question of interest is to test the null-hypothesis of intrinsic randomness, which is in astronomy typically consid-
ered to be distributed according to a uniform distribution; see [32].

As noticed in the beginning of Section 3, we need an estimated value ofσ2( f0, f0) to apply the results of Theorem 2
in order to obtain critical values as well as approximate p-values. In the spirit of Monte Carlo Tests, we simulated
σ2( f0, f0) under H0 for the specific sample sizes with 10,000 replications for α ∈ {0.5, 2, 5} and J ∈ {1, . . . , 5}, see
Table 8. Table 9 shows the approximate p-values of the tests. Obviously the Rayleigh test R̃a does not reject the null
hypothesis at any significance level, while most of the other tests do at a level of 0.05 (except T (α)

n,1 for α ∈ {2, 5} and
T (2)

n,5 for the Fermi data set). An explanation for the rejection of the hypothesis might be the accuracy errors in the
detection of the point events (which are also listed in the Swift data set).

5. Conclusions and open problems

We have introduced a new, flexible class of universally consistent goodness-of-fit tests based on sums of powers of
volumes of weighted kth nearest neighbor balls. Under fixed alternatives, scaled versions of the test statistics converge

Table 8: Estimated σ2( f0, f0) underH0

n α\J 1 2 3 4 5

44
0.5 0.217 0.735 1.563 2.683 4.088
2 13.2 90.0 343 969 2253
5 142e04 226e05 173e06 930e06 416e07

1163
0.5 0.214 0.734 1.552 2.686 4.130
2 15.5 107.7 410 1148 2698
5 303e04 534e05 444e06 255e07 117e08

11
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Figure 2: Gamma-ray burst observations in the galactic coordinate system, Fermi (left, n = 44) and Swift (right, n = 1163)

n α T (α)
n,1 T (α)

n,2 T (α)
n,3 T (α)

n,4 T (α)
n,5 R̃a JT

44
0.5 8.56e-03 3.00e-02 1.66e-02 3.71e-03 5.72e-04

0.75 4.40e-052 3.14e-01 1.30e-02 2.31e-03 8.67e-03 5.11e-02
5 1.71e-01 4.01e-02 5.38e-04 5.95e-04 1.70e-03

1163
0.5 3.19e-06 9.94e-07 3.38e-07 7.75e-09 2.64e-11

0.27 02 4.37e-02 7.24e-05 1.34e-10 9.27e-13 1.26e-13
5 5.10e-04 9.08e-08 0 0 0

Table 9: Approximate p-values for the data sets

to the α-entropy between probability distributions. The approach is fairly general, since it covers both goodness-of-fit
testing for distributions with a compact, ‘full-dimensional’ support in Rd, but also on lower-dimensional manifolds
embedded in Rd. Our approach requires J, the maximum number of neighbors taken into account, to remain fixed
as n → ∞. It would be desirable to obtain limit theorems also for the case that J = J(n) tends to infinity with the
sample size n. Another problem is to generalize the theory to cover testing for a parametric family { f (·;ϑ) : ϑ ∈ Θ}

of densities. This could be done by substituting f (Xi; ϑ̂n) for the weight f0(Xi), where ϑ̂n is a suitable estimator of ϑ,
based on X1, . . . , Xn. In view of the fluctuating performance in the simulation study, it is desirable to find an optimal
(data dependent) choice of the parameters J and α, which remains an open problem.

A further challenge is the behavior of T (α)
n,J with respect to contiguous alternatives. In this respect, Jammalamadaka

and Zhou [21] considered the statistic

T ∗n =
1
√

n

n∑
i=1

[
h(n f0(Xi)vd |Xi − X(1)|d) − E0

{
h(n f0(Xi)vd |Xi − X(1)|d)

}]
, (1)

where E0 denotes expectation under H0 and h : [0,∞) → R is some measurable function. Suppose { f > 0} =

{x ∈ Rd : f (x) > 0} is open in Rd and f is uniformly bounded and twice continuously differentiable on { f > 0}.
Jammalamadaka and Zhou [21] considered the limiting distribution of T ∗n under the sequence of alternatives

H1,n : Xi ∼ f0(x) + n−1/4`(x),

where
∫
Rd `(x) dx = 0. If ` is supported in a compact subset of { f > 0} and is twice continuously differentiable on
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{ f > 0}, h is of bounded variation on [0,∞) and if d < 8, then Theorem 5.5 of [21] says that, under the sequence H1,n,

T ∗n  N[µ(h), σ2(h)],

where µ(h) and σ2(h) are given in Theorem 4 of [21]. Notice that the sum figuring in (1), apart from the centering,
yields the statistic T (α)

n,1 if we put h(t) = tα. This function, however, is not of bounded variation on [0,∞) which shows
that the result above is not applicable. Nevertheless, one may conjecture that the statistic T (α)

n,J has positive asymptotic
power against alternatives that approach f0 at the rate n−1/4.

Acknowledgements

The authors would like to thank Michael A. Klatt for his expertise in gamma-ray astronomy and for indicating the
two data sets as well as an Associate Editor and an anonymous referee for their careful reading of the manuscript and
for many helpful suggestions.

References
[1] Yu. Baryshnikov, M. Penrose, J.E. Yukich, Gaussian limits for generalized spacings, Ann. Appl. Probab. 19 (2009) 158–185.
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[32] A. Mészáros , Z. Bagoly, L.G. Balázs, I. Horváth, R. Vavrek, Probing the isotropy in the sky distribution of the gamma-ray bursts, In: E. Costa,

F. Frontera, J. Hjorth (Eds.) Gamma-Ray Bursts in the Afterglow Era. ESO ASTROPHYSICS SYMPOSIA (European Southern Observatory).
Springer, New York, 2003.

[33] P.K. Mondal, M. Biswas, A.K. Ghosh, On high dimensional two-sample tests based on nearest neighbors, J. Multivariate Anal. 141 (2015)
168–178.

[34] M.D. Penrose, J.E. Yukich, Central limit theorems for some graphs in computational geometry, Ann. Appl. Probab. 11 (2001) 1005–1041.
[35] M.D. Penrose, J.E. Yukich, Weak laws of large numbers in geometric probability, Ann. Appl. Probab. 13 (2003) 277–303.
[36] M.D. Penrose, J.E. Yukich, Limit theory for point processes in manifolds, Ann. Appl. Probab. 23 (2013) 2161–2211.
[37] A. Petrie, Th.R. Willemain, An empirical study of tests for uniformity in multidimensional data, Comput. Statist. Data Anal. 64 (2013)

253–268.
[38] R Core Team, R: A language and environment for statistical computing, Statistical Computing, Vienna, Austria, 2016.
[39] M.F. Schilling, Multivariate two-sample tests based on nearest neighbors, J. Amer. Statist. Assoc. 81 (1986) 799–806.
[40] M. Tsagris, G. Athineou, A. Sajib, Directional: Directional Statistics, R package version 2.1, 2016.
[41] I. Vajda, On the amount of information contained in a sequence of independent observations, Kybernetika 6 (1970) 306–323.
[42] A.R. Wade, Explicit laws of large numbers for random nearest neighbor type graphs, Adv. Appl. Probab. 39 (2007) 326–342.
[43] G.S. Watson, Goodness-of-fit tests on the circle, Biometrika 48 (1961) 109–114.
[44] L. Weiss, The asymptotic power of certain tests of fit based on sample spacings, Ann. Math. Statist. 28 (1957) 783–786.

14


	Introduction and summary
	Main results
	Simulations
	Unit square [0,1]2
	The circle S1
	Sphere S2

	Gamma-ray burst data analysis
	Conclusions and open problems

