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We employ stabilization methods and second order Poincaré inequalities
to establish rates of multivariate normal convergence for a large class of vec-

tors (Hs(l), R Hs(m)), s > 1, of statistics of marked Poisson processes on
RY, d > 2, as the intensity parameter s tends to infinity. Our results are appli-

cable whenever the functionals HX(’), i €{l,..., m}, are expressible as sums
of exponentially stabilizing score functions satisfying a moment condition.
The rates are for the d-, d3-, and dcopyex-distances and are in general unim-
provable. When we compare with a centered Gaussian random vector, whose
covariance matrix is given by the asymptotic covariances, the rates are gov-

erned by the rate of convergence of 51 Cov(Hg(i), Hs(j)), i,jefl,...,m},
to the limiting covariance, shown to be at most of order s~1/4_ We use the
general results to deduce rates of multivariate normal convergence for statis-
tics arising in random graphs and topological data analysis as well as for mul-
tivariate statistics used to test equality of distributions. Some of our results
hold for stabilizing functionals of Poisson input on suitable metric spaces.

1. Introduction. For all s > 1 and a fixed bounded g : RY — [0,00),d > 2,let Py, be a
Poisson process in R? whose intensity measure has the density sg with respect to Lebesgue
measure. Given real-valued score functions (&)s>1 defined on the product of R? and the
space of simple locally finite point configurations on R? and given a bounded set A C R?,
we consider statistics of the form

(1.1) Hy:= ) &(x,Py), s=1,

x€PsgNA

where the value of the score &(x, Psg) depends only on the local configuration of points
around x. In this case H; is said to be a stabilizing statistic. As described in the survey [34],
the concept of stabilization is especially useful in establishing laws of large numbers, variance
asymptotics, and central limit theorems for Hs. The systematic investigation of stabilization
goes back to [24, 25].

The aim of this paper is to investigate the joint behavior of statistics Hs(l), e Hs(m),
m e N, s > 1, of the form (1.1) with score functions (Ss(l))szl, R (Es(m))szl and bounded
sets Ay,..., A, C R4, Write I-_IS(D = Hs(i) — EH§i) for i € {1, ..., m}. Under suitable mo-
ment and localization conditions on (Ss(l))szl, cee, (és(m))szl, it is known that s_l/zl:ls([), i €
{1,...,m}, converges to a centered normal as s — oo (see, e.g., [2, 3, 17, 22, 26, 28, 34]).
By the Cramér—Wold device one deduces that the m-vector ﬁs =5V 2(Hs(l), e, I:[Y(m))
converges to a centered multivariate normal as s — oco. The goal of this paper is to derive a
quantitative version of this result with rates of convergence. To this end, we consider three
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distances d(-, -), namely the d3-, d3-, and dopvex-distances described below, which mea-
sure the closeness of the distributions of two random vectors. We establish upper bounds
on d(ﬁs, N) in terms of s, where N is a suitable m-dimensional centered Gaussian random
vector. This provides rates of multivariate normal convergence for H, as s — oo.

Although much research has been conducted on the univariate normal approximation of
stabilizing functionals as described above, [23] is the only paper providing explicit bounds
for the multivariate normal approximation of Hy. Our results significantly improve upon the
rates of convergence in [23] and consider a more general framework. We refer the reader to
Remark (i) following Theorem 2.2 for more details.

Our bounds for the multivariate normal approximation are optimal in the sense that we can
show lower bounds of the same order for some examples.

In this paper we consider two different situations. The first involves comparing H, with an
m-dimensional centered Gaussian random vector Ny (s) having the same covariance matrix
Y (s) as ﬁs. This can be seen as a multivariate counterpart to the univariate central limit
theorems, where one standardizes and compares with a standard Gaussian random variable.
For d (ﬁs, Nsx(5)) we derive upper bounds of the order s71/2 (see Theorem 2.2), which is

of the same order as 1/ Varf_ls(i), i € {l,...,m}, and which is analogous to the classical
multivariate central limit theorem for sums of 1.i.d. random vectors. This result can be seen
as a multivariate version of the univariate central limit theorems in [17], which establishes

a rate of normal convergence of 1 /\/Varﬁs(l) in the Kolmogorov distance. Note that [17]
improved upon the weaker rates of convergence in for example, [2, 26, 28]; see [17] for more
details and further references. For some examples we derive lower bounds of the order s ~!/2,
showing that our rates of convergence for d (ﬁs, Nx(s)), as well as those from [17] for the
Kolmogorov distance in the univariate case, cannot be improved systematically.

In the second situation, we compare H, with an m-dimensional centered Gaussian random
vector Ny, with covariance matrix

Cov(H", FI§”)>
s i,j=1 m’

1= (0 jmtm o= Jim
that is, X is the asymptotic covariance matrix of ﬁs for s — oo. For d(ﬁs, Nyx) we derive an
upper bound of the order s~!/¢ (see Theorem 2.1), which depends on the dimension of the
underlying Euclidean space and which is weaker than in the first situation. This effect occurs
since one needs to compare the covariance matrices of Hs and the Gaussian random vector,
which are identical in the first case. One of the main achievements of this paper is to show
that

Cov I:I(i),H(j)
(1.2) (A, Hy )—oij <Cs VY s>1,i,je{l,...,m},
s

with some constant C € (0, co) (see Proposition 5.1). For i = j =1, (1.2) provides a rate
for the convergence of s_lVarHs(l) to the limiting variance, which is also new. To control
d(ﬁs, Nyx), we have to bound in our proof the same terms as for d(ﬁs, Nsx(5)), which are of
order 1/4/s, and we also have to bound the left-hand side of (1.2). Thus, the rate of multi-
variate normal convergence in the second situation is governed by the distance between the
exact and the asymptotic covariance matrix of H,.Fora particular example we can show that
the bound in (1.2) is sharp up to a constant, whence the rate s/ for d (ﬁs, Nyx) cannot be
improved systematically (see Proposition 2.4).

Our rates of multivariate normal convergence are for distances d(-, -) defined as supre-
mums over classes of test functions. More precisely, as presented in Section 2, we obtain
rates of multivariate normal convergence for I:I\s with respect to the d»- and d3-distances,
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which are defined via smooth test functions. We in fact establish rates of convergence with
respect to the distance d onvex defined at (2.19) in terms of the less tractable class comprised
of indicators of measurable convex sets. Rates of convergence with respect to the distance
dconvex coincide with the rates for the d,- and ds-distances; that is to say that the rates for
nonsmooth test functions are not worse than those for smooth test functions. This is note-
worthy since, for example, in [30] and [32] (see also [6], Section 12.4) one obtained at least
additional logarithmic factors in case of nonsmooth test functions.

Bounds for the multivariate normal approximation of general random vectors are given
in, for example, [6-10, 30, 32]. It is unclear whether these general results systematically
apply to H; and, if they do, how to usefully evaluate the approximation bounds. Although
Hs(l), e Hs(m) are Poisson functionals, the main results of [20] and Theorem 8.1 of [13]
for the multivariate normal approximation of Poisson functionals in the d>- and in the d3-
distance are usually not directly applicable, since the bounds require knowledge of the entire
Wiener—It6 chaos expansions of the Poisson functionals. We are thus unaware of a general
theory giving useful normal approximation bounds for the m-vector s~/ Z(P_Is(]), s I:Is(m)).
As a first step to fill this lacuna, we were motivated to combine the Malliavin calculus on
Poisson space with Stein’s method to develop in [36] second order Poincaré inequalities for
the multivariate normal approximation of vectors of general Poisson functionals, which are
multivariate counterparts to the main results of [18]. These inequalities show that moment
and probability bounds of first and second order difference operators control rates of mul-
tivariate normal approximation. Though these bounds appear unwieldy, we show here that
they smlphfy whenever the underlying statistics Hj ) , Hy" () comprising Hy are sums of
scores 55 (x, Psg)s oo, és(m)(x, Psg), x € Psg, satlsfymg only weak moment conditions and
stabilization criteria. In parts, the bounds can be evaluated similarly as in [17], where the sec-
ond order Poincaré inequalities for univariate normal approximation from [18] were applied
to stabilizing functionals, but the important difference with respect to the univariate situation
is that we have to compare the covariance matrices of H, and N This issue is addressed by
the inequality (1.2), whose proof involves careful estimates describing the average behavior
of products of stabilizing score functions.

The recent preprint [16] establishes bounds for the multivariate normal approximation of
Poisson functionals satisfying a potentially wider form of stabilization. These results, which
also rely on methods from [36], provide systematically weaker rates of convergence than do
those given here. In contrast to our situation, they are intended for functionals whose second
order difference operators cannot be controlled. In [16], one usually approximates a vector
of Poisson functionals with a centered Gaussian random vector having the same covariance
matrix, whence no quantitative bounds such as (1.2) for the convergence of covariances are
considered.

Finding convergence rates for the multivariate normal approximation of stabilizing func-
tionals of binomial input is a related but separate problem and is not addressed here. In the
univariate case, the paper [17] provides rates of normal convergence for stabilizing func-
tionals of binomial input. In the multivariate case, we cannot similarly treat an underlying
binomial point process, since the second order Poincaré inequalities for the multivariate nor-
mal approximation of Poisson functionals in [36] have no available counterparts for binomial
input. A possible strategy to address this would be to extend the univariate results of [15] for
binomial input, which were employed in [17], to the multivariate situation. Moreover, estab-
lishing a bound like (1.2) might be more difficult for an underlying binomial point process.

This paper is organized as follows. Section 2 provides the framework, notation, and state-
ments of our general multivariate normal approximation results. We discuss the optimality of
our results and provide a criterion for the positive definiteness of the asymptotic covariance
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matrix. In Section 3, we deduce rates of normal convergence of some multivariate function-
als in stochastic geometry, including component, degree, and subgraph counts for random
geometric graphs, statistical estimators of Rényi entropy vectors, and the vector of k-critical
points for the Poisson—Boolean complex. A marked version of our results gives rates of nor-
mal convergence for multivariate tests of equality of distributions. In Section 4 we draw on
the findings from [17, 36] to deduce a general multivariate normal approximation result,
Theorem 4.1, for vectors of stabilizing functionals of marked Poisson processes in a metric
space. Section 5 gives the proofs of all results in Section 2. In particular, it is shown that our
main results follow from Theorem 4.1. We establish in Proposition 5.1 the crucial covariance
convergence (1.2), which is proven in Section 6.

2. Main results.
2.1. Notation and definitions. Before describing our main results in detail we require

some terminology.

Marked Poisson processes. Let W C R4, d > 2, be a fixed measurable set. Typically W is
either a compact subset of RY or R? itself. We sometimes assume that the boundary of W,
denoted d W, satisfies

@.1) limsup M (X EATA@ AW 7))

r—0 r

for any measurable and bounded A € W, where A4 stands for the d-dimensional Lebesgue
measure and d(x,dW) := SUPyeyw lx — y|| with the Euclidean norm || - ||. We note that
convex sets and polyconvex sets satisfy (2.1), a condition needed to control boundary effects.
Similar assumptions have been used before, for example, in [24], p. 3 or [17], Theorem 2.3.
Let g : W — [0, c0) be a measurable bounded function. By Q we denote the measure on R4
whose density with respect to d-dimensional Lebesgue measure A4 is g on W and zero on
we.

To deal with marked Poisson processes, let (M, Fyp, Qnp) be a probability space. In the
following M shall be the space of marks and Qp the underlying probability measure of
the marks. Let F be the product o-field of the Borel o-field B(R?) and Fiy, and let @ be
the product measure of Q and Qpg, which is a measure on RY :=RY x M. For ¥ € R? we
often use the representation X := (x,m,) with x € R? and m, € M. Let N be the set of
simple locally-finite counting measures on (@d, F ), that is, for v € N one has v({x}) < 1 for
all ¥ € R and v(A x M) < oo for all measurable and bounded A C R¥. Simple counting
measures correspond to point configurations and can be identified with their support. This
means that N can be interpreted as the set of simple point configurations in R?. The set N is
equipped with the smallest o -field A such that the maps m4 : N — N U {0, oo}, v > v(A)
are measurable for all A € F. A point process is a random element in N. We update our
notation and now let Py, be the Poisson (point) process with intensity measure s@ which
consists of points in W := W x M. Recall that the numbers of points of Py, in disjoint sets
By,...,B, € J—" n € N, are independent and that the number of points of Py, in a set B € F
follows a Poisson distribution with h parameter sQ(B) When (M, Fnr, Qup) is a singleton
endowed with a Dirac point mass, W and Q reduce to W and Q, respectively, and the “hat”
superscript can be removed in all occurrences.

In the following we denote by P,, u > 0, a marked stationary Poisson process in R whose
intensity measure is u times the product measure of the d-dimensional Lebesgue measure A4

and Qpy.
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. - 1
Random sums and random measures. We consider families of scores (és( ))‘;21,...,

(";‘S(m))sz 1, m € N, which are measurable maps from RY x N to R. We fix measurable and
bounded sets Ay, ..., A;; € W suchthat Ay(A;) > 0,i € {1,...,m}. Asin condition (A2) of
[23], we sometimes assume that

ra(x e RY :d(x, 0A4;) <r)) s

(2.2) lim sup
r—0 r
Fori e {1,...,m}, we put
2.3) HD:= > DR, Py

fePSgﬂKi

with ;\\,- = A; x M and I-_Is(i) = Hs(i) — IEHs(i). We seek multivariate central limit theorems
for the m-vector s~/ Z(HS( 1), R Hs(m)). More generally, we consider the random measures

(2.4) D= >0 ED((rmy), Peg)e, s> 1,

(x,mx)epsgﬂgi

with 8, being the point mass at x € R?. For given measurable and bounded test functions
fi:Ai—>R,ie{l,...,m},and s > 1 put

W )= Y AWED((xmo). Py) and (@, fi) =, i) - Eu?, )
(x,mx)ePsgﬂZi

We will assume f; = 0, that is to say Az ({x € A,- : fi(x) #£0)) >_O. The conditions Ay(A;) >

0 and f; # 0 are required since, otherwise, H.s(’) =0 as. and ugl) becomes the null measure

a.s. When f; = 1 we note that (;1§’>, fiy= P_Is(’).

Score functions. For several of our results we will require that (Ss(l)) §>1s v s (Ss(m)) s>1 are
of a particular structure..WeA say that (Ss(]))sz Lsonns (Es(m))sz1 are scaled scores if there are
measurable functions £ : R? x N — R and constants C®) € (0, 00), i € {1, ..., m}, such

that Ss(i)((x, my), M) is the score £ at (x, m,) evaluated on an s'/¢-dilation of M about x,
namely

(2.5) ED((x,my), M) =ED((x, my), x +s4M —x))
for all (x,m,) € RY, M eN,s> 1, and
(2.6) 1ED((x, my), M) — D ((x + y,my), M+y)| <COYy]

forall x,x +ye W, m, e M, M €N. For M € N and a € (0, c0), by aM we mean the
point set {(ax,my) : (x,my) € M}. Given y € R?, we use M + y to denote the point set
{(x + y,my) : (x,my) € M}. Also, (2.6) is satisfied if £@ is translation invariant in the
spatial coordinate, that is to say

ED (e, m), M) =D ((x +y,m), M+y), x,yeR? m,eM, MeN.

To derive central limit theorems for the measures at (2.4), we impose several condi-
tions on the scores (Ss(l)) s>1cees (és(m)) s>1. The random variables we consider involve only

S(i)(f, M) for ¥ € W and M € N such that ¥ € M. Thus we can assume without loss of

generality throughout, that for all ¥ € W and M € N with X ¢ M,
2.7) ED@ M) =D FE M), ie{l,....m}s>1.

Here and in the following, we use the abbreviation M* := M U {%}.
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Radius of stabilization. For x € R4 and r € (0, 00), let B4(x, r) be the closed Euclidean
ball centered at x of radius r and let Ed(x, r) stand for B4(x,r) x M. For s > 1 we say
that Ry : W x N — [0, o0) is a radius of stabilizatiog for the scores SS(I)A, - s(m) if for all
ie{l,....m},xeW,myeM, MeN,s>1,and A c R? x M with |A] <9,

28) £ ((x,my), MUA) N B (x, Ry((x, my), M))) =D ((x, my), MU A).
Here I.ZI denotes the cardinality of A. We call a radius_of stabilization Ry monotone
if Ry((x,my), M1) > Ri((x, my), M») for all (x,m,) € W and M, M5 € N such that

My € Mo, that is, any point of M is also a point of Mj. Moreover, for some of our
findings we have to assume that for any (x,m,) € W, M €N, and r >0,

(2.9) YR, ((x,my), M) <r}=1{Rs((x,my), M N B (x, r)) <r}.

Condition (2.9) says that the radius of stabilization R; is itself locally determined, that is to
say & is “intrinsically” stabilizing.

Exponential stabilization. For a given point x € R? we denote by M, the corresponding ran-
dom mark, which has distribution Qy and is independent of everything else. Similar to, for
example, [2, 3, 17, 22, 23, 25, 26, 28, 34], we say that (£")=1, ..., (E™)s=1 are exponen-
tially stabilizing if there exist radii of stabilization (R;)s>1 and constants Cgab, Cstab € (0, 00)
such that forr >0, x € W,and s > 1,

(2.10) ]P)(Rs ((x, M), Psg) > r) < Cstab eXp(_cstabsrd)-

Sometimes we also require such a condition with respect to some stationary Poisson pro-
cesses, that is, with Cgp, Cstab € (0, 00) as in (2.10) and forr >0, x,y € W, and s > 1,

(2.11) P(Rs((xv M), Psg(y)) > r) < Cstab eXP(—CstabSFd)-

While we have our underlying Poisson process Py, in (2.10), in (2.11) we consider a station-
ary Poisson process Pyg(y), whose intensity is sg(y) for y € W. The idea behind (2.11) is
that one still has exponential stabilization if for y € W, Pj, is replaced by a stationary Pois-

son process whose intensity is the density of Pg, at y. The scores (Ss(l)) P P (i;‘s(m)) s>1
are intrinsically exponentially stabilizing if there exist radii of stabilization (R;)s>1 that are
monotone and satisfy (2.9)—(2.11).

Moment conditions. For a finite set A C R let (A, M 4) be the random set obtained by
equipping each point of A with a random mark distributed according to Qg and independent

from everything else. We say that the scores (Ss(l))szl, ...,(Ss(m))szl satisfy a (6 + p)th-
moment condition with p € (0, 00) if there exists a constant Cpnom,p € (0, 00) such that, for
allie{l,...,m}and A C W with | 4] <9,

2.12) sup sup E|ED ((x, My), Pyg U (A, M2))|**? < Cruom.p-

s€[l,00) xeW

Sometimes it is necessary to also assume this moment condition holds for some stationary
Poisson processes, that is, that with the same p and Cyyom, p asin (2.12), foralli € {1, ..., m}
and A c R? with |A| <9,

(2.13) sup  sup E[ED ((x, M), Psg(yy U (A, M)|*TP < Conom. p-
s€[l,00) x,yeW

Lipschitz functions. For U C R? and L € (0, c0) we let Lip; (U) be the class of Lipschitz
functions on U with Lipschitz constant L, that is, those functions f : U — R such that

(2.14) |f) = fOW|<Llx=yl. x,yeU.
We let Lip(U) denote all f: U — R with f € Lip; (U) for some L.
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Covariance matrix. In order to provide a formula for asymptotic covariances, we need fur-
ther conditions, which will sometimes be required for our results. Assume that A;z(dW) =

(which always holds if (2.1) is satisfied) and that g is almost everywhere continuous on W.
Let (Ss(l))szl, cee (és(m))szl be scaled scores generated by 5(1), ..., &M (see (2.5)) and as-

sume that (Ss(l))sz Lyvens (Ss(m))sz1 are intrinsically exponentially stabilizing and satisfy the
moment conditions (2.12) and (2.13) for some p > 0. We fix measurable and bounded func-
tions f1: A1 — R, ..., fin 1 Ay — R. As in [22] (see also the remark after the proof of
Proposition 5.1), one may show that

Cov(il, £i). (s, ;)

(2.15) lim =0, I,jefl,...,m},
§—>00 Ky
where for i, j € {1,...,m},

0jj == / s‘” ((x, My), Po)) €Y ((x, My), Pocy) fi (x) £ (x)g(x) dx

(2.16) +/A Rd Eé(l) (x M), 73(’8;) MH)))S(D((X MX—i-y) ()(Cx/)WX) _y)
- ES(’)((x, M), Py BED ((x, Myyy), Py — ¥)) £i(x) £ (x)g (x)? dy du.

Note that o;; does not depend on the choice of W. By ¥ := (0j;);, j=1
corresponding asymptotic covariance matrix.

n we denote the

.....

Distances between m-dimensional random vectors. Since our limit theorems are quantita-
tive in that they provide rates of normal convergence, we introduce distances between two
m-dimensional random vectors ¥ = (Y1, ..., Y,) and Z = (Zy, ..., Z,) or, more precisely,
distances between their distributions. The d»-distance and the d3-distance, used for the multi-
variate normal approximation of Poisson functionals first in [20] and afterwards, for example,
in [13, 16, 36], are defined in terms of classes of continuously differentiable test functions.

Let 7—[,(”2 ) be the set of all C2-functions % : R™ — R such that
|lh(x) —h()|<lx—yll, x,y€eR"™, and sup ||Hessh(x)||
xeR™

where Hess 4 is the Hessian of /2 and ||® ||, denotes the operator norm of a matrix ®. On the
other hand, let ?—[,(; ) be the set of all C3-functions /4 : R — R such that the absolute values
of the second and third partial derivatives are bounded by one. Define
2.17) d,(Y,Z):= sup |Eh(Y) —Eh(Z)|

he?—lff )
if E||Y||,E||Z] < oo and
(2.18) d;(Y,Z):= sup |En(Y) —Eh(Z)|

he?—lf,? )
if E[|Y[|?, E[|Z]|* < co.

We consider a distance involving nonsmooth test functions, namely

(2.19) deowex (Y, Z) := SuP|Eh(Y) -
heZ

where 7 is the set of indicators of measurable convex sets in R™. For m > 2 the dconvex-
distance is stronger than the Kolmogorov distance dx given by the supremum norm of the
difference of the distribution functions of ¥ and Z, namely

(220) dg(Y.Z):=  sup  |P(Yi<xi,.... Yo <x) = P(Z1 <x10eee, Zon < 20|,

Convergence in any of the distances at (2.17)—(2.20) implies convergence in distribution.
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2.2. Statements of the main results. In this subsection as well as in the two subsequent
subsections let Pyg, W, Ay, ..., Ap, f15 -0y fins /1§“, R M§m) and X be as in Section 2.1.
Recall that ¥ is the matrix with the components o;;, i, j € {1,...,m}, defined at (2.16).
Throughout we denote by Ng a centered Gaussian random vector with covariance matrix
O e R™ For f:RY Ddom f — R, let || floo := SUPedom £ | (1.

THEOREM 2.1. Suppose that g € Lip(W), that W fulfills (2.1), and that Ay, ..., An

satisfy (2.2). Assume that the scores (Ss(l)) §>1seees (és(m)) s>1 are scaled, intrinsically expo-
nentially stabilizing, and satisfy the moment conditions (2.12) and (2.13) for some p > 0,
and that f; € Lip(A;) with f; #£0,i € {l,...,m}.

(a) There exists a constant c1 € (0, 00) such that

2.21) di(s~2 (@D, A1), (@2, fu)), Ns) <ers™V s> 1.
(b) If X is positive definite, then there exists a constant cp € (0, 00) such that
(2.22) d(s7 12z, A) .7, fa), Ng) < cos™V4, s >1,

fOl’d € {d27 dconvex}-

The constant ¢y depends ond, W, g, m, A1, ..., Am, | filloos - -+» | fillco as well as all con-
stants in (2.6) and (2.10)—(2.13). The constant c; depends on the same quantities together
with 2.

Note that (2.21) implies that, for all i, j € {1, ..., m},

Cov(iil”, fi), (i@s”, fi))

(2.23) oij — <257V 5 >1,
s
because R 5 (uy,...,u,) — u;u;/2 belongs to the class ’HS) used in the definition of d3

at (2.18). The bound (2.23) is however a main ingredient in our proof of Theorem 2.1 and it
is established in Proposition 5.1.
We obtain improved rates of normal convergence when X is replaced by X(s), s > 1,

the covariance matrix of s~/ 2((ﬂ§1), S1), .o, ( ;15’”), fm)). Moreover the following result re-
quires neither that the scores (és(l))szl, e (.§s(m))s21 are scaled as at (2.5) and (2.6) and
fulfill (2.13), nor does it assume that their radii of stabilization are monotone and satisfy (2.9)
and (2.11). The assumptionson W, g, Ay, ..., Ay, and f1, ..., f; are weaker as well.
THEOREM 2.2. Assume that (*g‘Y ))s>1, e (Ss(m))szl are exponentially stabilizing as at

(2.10) and satisfy the moment condition (2.12) for some p > 0. Let f; : A; — R be measur-
able and bounded and such that f; #0,i € {1,...,m}.

(a) There exists a constant c3 € (0, 00) such that

(2.24) ds(s~ (B8, A1), B, fa))s Nw) Sess™2, s> 1
(b) If X (s) is positive definite for s > 1, there exists a constant c4 € (0, 00) such that
(225) d(s~ (@, fi) 18 fal) Ns) S can(B6)s™2, s> 1,

ford € {d3, dconvex}, where v : R™*™ — R is given by

max{|©~ [, [Olep, [O7' [ 1Ollp).  d =do,
max{|©~" )%, |©

(2.26) v(®) ==
op ’ - ”3/2} d = dconvex-
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The constants c3 and c4 depend on d, W, g, m, A1, ..., Am, | filloos - - -» | finllco as well as
the constants in (2.10) and (2.12).

REMARKS. (i) (Comparison of Theorems 2.1 and 2.2 with the literature.) The pa-
per [23] finds rates of normal convergence with respect to the distance at (2.20) of or-
der 0(s_1/(2d+8)), e > 0, for the special case that 5(1) =... = 5(’") and that the A;,
i €{1,...,m}, are disjoint, which means that the limiting centered Gaussian random vector
has a diagonal matrix as covariance matrix. Theorem 2.1 upgrades these rates to O (s~ !/4)
without assuming that the £, i € {1,...,m}, coincide or that the A;, i € {1,...,m}, are
disjoint.

The paper [32] and [6], Theorem 12.5, establish multivariate rates of normal convergence
with respect to dconvex for sums of locally dependent bounded random variables, though the
rates involve extraneous logarithmic factors. The logarithmic factors were removed in [9] and
also [8], where still boundedness conditions of one sort or another are assumed. For sums of
locally dependent possibly unbounded random variables, multivariate normal convergence in
the dconvex-distance is shown in [7], Chapter 3, with rates comparable to those in the clas-
sical central limit theorem for sums of i.i.d. random vectors. For a further result without
boundedness assumptions but with a weaker rate of convergence we refer to [30], Corollary
3.1. It is noteworthy that the scores (5(1))@1, R (Ss(m)) s>1 1n Theorem 2.1(b) and Theorem
2.2(b) only require moment conditions and not boundedness assumptions. Stabilizing Pois-
son functionals do not have a local dependence structure in general, although they can be
approximated by sums of locally dependent random variables (see [2, 26]). If one has good
bounds for sums with a local dependence structure as in [7-9], we believe that evaluating
these bounds in a way similar to that in [2, 26] for the univariate case would lead to extra
logarithmic factors. This difficulty appears inherent in the approaches given in [2, 26] and
might occur for smooth and nonsmooth test functions.

For smooth test functions the rate of convergence in (2.24) is of the same order as one
obtains from the results of [6], Chapter 12, or [10] for sums of locally dependent random
vectors, although stabilizing functionals are not of this form in general. Moreover, the rate in
(2.24) is for a slightly weaker and, thus, better distance (d3 instead of a distance defined by a
class of test functions having bounded mixed partials up to order three).

(i1) (Classical central limit theorem.) For the special case Ss(l) =1,ie{l,...,m}, and
fii=1l,...,fm=1, ( ME”, f1), m), fm)) becomes a vector of possibly dependent
Poisson distributed random Varlables and one can apply the classical multivariate central
limit theorem for sums of i.i.d. random vectors. However even for this situation, the problem
of finding rates of multivariate normal convergence by Stein’s method is a challenging one, as
shown in [4, 11]. The second order Poincaré inequality from [36] used in this paper is applied
to the aforementioned vector of Poisson distributed random variables in Corollary 1.3 in [36],
where the rate s~!/2 with respect to d € {d2, d3, dconvex} 1s Obtained and the dependence on
m is given.

(iii) (Univariate setting m = 1.) We obtain new rate results in the univariate central limit
theorem. Let N (a, 0%) denote a Gaussian random variable with mean a € R and variance
o2 € (0, 00). Recall from [17] that if (Es(l))szl are exponentially stabilizing and satisfy the
moment condition (2.12) for some p > 0, then there is a constant C € (0, co) such that

(1)
dK(M, N, 1)) <cs2 g1,
var(@", f1)

provided Var(uv , f1) = cs, s > 1, with some constant ¢ € (0, 00). It is natural to ask for
rates of normal convergence when Var(j f1 is replaced by +/s. Theorem 2.1 yields the
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bound dK(s_l/2 ugl), f1), N, o11)) < cas~ 14§ > 1, which is new, and moreover this
rate cannot be improved in general, as will be shown by Proposition 2.4.

(iv) (d = 1.) For simplicity we exclude the case d = 1, that is, Poisson processes on the
real line. Nonetheless, our approach prevails in this situation, yielding the rate s ~'/? in (2.21)
and (2.22).

(v) (Extension to polynomial stabilization.) One has polynomial stabilization if the prob-
abilities on the left-hand side of (2.10) (and (2.11)) decay polynomially, that is, they can be
bounded by Cistab(s/9r)~7 for some 7 > 0. We expect that the arguments of our proofs still
work for polynomial stabilization if the exponent 7 is sufficiently large.

2.3. Optimality of rates. This subsection establishes the optimality of the rates of con-
vergence in Theorems 2.1 and 2.2 by providing lower bounds of the same order for some
score functions. We start with the d.onvex-distance in Theorem 2.2 (b) and use the follow-
ing observation, which is proved in Section 5. For an integer-valued random variable ¥ with

EY? < oo and 62 := VarY > 1 and a standard normal random variable N, one has
1
(2.27) (Y —EY),N
dk(o )= 42 exp(l/S)a

The donvex-distance is bounded from below by the Kolmogorov distances between the
marginal distributions and the Kolmogorov distance is invariant under rescaling. Assume

the situation of Theorem 2.2 (b) and that the scores (Ss(k) )s>1 are integer-valued for some

ke{l,...,m} and let Nék()s) be the kth component of Nx () for s > 1. Then the aforemen-
tioned properties of the Kolmogorov distance and (2.27) yield

dconvex(s_l/z«ﬂgl)’ fl)a--- ( ) fm)) NE(S))
> di (72, fi) Ny = di (8P, fi)/y Var(i®, fi), N)
- 1
427 exp(1/8)y Var (2", fi)

for s > 1 such that Var(us , fr) = 1. If additionally X (s) converges to a positive definite
matrix as s — oo, the lower bound is of the order s /2. In this case v(Z(s)) is bounded
for s sufficiently large, whence the right-hand side of (2.25) is of order s ~!/2 as well. Thus,
the upper bound for the donvex-distance in Theorem 2.2 (b) is of the correct order if at least
one of the scores is integer-valued and the covariance matrices converge to a positive definite
matrix. This proves the optimality of the rates of Theorem 2.2 (b) for the d onyex-distance for
the given score functions.

The previous arguments also imply that the rates of convergence for the dg-distance for
univariate normal approximation of stabilizing functionals with Poisson or binomial input in
[17] cannot be improved systematically.

In order to study the optimality of the bounds for the d,- and d3-distances in Theorem
2.2, we restrict ourselves to the case that Q(Ay) = 1, f;‘(k) =1, and f; =1 for some k €
{1,...,m}. Then, { /Ls , fr) becomes a Poisson distributed random variable with parameter
s. Again, the d,- and d3-distances between random vectors can be bounded below by the
corresponding distances of the components. Thus, it is sufficient to derive lower bounds for
the d,- and d3-distances between Poisson distributed random variables Z; with EZ; = s for
s > 1 and a standard normal random variable N. From

Eexp(is~/2(Z; —5)) = exp(s(exp(is 71/?) — 1) —is'/?) = exp(—=1/2 +r(s5))
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with s'/2r(s) — —i/6 as s — 0o, where i is the imaginary unit, it follows by taking imaginary

parts on both sides that
1
6—JE'
Since Esin(N) = 0 and sin belongs to the test functions for the univariate d»- and d3-
distances, we see that

lim s'Esin(s~"/2(Z, —5)) = Jlim. 512 exp(—1/2) sin(Imr (s)) = —

§—>00

1 1
I}Yrgloréfs dr)(Z;,N) > 6z and l}vnj)érgfs d;(Z,,N) > 6z

For Q(Ar) =1, S(k) =1, and f; =1 for some k € {1, ..., m} this leads to the lower bound

s~/ 2/ (64/e) for the d,- and d3-distances in Theorem 2.2. In this situation (and if X(s)
converges to a positive definite matrix as s — 0o in case of Theorem 2.2 (b)) the bounds
for the d»- and d3-distances in Theorem 2.2 are of the order s~!/2 as well, whence this
is the correct order. This shows the optimality of the rates of Theorem 2.2 for the d»- and
ds-distances for the given situation.

In the following we consider the situation of Theorem 2.1. The rates there can be bounded
from below in terms of the first expression on the right-hand sides of (2.28) and (2.29) below,
which compares the exact and the asymptotic covariances. The fact that such a term can
slow down the rate of convergence has also been established for statistics of nearest neighbor
graphs in [32], p. 343, and for some additive functionals of Boolean models in [13], Remark
9.2.

PROPOSITION 2.3. Let the conditions of Theorem 2.1 prevail. Then
d3 (s~ (3", i) (RS, fu))s Nx)

(2.28) ) gy 70
Zl max Cov({is ", fi), (s fi) )) 512,
2, jefl,....m} s

Oij — s>1,

where c3 is the constant in (2.24). If, additionally, ¥ is positive definite, there exist constants
cs, € € (0, 00) only depending on % such that

(s~ (@M, i) (@, ), Nx)

_ Covtin”, fi), (&5 fi) ‘
s

(2.29)

— cqv(2(s))s ™12

ford € {dy, dconvex} and s > 1 with

max
ijell,...m}

In (2.29), c4 and v(-) are as in (2.25).

(O U) ¢
Oij_COV(<Ms fids (s ,f]))‘sg

N

To show sharpness of the bounds in Theorem 2.1 we consider vertex and edge counts
in the random geometrlc graph G (P, Qs_l/ ), with a homogeneous Poisson process Py of
intensity s > 1 on [0, 1]¢ (i.e., W =[0,1]¢ and g = 1j0,13¢) and ¢ > O fixed. For a point set
M c R? and r € (0, co) the graph G(M, r) is obtained by connecting two distinct points x
and y of M with an edge if and only if ||x — y|| <r. By V; and E; we denote the numbers
of vertices and edges of G(75s, stl/ d), which can be also written as sums of scores, whence
they fit into our framework.
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PROPOSITION 2.4. Letd >3 and let G(73s, Qs_l/d) be as above. There exist constants
6, €7, 50 € (0, 00) only depending on d and o such that

65~/ <d(s7V2(Vy —EVy, By —EE), Nx) <c7s™ /4, 52 5,
ford € {d,, d3, dconvex} With

2.30 = : " |
3 Y= ,
( ) K d K2 2d d

where kg is the volume of the d-dimensional unit ball.

Proposition 2.4 implies that the rates of convergence in Theorem 2.1 cannot be improved
systematically. The idea of the proof of Proposition 2.4 is to show that the first expression on
the right-hand sides of (2.28) and (2.29) is of order s~!/¢ and to apply Proposition 2.3.

2.4. Positive definiteness of the asymptotic covariance matrix. To apply (2.22) one has
to check that the asymptotic covariance matrix X is positive definite. Note that the positive
definiteness of X is equivalent to

lim VarZa, M; ,f,)

§—>00 §
i=1

for all a = (ay, ..., ay) € R™ with a # 0. Positive definiteness and nondegeneracy of the
asymptotic variances are separate problems from that of normal approximation, which de-
pend on the particular choice of the score functions and which we will not address in detail
here. Nevertheless we provide the following criterion. Recall that we denote by P, a station-
ary Poisson process with intensity u# > 0.

PROPOSITION 2.5. Suppose that Lg(0W) = 0, that g is almost everywhere continuous
on W and g(x) > 0 for all x € W, and that (és(l))szh e, (§s(m))sz1 are scaled, intrinsically
exponentially stabilizing, and translation invariant, and satisfy the moment conditions (2.12)
and (2.13) for some p > 0. Assume that there is a measurable and bounded set A C R? such
that for A:=AxMand for any u > 0 the asymptotic covariance matrix of

S DG P Y ss(m)(f,m))

ferﬁZ fepmﬂﬁ

(2.31) 1 (
NG
as s — o0 is positive definite. Let f; : A; — R, i € {1, ..., m}, be measurable and bounded
and such that f; #0. Then X := (0ij);, j=1,..,m as defined in (2.16) is positive definite.
REMARKS. (i) Note that X in the conclusion of Proposition 2.5 is the asymptotic covari-
ance matrix with respect to the inhomogeneous Poisson processes Py, s > 1, while in (2.31)
we consider stationary Poisson processes. Thus Proposition 2.5 implies that for translation in-
variant scores it is sufficient to establish the positive definiteness of the asymptotic covariance
matrices for a family of stationary Poisson processes in order to show positive definiteness of
the covariance matrix X for inhomogeneous Poisson processes and test functions f1, ..., fi-
(1) In certain situations it is straightforward to verify that ¥ is positive definite. For ex-
ample, if A; and A; are disjoint for all distinct i,je{l,...,m}, then X is a diagonal matrix
whose entries are lims_mos_lVar Ms , fi), i €{l,...,m}. Such asymptotic variances are
automatically strictly positive for many functionals of interest, as shown in Theorem 2.1 of
[24]. This result says that the limiting variances are strictly positive whenever the “add-one

cost” for (,us , fi), i € {1,...,m}, satisfies a localization condition; see also Section 4 of
[23].
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3. Applications. We use our general results to deduce rates of multivariate normal con-
vergence for vectors of statistics arising in stochastic geometry and topological data analysis.
Our list of applications is not exhaustive.

If not stated explicitly, we deal with an unmarked underlying Poisson process. Throughout
we assume that W is compact and convex and that g : W — [0, oo) is bounded away from
zero and infinity. When we say that measures (,ugl)) PES P (M§m)) s>1 satisfy the conclusions
of Theorems 2.1 or 2.2, we implicitly understand that g, Ay, ..., Ay, and f1,..., f;, meet
the conditions required by the theorem; for example, in the setting of Theorem 2.1 we mean
that g : W — [0, co) is in Lip(W). For the conclusions of parts (b) of Theorems 2.1 and 2.2
it is crucial that X and X(s), s > 1, respectively, are positive definite, which we implicitly
assume in this section whenever necessary. In case of the examples in this section, one can
often check that X (s) is positive definite. The idea is to verify on a case-by-case basis that
for each vector (uy,...,u,) € R™ with (uy,...,u,) #(0,...,0) the event

m
Zul lL§l)= fl #0
i=1

has positive probability. Together with the observation that for Py, = & the linear combi-
nation equals zero, this proves positive definiteness of X (s). Some of the applications below
include remarks describing special cases where the positive definiteness of X may be verified.
Many of the applications described here are also valid for Poisson input on some manifolds
and other metric spaces, which will be discussed in Remark (iii) following Theorem 4.1.

3.1. Multivariate statistics of k-nearest neighbors graphs. Given M € N, k € N, and
x € W, let Vi(x, M) be the set of k-nearest neighbors of x, that is, the k closest points of x
in M\ {x}. In case these k points are not unique, we break the tie via some fixed linear order
on W. The (undirected) k-nearest neighbors graph N G (M) is the graph with vertex set M
obtained by including an edge {x, y} if y € Vi(x, M) and/or x € Vi(y, M). We consider
four multivariate statistics of NGy (M), the first two of which have received considerable
attention in the univariate set-up; see [17] and references therein.

a. Total edge length vector. For all g € [0, o0) and k € N define

0 M= Y p% Dy, M,
yeVi(x,M)

where p®9)(x, y, M) :=||x — y||9/2 if x and y are mutual k-nearest neighbors, that is,
x € Vi(y, MU {x}) and y € Vi(x, M U {x}), and otherwise p*9) (x, y, M) := ||lx — y||4.
The total weight of the undirected k-nearest neighbors graph on M with gth power-weighted
edges is erMé(k’q)(x, M). We study the re-scaled version ) . Ss(k’q)(x, M), where

s(k’q) is defined in terms of & *k.9) a5 at (2.5). More generally, given k; € N and ¢; € [0, 00),
i €{l,...,m}, we consider the measures

MEi,ki,qi) — Z gs(ki,fﬁ)(x’ Pig)Sx-
xE'PXgﬂA,'

(m,k

THEOREM 3.1. The measures (u'" 1q1))s (st q’”))szl satisfy the conclu-

sions of Theorems 2.1 and 2.2.

REMARKS. (i) It is beyond the scope of this paper to give general conditions insuring
that the matrix X is positive definite. However, if fi=1,...,fu=1Lq1=---=qgm =1,
and if Ay, ..., Ay, are disjoint and satisfy the regularity condition of Theorem 6.1 of [24],
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then X is positive definite, as seen by combining Remark (ii) following Proposition 2.5 with
Theorem 6.1 of [24]. Technically speaking, this last theorem is stated for the case A; = W,
but it is straightforward to show that it also holds for the regular subsets of W. Moreover, the
results of [24] may be extended to treat ¢ > 0, yielding positive definiteness of X in this case
as well. _

(i) If A; = W and f; = 1, then (u{"*"%)_ £} is simply the total edge length of the k;-
nearest neighbors graph on P, with g;th power-weighted edges. In this way we deduce from
Theorem 3.1 multivariate rates of normal convergence for m-vectors of total edge lengths of
nearest neighbors graphs. The rates improve upon those which one can deduce from the main
result of [23], which considers only the distance at (2.20); see, in particular, Theorem 5.1 of
[23] for d = 1 and compare with Remark (iv) following Theorem 2.2.

PROOF. We deduce this from Theorems 2.1 and 2.2. The scores ";‘(k"”, keN,qg €0, 00),
are translation invariant and thus satisfy (2.6). As shown in the proof of Theorem 3.1 of [17],
the scores (Ss(kl’q'))sz Lo onns (Ss(k’”’q'”>) s>1 have thrice the distance from the given point to
its kth nearest neighbor as a monotone radius of stabilization R;, they are exponentially
stabilizing as at (2.10) and (2.11), and they also satisfy the moment conditions (2.12) and
(2.13). Since the distance from x to its kth nearest neighbor is determined by the points in a
ball around x whose radius is the distance from x to its kth nearest neighbor, the radius of

stabilization Rj is intrinsically stabilizing as at (2.9). O

b. Entropy vector. Given M € N, the directed k-nearest neighbors graph on M, denoted
NG}, (M), is the directed graph with vertex set M obtained by including a directed edge from
each point to its k-nearest neighbors. The total edge length of the graph NG/ (M) endowed
with gth power-weighted edges is

LEDM) = LYy, (M) = 32 ERD @, M),
xeM

where &9 (e, M) ==Yy eonn X = ¥119.
For this application we put kK = 1 and we assume that g is a probability density, that is,
Jw &(x)dx = 1. Then given p € (0, 00), p # 1, the Rényi p-entropy of g is

Hy(@):= (1= p) " log [ g(7 dr.

We refer to [19] for a discussion of the large number of applications of the Rényi p-entropy.

If g is continuous and bounded away from zero and infinity on W, then s¢/¢—1(1.9) (Psg)
is a consistent estimator of a multiple of [ g(x)'~9/¢ dx. This follows by combining Theorem
2.2 of [28] with Remark (vii) on page 2175 of [28]; see also Theorem 2.2 of [29], Section 3
of [19], and Section 2 of [27] for further consistency results. For g1, ..., g, € [0, 00) we
consider the entropy measures

pl) =gt N LD (e Pg)sy, i el m).
x€PsgNA;

A = =Ap=Wand fi=1,..., fu=1, ("N, £y, (™9 £.)) reduces to
a p-entropy vector. The following result in particular establishes a rate of multivariate normal
convergence for entropy vectors. The proof is similar to that of Theorem 3.1.

THEOREM 3.2. The entropy measures (MEMA))EI’ e, vam,q,n))szl satisfy the conclu-
sions of Theorems 2.1 and 2.2.
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REMARK. If fi=1,...,fu=1,q1=---=¢qgn =1, and if Ay,..., A, are disjoint
and satisfy the regularity condition of Theorem 6.1 of [24], then X is positive definite, as
seen by combining Remark (ii) following Proposition 2.5 with Theorem 6.1 of [24]. Strictly
speaking this last theorem treats the case that A; = W, but the methods easily extend to cover
the case that A; are regular subsets of W. Also, Theorem 6.1 of [24] examines the case of
undirected nearest neighbor graphs, but the proof methods may be easily modified to treat
directed nearest neighbor graphs as well, as noted in the penultimate sentence on page 1022
of [24].

c. Degree count vector. As shown in [37], Lemma 8.4, for all d, k € N there exists a mini-
mal integral constant Cqeg (k, d) € (0, 00) such that the degree of every node in NG (Psg) is
a.s. bounded by Cyeg(k, d). Forall j € {1, ..., Cgeg(k,d)} define

g® D (x, Pyg) := 1{degree of x in NGy (Psg U {x}) equals j}.

For ji,..., jm €{1,..., Cdeg(k, d)} we consider the induced measures
I’Lgl’k"]l) = Z gs‘(k"h)(-x’ Psg)(sx’ l € {19 --~7m}7
X€PsgNA;

with és(k’ji) defined in terms of £ %7 as at (2.5). If A; = W and f; = 1, then (ugi’k’ji), fi)is
the number of vertices in NG (Ps,) of degree j;.

THEOREM 3.3. The measures (ME”""I))M, cees (,u§m’k’j'”))szl satisfy the conclusions
of Theorems 2.1 and 2.2.

PROOF. The scores & (.J) are translation invariant and so satisfy (2.6). For the scores
(fs(k’jl))szl ey (Ss(k’j"’))szl one can choose the quantity 2R (-, -, A) with A = W from page
1030 in Section 6.3 of [22] as a radius of stabilization. In [22] it is claimed that R is a radius
of stabilization for scores depending on the edges of the k-nearest neighbor graph incident to
a point (or, more precisely, that [ R4 is an upper bound for the radius of stabilization, as in
[22] the radius of stabilization is supposed to be integer-valued and is the smallest possible
choice). However, it seems that one needs the factor of two since adding or removing points
whose distance to x is between R4 (x, M, A) and 2R, (x, M, A) can affect whether other
points have x as a k-nearest neighbor or not. The definition of R4 (x, M, A) involves the dis-
tances from x to its kth nearest neighbors in some cones, whence it is monotone and satisfies
(2.9). The exponential stabilization in (2.10) and (2.11) follows from a similar computation
as in (6.12) in [22]. The scores (£°/")s=1, ..., (6*")s= | are bounded by Cyeq(k, d) and,
thus, clearly satisfy moment conditions (2.12) and (2.13). Hence the conditions of Theorems
2.1 and 2.2 are all satisfied. [

d. Multivariate statistics for equality of distributions. Consider the nearest neighbors
graph NG (Psg) and with probability ;, j € {1,..., £}, we color the nodes in P, with
color j, independently of the sample and of the colors assigned to the other points. Let
Y; :=Y;(Psg) be the number of edges in NG1(Psg) which join nodes of color j. The vector
(Y1(Psg), ..., Ye(Psg)) features in tests for equality of distributions.

Assign to each x € Py, an independent mark m, taking values in the space {1,2,..., ¢}
with the prolggbilities mwj, j€{l,..., £}, and write X := (x, my), which gives a marked Pois-
son process Pg,. Given x € W and a point configuration M in RY we let £(x, M) denote the
collection of edges in NG (M U {x}) containing x. For all j € {1, ..., ¢}, define the scores

N 1 .
(3.1) ENEM=2 Y Ume=my=j).
{x.y}e€(x. M)
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Given (3.1), we define & in terms of £ as at (2.5). For ji, ..., jm € {1, ..., £} we study
the measures

plhi) = 3 EUD(R, Pyg)se, ie{l,....m).
feﬁggﬂg,‘

When A; = W and f; = 1 we have (/Aii’ji), Ji) = 2zep,, Uz, 7’5sg) =7Yj,. In the case

thatm=4, Ay =---=A, =W, fi=---= f, =1, and j; =i, the next result provides in
particular rates of multivariate normal convergence for the £-vector (Y1, ..., Y¢).
THEOREM 3.4. The measures (,ugl’j'))szl, e (,uﬁm’j’”))szl satisfy the conclusions of

Theorems 2.1 and 2.2.

REMARK. This result adds to the paper [32] and to [6], Theorem 12.7, which both con-
sider binomial input instead of Poisson input Py, and which provide rates involving extra log-
arithmic factors for the dconyvex-distance (or generalizations of it). For two sample tests based
on test statistics similar to (Y7, ..., Y¢) and their asymptotic analysis we refer the reader to,
for example, [12, 33].

PROOF. We deduce Theorem 3.4 from Theorems 2.1 and 2.2 with mark space M :=
{1, ..., £}. This goes as follows. The scores (Ss(jl))sz], e, (és(j'"))sz1 are scaled and as in the
proof of Theorem 3.3 one can show that they are intrinsically exponentially stabilizing. Since
the degrees of nodes in N G (M) are bounded by Cqeg (1, d), the scores obviously satisfy the
moment conditions (2.12) and (2.13). Hence the conditions of Theorems 2.1 and 2.2 are all
satisfied. [

3.2. Multivariate statistics of random geometric graphs. We now consider multivariate
statistics of the random geometric graph G (Psg, os~ V%), 0 € (0, 00), as defined in Sec-
tion 2.3 for a homogeneous Poisson process. We will also study the more general graph
G (Psg, rs), where (r)s>1 is a family of positive scalars.

For a thorough reference on random geometric graphs we refer to [21], where some mul-
tivariate central limit theorems were established. In the special case that H, s(’), ief{l,...,m},
(see (2.3)) are expressible as local U-statistics, then a version of Theorem 2.1(a) follows
from Theorem 6.11 of the PhD thesis [35]. Theorem 7.11 of [35] uses Theorem 6.11 of [35]
to investigate the joint behavior of the number of edges and the total edge length of random
geometric graphs. Section 5.1 of [31] provides a similar application to random geometric
graphs. The following results add to those in [21, 31, 35].

a. Component count vector. By a component of G(M, r) we mean a maximal connected
subgraph. Given k € N and r € (0, 00), let N; (M) be the number of components of G (M, r)
of size k. Defining the score function

1
&N (x, M) := ;l{x belongs to component of G(M U {x},r) of size k}
gives N (M) = erMS(k*’)(x, M).Forky,..., k;, € Nlet

D D S CO T R o | R
x€PsgNA;

be the induced measures, with (r5)s>1 as above.
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THEOREM 3.5. (a) When supg.srl < oo, the measures (i)

(m’k’”’rS))p] satisfy the conclusions of Theorem 2.2.
(b) Let rg = 0s —l/d , 0 € (0,00). The measures (M(l k1, r‘))szl, ey (vam,km,r.;))szl satisfy

the conclusions of Theorems 2.1 and 2.2.

’

REMARK. When A; = W and f; = | we have ({57, f;) =2 xePy, gHir) (x, Pyg) =
N (Psg). Let N2 (Psg) := N2 (Psg) — EN;* (Psg). For lim o0 s7¢ € (0, 00) Theorem 3.11

of [21] establishes the normal convergence of s~/ 2(Nirl“ (Psg)s - --s N;; (Psg)) but does not
attempt to find rates.

PROOF. (a) We deduce this result from Theorem 2.2. The scores (& (kl”f))szl,...,
(& Kmor. S))szl do not, in general, satisfy scaling as at (2.5). However, they are intrinsically
exponentially stabilizing. To see this, put kmax := max{ky, ..., k;;} and define R;(x, M) :=
kmax?s. We note that R is monotone and satisfies (2.8) and (2.9). Moreover, we have

1 <k X ’
P(Ry(x, Pyg) > u) =1 — maxls

0 u> kmaxts.
It follows that for all s > 1 and u > O,
P(Rs(x, Psg) > u) < exp(—sud + s(kmaxrs)d) < Cexp(—sud),

where we use sup;. | exp(ky, dxsrsd) <C, C € (0, 00) a constant. This proves (2.10) and sim-
ilarly we obtain (2.11). The scores (£*1" S))Szl, e, (Emo s))sz 1 satisfy the moment condi-
tions (2.12) and (2.13). The conclusion follows from Theorem 2.2.

(b) Since E(k’psfl/d)(x, M) = %P (x, x +514(M —x)), the scores (£ 15 s> 1y s
(&Uns™"P)y | are scaled, that is, satisfy (2.5) with £ put to be £ %@ fori e {1, ..., m}.
Now it suffices to follow the proof of part (a) and to apply Theorems 2.1 and 2.2. [J

’l/dp))

b. Degree count vector. Fix r > 0. For j € Ny := N U {0} define the score function
£V (x, M) := 1{degree of x in G(M U {x}, r) equals j}.

Then D; M) =3 rem £ (x, M) counts the number of vertices of degree j in G(M, r).
For ji, ..., jm € Ng consider the measures

p ) = 3 g (x, Pog)dy, i€l m),
xG'PSgﬂAi

and note that when A; = W and f; = 1 we have (u{"/"*), f;) = D;; (Psy).

THEOREM 3.6. (a) When supszlsrsd < 00, the measures ([L(l s ré))g

( (m, jm,rs

))s>1 satisfy the conclusions of Theorem 2.2.

(b) Let ry = os —l/d , 0 € (0,00). The measures (,u( s r‘))s Ly onvs (Mgl’j"”“))szl satisfy
the conclusions of Theorems 2.1 and 2.2.

PROOF. (a) The scores (E(j 1:75)) s>1r .-+, (€ Gm:rs)y s>1 are intrinsically exponentially sta-
bilizing, with radius of stabilization R equal to ry. Clearly the scores satisfy the moment
conditions (2.12) and (2.13). The result follows from Theorem 2.2.

(b) When ry = os~1/4, the scores (é(jl”f))szl, R (S(jM”S))Szl are scaled, that is, satisfy
(2.5) with £ put to be £Ui-@ It suffices to follow the proof of part (a) and to apply Theorems
2.1and2.2. O
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c. Subgraph count vector. Let Gy, ..., G, be finite connected graphs and let k; be the
number of vertices of G;,i € {1,...,m}. Given r > 0 put

01 (x, M) = ki ! (number of subgraphs of G(M U {x}, r) which are isomorphic
to G; and contain x as a vertex).

Notice that erPsg g0 (x, Py ) is the number of subgraphs of G (Psg, r) which are isomor-

phic to G;. The measures induced by £ ®") are M§i”s) = erpsgﬂA[ ERIe Pyg)by, Where
(r)s>1 is as above.

THEOREM 3.7. (a) When sup,-, srf < 00, the measures (,ugl’m)szl, ceey (/L§m’rS))s21
satisfy the conclusions of Theorem 2.2.

(b) Let rg = QS_I/d, o € (0,00). The measures (M§1’“‘))S21, ...,(M§’"’“))521 satisfy the
conclusions of Theorems 2.1 and 2.2.

REMARK. Nonquantitative multivariate central limit theorems for the slightly different
problem of counting induced subgraphs are given in Theorems 3.9 and 3.10 of [21].

PROOF. The proof follows that of Theorem 3.5, replacing kmax with max{ky, ..., k,}—1.
O

d. Volume content vector. Let Fi(G(Psg,7)), 1 <k < d, be the collection of k-faces in the
clique complex of the Gilbert graph G (Ps,, r), known as the Vietoris—Rips complex. Here a
k-face is a simplex generated by k + 1 vertices forming a clique. Define for all o € [0, c0)
the score function

1
k,r,a — o
g( )(x, Psg) i= 1 E Vol (F)“.

FeFi(G(PsgU{x},r));xeF

Note that 3 cp, gkr@)(x, Py,) is the sum of the ath powers of the k-dimensional vol-

ume content of the k-faces. For ky,...,k, €{1,...,d} and «y,...,a, € [0,00) we put
i ki rs,ati) iki T .

plikirse) . — gaiki/d D xePygA; gkiors@) (x Py)Sy, i € {1,...,m}. When SUPy= | srd < oo,

the scores (s“lkl/dé(kl”S’“l))szl, . (s“'"km/dé(k’"”S’“’"))szl are intrinsically exponentially

stabilizing with Ry = r; and satisfy moment conditions of all orders. The moment condition
is a consequence of the bound

d
sak/ds(k,rs,a)(x’ Pyg) < Sak/dckr;xk (card(Psg ﬂkB (x, rs))) ’

Cr a constant, together with standard moment bounds for Poisson random variables.

Thus the measures (Mgl”‘l’”’“”) PR P (u§m’k’”’r“’u’”) )s>1 satisfy the conclusions of The-
orem 2.2. If ry = QS_I/d, o0 € (0,00), then the scores are scaled and the measures
(Mgl’kl’rs’al))szl, s (/L§m’km’rs’“m))s21 satisfy the conclusions of Theorems 2.1 and 2.2.

This adds to work of [1], which considers rates of convergence with respect to d3.

3.3. Index k critical points. Let M C R be a finite point set and ) € M asetof k + 1
points, with k € {1, ..., d} fixed. We say that ) is in general position if the points of ) do
not lie in a (k — 1)-dimensional affine space. Let ¢y := C())) and ry := R())) respectively
denote the center and radius of the unique (k — 1)-dimensional sphere containing ). Denote
by B%(cy, ry)° the open Euclidean ball with center cy and radius ry and denote by conv()))
the convex hull of ). Following [5], Lemma 2.2, say that a subset ) C M of k + 1 points
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F1G. 1. Here,d =k =2 and Y consists of the vertices of the depicted triangles for each of c1, c2, c3. Notice c|
is a 2-critical point, but co and c3 are not 2-critical points since cy is not in the interior of the convex hull of the
generating points and the open circle around c3 is not empty, respectively.

in general position generates an index k critical point of M iff (i) ¢y € int(conv(}))) and
(i) M N B¢ (cy, ry)° = @. If conditions (i) and (ii) hold, then the critical point is cy (see
Figure 1 for some examples). Let Ni (M) be the number of index k critical points of M.

Recall that the Boolean model with parameter r > 0 is (J,c g B%(x, r), which is also
called the germ-grain model with M the set of germs and B%(x, r), x € M, the set of grains.
The set of local critical points of index k is the intersection of all critical points of index k
with U, ¢ BY(x, r); denote by N, (M) the number of such points. In the following, the
radius r will be chosen as a function of the intensity of the underlying Poisson process. With
this in mind, we let (r5)s>1 be a family of positive scalars.

Critical points have received a lot of attention insofar as they give information about the
Euler characteristic of topological spaces via Morse theory. The paper [5] uses critical points
to study the homology of the union of d-dimensional balls of radius r; around a Poisson point
sample having intensity s (the Poisson—Boolean model). The main results of [5], Section 4,
develop the limit theory for Ny ,, (Ps,) for values of ry in the sub-critical, critical, and super-
critical regimes. Central limit theorems are given, but without rates of convergence, even in
the univariate setting. Here we establish rates of multivariate normal convergence for a vector
with entries consisting of the numbers of either local or nonlocal index k critical points of
Psg. As a simple consequence we obtain the asymptotic normality of the number of nonlocal
k critical points in the univariate case, which is apparently new. To deduce these results from
our general theorems, we proceed as follows.

Given r € (0, o0] and Y € M a set of cardinality k 4 1, define

h (Y, M) :=1{cy e int(conv(})), M N B (cy, )’ =@, ry e (0,r]).

Thus £,(Y, M) =1 if and only if ) generates a local index k critical point (when r = oo it
is not a local critical point).
Define for all k € N and r € (0, oo] the scores

£ (e, M) = —— 3 he (Mo U {x}, M).

k+1 MoCM, card(Mo)=k, x¢My

Thus Ni , (M) =3 cm g0rs) (x, M) (compare with first display on p. 670 of [5]).

We fix ki, ..., kn € {1,...,d}. We are interested in the number Ny, , (Psg) of index k;
critical points for the Poisson-Boolean model U, cp,, B ?(x, ry), as well as the random mea-
sures

pllird = 3 W P)se and p{ = 7 g (x, Pog)s,
)CG'PsgﬂA,' XG'PSgﬂA,'

fori € {1,...,m}. Note that (w57 f;) = Ny, ,,(Psg) for A; = W and f; = 1.
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THEOREM 3.8. (a) The measures (Mﬁ,""“o"))szl, e (Mﬁv’”*"m*o"))szl satisfy the conclu-
sions of Theorems 2.1 and 2.2.

(b) When supszlsr\ < 00, the measures (M(l 1rs))3 1,...,(M§m’k""r‘))szl satisfy the
conclusions of Theorem 2.2.

(c) Whenrg = QS_l/d, 0 € (0, 00), the measures (uﬁl’kl’rS))sz (M(m ohin rs))szl satisfy

the conclusions of Theorems 2.1 and 2.2.

PROOF. (a) Note that the scores (& (kl’oo))szl, (& (k’"’oo))szl are scaled since, for
ie{l,...,m}, %) (x M) =% (x x+5'/4(M—x)). The arguments on pages 1027—
1028 of Section 6.3 of [22] yield that (&*1:°) oy, ..., (®n-)) | are intrinsically ex-
ponentially stabilizing since one can use the same radius of stabilization as for Poisson—
Voronoi tessellations. The scores (& (k1 ’w))szl, .., (& Kin. oo))s> 1 also satisfy the moment con—
ditions (2.12) and (2.13). Indeed, for x e RY, k € {1, ..., d}, and Mg C Psg with |[Mo| =

hoo (Mo U {x}, Psg) vanishes whenever My g B4(x, R s), Where Rj is the radius of stablhza—
tion for & %:%°) (x, Py, ). For all u > 0 let Ny(x, u) := card(B?(x, u) N Pyg). Now write

(k.00) Ns (x, Rs)

& (x, Psg) = k—l-l ( k )
S
E

i( X, (]+1)s l/d)>1{RstS_l/d}'

Ny (x, (j+1s ™Y
k

The moments for ( )) grow polynomially with j whereas the probability of the

event {Ry > js~!/4} decays exponentially with j. These facts and the Cauchy—Schwarz in-
equality show that all moments of &*:%)(x, Psg) are uniformly bounded for x € W and
s > 1. By arguing analogously in case that a deterministic set A is added to Pjg, we see that
the scores (£*1:°) ..., (E%m:2)) | satisfy (2.12). Similarly they satisfy (2.13). The
results follow from Theorems 2.1 and 2.2.

(b) The scores (&1 S))sz 1., (& K. 1 S))sz 1 are intrinsically exponentially stabilizing,
with radius of stabilization R, equal to the nonrandom quantity 2r;. As in the proof of part
(a), they also satisfy (2.12) and (2.13). The result follows from Theorem 2.2.

(c) Since S(ki’gfl/d)(x, M) =% (x, x + sVI(M —x)) fori e{l,...,m}and s > 1,
(’;‘(kl'gs_l/d))szl, e, (’;‘(kl’gs_l/d))szl is a family of scaled scores. Now follow the proof of
part (b) and apply Theorems 2.1 and 2.2. [J

4. Multivariate normal approximation of stabilizing Poisson functionals in metric
spaces. In this section we establish a multivariate version of the normal approximation re-
sults of [17] in the case of Poisson input. The underlying framework is more general than
what we need for the proofs of our main results. Let (X, F) be a measurable space with a
o -finite measure A and a measurable semimetric d : X x X — R. Throughout this section let
Bx,r):={yeX:d(x,y) <r}for x € Xand r > 0. We assume that the measure A and the
semimetric d satisfy the relation

AMBx,r+¢)) —A(B(x,r))

4.1) lim sup flcyryfl, r>0,xeX,
e—0 &

with some constants y, k > 0. In the case that X = R¢ and that A has a bounded density
g with respect to the Lebesgue measure the assumption (4.1) is satisfied with y :=d and
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k :=Kk4|glloo, Where kg4 is the volume of the d-dimensional unit ball in R4, Note that (4.1)
implies that X is diffuse, that is, A({x}) =0 for all x € X.

To deal with marked Poisson processes we again consider the mark space (M, Fi, Q)
1ntroduced in Section 2.1. Define X := X x M, let F be the product o -field of F and Fy, and
let X be the product measure of A and Q. For a point X € X we often use the representation
X = (x,my) with x € X and m, € M. In the following we denote by Py, s > 1, a Poisson
process with intensity measure sh, that is, Ps is a random element in N, the set of all simple
locally finite point configurations on X (equipped with the smallest o -field such that all maps
mag:vi—>v(A), A€ F, are measurable).

We are interested in the asymptotic behavior as s — oo of the random variables
Hs(l), cee, I:l;(m), m € N, with

Y= Y 60@P) and A= HO - EH

xePs
for i € {1,...,m}, where the measurable score functions és(i) X x N — R, s >1,i¢€
{1, ..., m}, provide the local contributions of points X of P to the global statistic Hs(l). Asin

(2.7) we assume for all ¥ € X and M € N with ¥ ¢ M,
ED@ M) =D X, MUR)), iefl,....m},s>1.

To study the asymptotic behavior of I-_Is(l) .. H g(m) , we introduce some properties for the
score functions, which generalize those given in Section 2.1 for the Euclidean case.
For s > 1 we call a measurable map R; : X x N — R a radius of stabilization of
D e i foralli e {1,...,m), (x,my) € X, M eN, and A c X with |A] <9 we
have

4.2) ED((x,my), MUA) N B(x, Ry((x, my), M))) =D ((x, my), MU A),

where §(y, r):=B(y,r) x M fory e Xand r > 0.

For x € X let M, be a random mark distributed according to Qpg, which is indepen-
dent from everything else. Similarly, for a finite set A C X we denote by (A, M4) the
point configuration we obtain if we equip each of the points of A with a random mark
distributed according to Qg and independent from everything else. We say that the scores
(Ss(l))szl,...,(ésm))szl are exponentially stabilizing if there exist radii of stabilization
(Rs)s>1 and constants Cgap, Cstab, Xstab € (0, 00) such that, forx e X, r > 0,and s > 1,

(4.3) IP>(Rs((x» M,), Ps) = r) < Cstab exp(—cstab(sl/)’r)aslab)'

The scores (és(]))sz Lyvnns (Es(m))sa satisfy a (6 + p)th-moment condition with p > 0 if
there is a constant Ciyom,p € (0, 00) such that forall i € {1, ..., m} and A C X with [A] <9,

(4.4) sup sup EIED ((x, My), Ps U (A, M) | < Crnom. -
s€l[l,00) xeX
Let K be a measurable subset of X such that X 5 x — d(x, K) :=infycg d(x, y) is mea-

surable. Now the scores (és(l))sz Lyvvns (Es(m))szl decay exponentially fast with the distance
to K if there exist constants Cg, cx,ag € (0,00) such that for all i € {1,...,m}, x € X,
AcCXwith |A] <9,and s > 1,

(4.5) P(ED ((x, My), Py U (A, M) #0) < Cx exp(—cg s’V d(x, K)*K).

For the choice K := X\ {x € X: £ ((x, My), Py) =0 P-ass.,i € {1,...,m}}, condition (4.5)
is always satisfied with Cx = 1 and arbitrary cg, ag € (0, o0). However to obtain a central
limit theorem with the following result, the set K must be sufficiently small so that it must
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sometimes be chosen more carefully. For more details on the choice on K as well as examples
we refer to [17]. Recall that || ®||op stands for the operator norm of a matrix ® and that Ng is a
centered Gaussian random vector with covariance matrix ®. The following theorem provides
bounds for the multivariate normal approximation of Poisson functionals comprised of sums
of stabilizing scores.

THEOREM 4.1. Assume that the scores (5;1))521, e, (‘Es(m))szl, m € N, satisfy the as-
sumptions (4.3), (4.4), and (4.5) and let T > 0. Define o := min{agay, 0 g} and

/ ( min{cguab, ¢k } min{p, 1}s*/” d(x, K)*
Igs:=s | exp|—

4.6) 39 . 4a+1

)A(dx), s> 1.

(a) There exists a constant Cy1 € (0,00) such that for positive semidefinite © =
6ij)ij=1...m €R™™M and s > 1,

d3(s_t (I'_Is(l), cee H(m)) N@)

_ Coveh? B s

m
m _ _
55 Z 0; . Ci(m=s 2 Ik s +ms 3TIK,S).
i,j=1
(b) There exists a constant C; € (0, 00) such that for positive definite ©® = (0;;);, j=1,...m €
R™*™ gnd s > 1,
dy(s7"(HD, ..., H™), Ne)
B m COV(H(i), H(j))
<O opl®lss> D= 16 — S
ij=1 §
_ 3/2 —
+ Co(m O IO Ik s+ m O |21 Ollops ™ Ik ).
(¢) There exists a constant C3 € (0, 00) such that for positive definite © = (6;;); j=1,..m €

R™>XM gpnd s > 1,
dCOl’lVeX(s_T (H_(l), ceey H(m)), N@)

< Com! 2 max{ |07 |12 Jo~'[372)

m

] $

ij=1
The constants C1, Co, C3 only depend on the constants in (4.1), (4.3), (4.4), and (4.5).

Cov(H?", H)

- ’ 77 max{s‘zTIK,s, (S—ZtIK’S)l/ét}
S

6 —

REMARKS. (i) To establish a multivariate central limit theorem with Theorem 4.1, one
has to choose ® and 7 such that

cov(H,”, H)

Sll>nolo SZT 01]
forall i, j € {1,...,m}. Theorem 4.1 can be seen as a multivariate version of Theorem 2.1 in

[17]. In contrast to the univariate case, where one rescales by the square root of the variance,
here one needs to control, additionally, the convergence of the covariances to the limiting
covariances. In Section 6 we will do this, under some additional assumptions on the scores,
which is an important ingredient for the proof of Theorem 2.1. Then we shall deduce our
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main results presented in Section 2.2 from Theorem 4.1, putting X=W, 1= sQ, y =d,
K=U"Aj,and t =1/2.

(i) Due to its generality Theorem 4.1 can be applied to many other functionals and
underlying spaces as well. Provided one could deal with the covariances on an individ-
ual basis, one might be able to deduce results in the spirit of Theorem 2.1. By comparing
s (P_Is(l), cee Hs(m)), whose covariance matrix is denoted by X (s), with a Gaussian random
vector N ), one can achieve a faster rate of convergence as in Theorem 2.2 since the sums
involving the covariances in Theorem 4.1 disappear. Here one only needs positive definite-
ness of X (s) in parts (b) and (c), but not its speed of convergence.

(iii) By comparing s"(l:lsgl), e, h_ls(m)) with Ny (), we extend to the multivariate set-up
the rates of univariate normal convergence for stabilizing Poisson functionals on manifolds
given in Theorem 3.3 of [28]. We also give improved rates of convergence without the ex-
traneous logarithmic factors present in dependency graph arguments there. Consequently,
via Theorem 4.1, the applications in Section 3 admit extensions to the setting of manifolds,
subject to the positive definiteness of X (s).

(iv) Further possible applications of Theorem 4.1 are, for example, stabilizing functionals
with surface area order rescaling of the variance, such as the volume of the Poisson—Voronoi
approximation and the number of maximal points of a Poisson sample, or the k-face function-
als and intrinsic volumes of the convex hull of a homogeneous Poisson process in a convex
body with C2-boundary and positive Gaussian curvature. Univariate central limit theorems
for the here-mentioned functionals are derived in [17].

We prepare the proof of Theorem 4.1 by recalling some results from Section 4 of [36],
some of which are based on quantitative bounds originating in [20]. Let u be a o-finite
measure on X and let P be a Poisson process on X x M whose intensity measure is the
product measure of 1« and Qpr. Here, we assume that X and (M, Q) are as before, although
this particular structure is not necessary for the subsequent result. We call a random variable
F a Poisson functional (of P) if there is a measurable map f : N — R such that F = f(P)
a.s. The first two difference operators of F are given by

DsF := f(PU{R) = f(P)
for ¥ € X and
D2 o F = f(PUR, %))~ f(PUIRI) — f(PU(R) + [ (P)

for X1, x> eX. We say that F € dom D if EF? < oo and

fg E(Ds F)* (1 ® Qu) (dF) < oo,

In the following, we do not consider a single Poisson functional but a vector F :=
(F1,..., Fy), m € N, of Poisson functionals Fi,..., F,, € domD with EF; =0, i €
{1, ..., m}. Recall that M, stands for a random mark of x € X that is distributed according to
Qmur and is independent from everything else. Define for all a, ¢ € (0, c0),

1/2

2 (& 2 g 2
Ti(a,q):=a* Z/}g(/xP(D(%MXI)MMXZ)F,-750)16+4w(dx2)> w(dx) |
i=1

3 14q
Paa.q)i=a™7 Y- [ B(Deno Fi 007 ud),
i=1
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2 (% 2 i)
I'3(a, q) :=a*t ;9/};2 P(D(xl,Mx,),(xz,sz)Fi # 0) 82 17 (d(x1, x2))
1=

12
_q
+ fX P(Dis 1) Fi 750)4+w(dx)> ,
ot q) = a0 (62 [ ([ BOR oo F #0)F (i) ) @)

3 q=2 2 1/4
I's(a, q) := a9 (49/X(fXP(D(le,MXI),(XQ,MXZ)F7’50)24+6"M(dx2)) ,u(dxl)) ,

where D?F = (DZF Lsoens Dsz) and 0 denotes the origin in R, The following bounds for
the multivariate normal approximation of Poisson functionals are from [36], Theorem 4.5.

THEOREM 4.2. Let F = (Fy,...,Fy), m € N, be a vector of Poisson functionals
Fi,...,F, edomD with EF; =0, i €{l,...,m}, and assume that there exist constants
a, q € (0, 00) such that
(4.7) E|DG.yy Fi|* <a, p-ae xeX,
and foralli € {1, ...,m},

4
(4.8) E[DC o Fil 1 <@, pPae (v, x0) € X2

(a) For positive semidefinite © = (0;})i je(1,...,m) € R™*™,

m <& 3m3/2 m?
d3(F,No) = = > 16ij — Cov(F;, Fj)| + [i(a,q)+ T, 9.

i,j=1

(b) For positive definite © = (6;)i, je{1

.....

m
dy(F, No) < |07, I8lle)> D 16:j — Cov(F;, Fp)|+ 3]0~ IOlle)*v/mT 1 (a, 9)

i,j=l
V21

2T,
+ e [0 3 1Ol Tt ).

(c) Let © = (6;j)i,je(1,...my € R™"*™ be positive definite and assume that g > 2. Then,

—1y3/2
o)

.....

1/2

dconvex(F7 N(~)) =< 941m5 max{ ”®_1 ||0p ’

m
x max{ Y _ |6;j — Cov(F;, Fj)
i,j=1

,~mT1(a,q),T2(a, ),

ﬂf‘3((1, q), m5/6F4(a, q), m3/4F5(a, q)¢-

We are now ready to prove the main result of this section.

PROOF OF THEOREM 4.1. Without loss of generality we may assume that Cg,p, = Cx =:
C, cstab = CK =: C, Ogtab = &g =: &, and p € (0, 1]. Our aim is to apply Theorem 4.2 with
q:=2+4+p/2.
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It can be shown as in [17], Lemma 5.5, that there exists a constant fmom € (0, 00) such
that, fori € {1, ..., m},

(4.9) E|D ) HO PP/ < COP2 x eX,
and
6 2
(410) E|D(x1 Mxl) (X2 sz)H(l)’ +[7/ C6—g§1/2, X1, X2 € X

In [17] this is basically shown for the (4 + p/2)th-moments. Since we assume here a (6 +
p)th-moment condition on the scores in (4.4) (compared to a (4 4+ p)th-moment condition in
[17]) and add up to nine additional points in (4.2), (4.4), and (4.5) (compared to up to seven
points in [17]), the same arguments as in [17] can be employed here for the (6 + p/2)th-
moments of the first two difference operators.

For u, v > 0 we put

Ik s(u,v) :=s/ exp(—vs”/V d(x, K)")A(dx), s=>1.
X

It follows from [17], Lemma 5.10, where we put 8 = p/78, 8 =2/13, and ,8 2/71, respec-
tively, that there exist constants C 1 C2, C3 € (0, c0) such that, fori € {1, ..., m},

s3/}g(/x]ID(D(ZLMX)’(%M)’)HS(“ #O)p/78k(dy)> A(dx) < CiIg (o, cp/(39 - 4%H1Y),

2 2 ' 2/13,2 5
s /XZ ]P’(D(xl,MXl),(xz,sz)H;l) #0)7P22(d(x1, x2)) < Colg s (o, /(26 - 4%)),
and

s/ P(Dee vy HY # 0)273.(dx) < Cs Ik s (a, ¢/ (7 -2%)).
X
Let Hy = (Hs(l), R Hs(m)). From the first inequality and the union bound

m
78 78
P(DE, a1y Hs #0) 7 < Z (D, B #0)T, x y e X,
we obtain
3 2 /78 2 ) 1
5 [ PO o He # 07 ) Ad) = ComP L e ep/ (39 4°1)).

Now we apply Theorem 4.2 with F; := s*THS(i), ie{l,...,m},u:=sA,q:=24 p/2,and
a:= C6+p /2g—7(6+p/2) .By (4.9) and (4.10) the assumptlons (4.7) and (4.8) are satisfied. For
the exponents in I'((a, q), ..., 's(a, g), we have the lower bounds

. { q q—2 } p
min , > —,
16+4qg°24+6q )~ 78

min{1+q _4 }>— and q 23.
44+q 4+¢q 842 ~ 13

Recalling the definition of /g ¢ at (4.6) we have

@.11)

[\

\]

I s = IK,S(O{, min{csab, Cx } min{p, 1}/(39 . 4a+1)).

By the monotonicity of /x (-, -) in the second argument, the terms on the right-hand sides
of the above integral bounds involving Ik (-, -) are dominated by /¢ ;. Using (4.11) and the
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above integral bounds, we find that the quantities I';(a, q), i € {1, ...,5}, of Theorem 4.2

satisfy
F](a q) =< \/ Cmom zr\/ IK,Sa

FZ(“ CI) =< C3Cm0m 3TIK,S7

X
Ta(a, q) <4CPCI3 m*Ps—5P LS,

Ts(a,q) <3C,*C32 ms ™21/,

mom

Here, the right-hand sides are at most of the order s % max{s —>° Ik s, (s—27 IK,S)1/4}. Now
Theorem 4.2 completes the proof. [J

Our proof of Theorem 4.1 requires for parts (a) and (b) only that for some ¢ > 0 the
(4 4+ g)th-moments of the difference operators are bounded. For this it would be sufficient
to have, as for the univariate case in [17], a (4 + p)th-moment condition on the scores in
(4.4) and to consider up to seven additional points in (4.2), (4.4), and (4.5). To simplify our
presentation we decided to assume for all parts of Theorem 4.1 the same slightly stronger
conditions. But we also expect that for most applications all moments will be finite and it
does not matter how many additional points are considered.

5. Proofs of the main results. The following proposition, whose proof is deferred to
Section 6, is a key ingredient in the proof of Theorem 2.1.

PROPOSITION 5.1. Let the assumptions of Theorem 2.1 prevail. Then there exists a con-
stant Ceoy € (0, 00) such that
Cov(( Ms(l)a fi)s IL§J), fj)) 1/d

Oij — B < Ceovs %, 521,

foralli, je{l,...,m}. The constant Ccoy dependsond, W, g, m, Ay, ..., Am, |l f1llcos - - »
Il finlloos and all constants in (2.6) and (2.10)—(2.13).

PROOF OF THEOREM 2.1. We first prove (2.21). To do so, we deduce it from part (a)
of Theorem 4.1. Hence, we let X = W, d the Euclidean distance, and A the measure QQ with
density g with respect to the Lebesgue measure. Since g is bounded, the assumption (4.1) is
satisfied with y = d as discussed after (4.1). Fori € {1, ..., m} we define

ED@E, M):=1F e A x M} i)tV @ M), TeX, MeN, s> 1.
Assumptions (2.10) and (2.12) imply immediately that the scores (f,:-s(l)) $>1s e e s (és(””) s>1
satisfy (4.3) and (4.4) with agap = d. Choosing K = |J/; A; we find that the scores

(gs(l))szl, cee (ésm))szl satisfy (4.5) with Cx = 1 and arbitrary ckx and ag. Hence, part (a)
of Theorem 4.1 with t = 1/2 yields

dy(s™' (@D f1). (RS f)), Ns)
m &\ Cov(in”, fid, (" fi))
(5.1) =7 2|0~ s
i,j=1

+ Ci(m*s ™ Ik s +mPs TPk ), s> 1,
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with a constant Cy € (0, 0o). Proposition 5.1 implies that

Cov({ (l)’ (J)
Oij — S f; fj = Ccovmzs_l/d, s> 1.

m

(5.2) >

i,j=1

Recalling y = d, a short computation, where one replaces K by a ball containing K, shows
that there exists a constant Cx € (0, co) such that

(5.3) Igs<Cgs, s=>1.

Combining (5.1) with (5.2) and (5.3) completes the proof of (2.21).
Appealing to part (b) of Theorem 4.1, we prove (2.22) for the d;-distance by following
the proof of the d3-bound in (2.21). With T = 1/2, we obtain

d2(s_1/2(<//«§1)af1>»---v</1Fm),fm>),N )
“ A oy 20 g
<o) Y oy — Cov({fts ', fi)s (its”, fi))

+ Cou(Z)(ms ™Ik s +m3s ™3Ik )
A N
i,j=1

for s > 1 with a constant C; € (0, o0) and v as in (2.26). Recalling (5.2) and (5.3) gives the
result. The proof of (2.22) for donvex follows similarly from part (c) of Theorem 4.1. [J

PROOF OF THEOREM 2.2. Since X is replaced by X (s), the left-hand side of (5.2) van-
ishes. Now follow the argument for the proof of Theorem 2.1. [

PROOF OF (2.27). Define the interval

(EY,EY +1/2), (EY,EY+1/2)NZ =2,
(EY —1/2,EY), otherwise,

so that I N Z = . This implies
P(o™' (Y —EY) eo (I —EY))=P(¥ € I) =0.

Noticing that o~ (I = EY) is either (0, 1 /(20)) or (—1/(20), 0) and noting that the density
of N is bounded from below on these intervals, we have

IP>(Nea—1(1—EY))>L ! exp(—1/(80%)) > !
" 20 /27 23/27 exp(1/8)a
Thus, we see that
1
P(c~'(Y —E L1 —EY)) — 11 -E
[P~ (Y YVeo '(d Y))-P(Neo (I —EY))| > NI

Together with
P(c™' (Y ~EY)eo™'(I —EY)) —P(N e~ '(I —EY))| <2dk (o0~ (Y —EY), N)

we obtain the assertion. [

PROOF OF PROPOSITION 2.3. For d € {d3,d>, dconvex} it follows from the triangle in-
equality that

d(s™ (@, fi). o (B f)). Nx)

G4 d _d(s~ 2 (g 7(m)
Z (NE’ NZ(_S)) (S ((,u/q afl)ya(/’bg ’fm»aNE(_}))? SZ 1
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Since the functions h;; : R™ > (uy, ..., up) = uju;/2,1, j €{1,...,m}, belong to the set of
test functions ’Hf,? ) , we have that

.....

Cov(l”, fi), (as”, i)

1
Z s>1.
2i,jell,..,m}| s

Together with (5.4) and Theorem 2.2(a) this shows (2.28).

Next, to treat dy and dconvex, We require some intermediate steps. Let N1 and N be two
centered Gaussian random variables with standard deviations o7 and o». For o1, 02 # 0 we
have that

IP(N1 <01) —P(N2 <o1)|=|P(N <1) = P(N <o01/02)| = ¢(y)|1 —01/02|

with y between 1 and o1 /0>, where N is a standard Gaussian random variable with density
¢. Hence, there exists a constant ¢ € (0, co) depending on o7 such that

(5.5) sup|P(N < u) — P(Ny < u)| > élof — of|
ueR

if o1 and o, are sufficiently close. This inequality is still true for o7 = 0 or o7 = 0 provided
that ¢ is sufficiently small.

Choose h € C%(R) such that [|4/]|s0, [|2”leo < 1, h is decreasing on (—oo, 0) and increas-
ing on (0, 00), and & coincides with u — u? on some interval (—a, a) so that

|ER(N1) — ER(N2)| = [Eh(o1N) — Eh(02N)| > E1{o1N, 02N € (—a,a)}N*|of — 07|,
where we have used that #(oyN) — h(opN) always has the same sign depending on the
relation between o and o>. Thus one can find a constant ¢ € (0, co) only depending on o
such that

(5.6) d2(N1, N2) > élof — o3|
for o1 and o7 sufficiently close.

Leti,je{l,...,m} and let h € 7{(2) , where & is a test function for the univariate d»-
distance. Then a computation shows that R > (xq, ..., x,) — %h(xi + x;) belongs to 7—[,(412 ).

This observation yields
1 . . . .
dZ(NE, N):(s)) = EdZ(Ng) + Ng)7 Ngzs) + Ng()s)),

which also holds for the d onyex-distance. Thus, the above considerations show that there exist
constants c, € € (0, 0o) only depending on X such that, for s > 1 with

Cov(@, £y, (s, £in
~ max —0jj| =€
i,je{l,..., m} Ky
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andd € {dz, dCOIlVCX}7

(i) () (i) )
d(Nx, Nx () > Ei’jef?ﬁfm}d(]\’z £ Ny, Ny £ N5()
¢ (i) ) (@ ()
> Ei’jer{r}?).s’m}max{|Var(Nzl + Ny’) — (Nzl(s) + Ny,
() ()
Var(N{ — Ng) — Var(Né’is) Ngii)l}
(5.7)
> 5 max |(Var(N§> + NY) = var(v — Ny
4ije{l,...,
_ (V (N(l +N(J) )—Var(N(i) _ N ))|
ar{Ny () (s) % (s) (s)
Cov((@s”, fi), (5", i)
=c¢ max — 0Oij|-
i,jef{l,....m} K

Here the middle inequality is justified by the lower bounds (5.5) and (5.6) for dconvex and d»,
respectively. Combining (5.4), (5.7), and Theorem 2.2(b) completes the proof of (2.29). [

PROOF OF PROPOSITION 2.4. We have that
V=Y &(x,x+sY4(Py—x) and Ey= ) &(x,x +s7Py —x))

)CG']SS xeﬁs

with &(x, M) :=1 and &(x, M) := %Zye./\/l 1{|]|x — y|| < 0}. Hence, V; and E; are sta-
bilizing functionals of the form considered in Theorems 2.1 and 2.2. It follows from (2.15)
and (2.16) together with a longer computation that the matrix X in (2.30) is the asymptotic
covariance matrix of s~V/2(V, —EV;, E, — EE;). Obviously, X is positive definite. The co-
variance matrix of (Vj, Ej) is positive definite for all s > 1 since V; cannot be written as a
linear transformation of E; or vice versa. The upper bound in Proposition 2.4 follows from
Theorem 2.1. For s > 1 a computation using the multivariate Mecke formula yields

1 _
cOv(VS,ES):cOv<Zl,5 > Ilx—yll<os l/d})

xePy x,yeﬁs,x;éy
_ 2 —1/d
=y 1{llx — yll < os d(x, y).
/([0,1]d)2 {Ilx =yl =os™“}d(x,y
Since
_ ~1/d
G]Z—S/ 1{]|x — <o0s d(-xa )9
o {llx =yl <os™/“}d(x,y

we have that
Cov(Vy, Ey) _

sf 1{Jx — vl <o~} d(x, ).
§ [0,1]9 x ([0,1]4)¢

012 —

Here, the right-hand side can be bounded below by cgs_l/ 4 with a constant co € (0,00)
depending on o and d. The asserted lower bound follows from Proposition 2.3. [

PROOF OF PROPOSITION 2.5. By translation invariance of (ésl )s>1, .. (Ss(m))szl, we

can rewrite 0y}, i, j € {1,...,m}, which is the limit of s~! Cov({ i, ) 1), ,fj)) for s —
o0 (see (2.15)), as

(5.8) Ul]—/ fz(X)fJ(X)( (g(X))g(X)+G '(g(x))g(x)?) dx
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with
o) =BV ((0, Mo). )& ((0. Mo). Pu)

i M '
o wi= [ eV (. Mo). PL D (0, M), P — y)

. Ef(i)(((), My), ’])u)Eg-‘(j)((o, My)’ Py — }’) dy

..........

for u > 0. Hence, we see that, for any a = (ay, ..., ay) € R" with a # 0,

a'Ya = A@d a(x)T(Z(l)(g(x))g(x) + 2(2)(g(x))g(x)2)a(x) dx

with a(x) ;== (a1 l{x € A1} f1(x), ...,am1{x € Ap} fin(x)). Consequently, X is positive defi-
nite if

Xy = 2(1)(u)u + 2(2)(u)u2

is positive definite for all u > 0. Applying (5.8) for W =R¢, g=u withu >0, A; =--- =
Ap=A,and fi=---= f;, =1, we see that Vol(A)X,, is the asymptotic covariance matrix
of

1
(X @0 X G P)

N —_ —~
f xePsuNA xePsuNA

as s — 00, which is positive definite by assumption. []

6. Convergence of the covariances. This section establishes the proof of Proposition
5.1. While we have aimed for the most direct and natural approach, our methods are nonethe-
less rather delicate and lengthy. We believe this is unavoidable. The arguments considerably
refine those employed in [3] and [22] to prove convergence of the variances to the asymptotic
variance. In contrast to this paper, these works did not aim for quantitative bounds. Here we
use coupling arguments, the co-area formula, and the monotonicity of R;.

Throughout we let the assumptions of Theorem 2.1 (and, hence, those of Proposition 5.1)
be satisfied. We prepare the proof with some lemmas describing the average behavior of stabi-
lizing score functions on the inputs Pse and Pjg(xy for x € W. To do so, it will be convenient
to couple Psg and Pyg (). Let n be a marked Poisson process on R4 x [0, 00) x M, where the
intensity measure on RY x [0, 0o) is the Lebesgue measure and where the intensity measure
on M is Qug. For (z,7,M;) en, x € W,and s > 1 let (z, M;) € Pyy if t <sg(z) and z €¢ W
and let (z, M;) € Pyg(x) if t <s5g(x).

Recall that Ry denotes the radius of stabilization for all és(l), i €{l,...,m}. Moreover, we
use the shorthand notation y, :=s~'/?y for y € R? and s > 1. By X we abbreviate (x, M,),
where x € R? and M, is a random mark distributed according to Qpy and independent of
everything else. For s > 1, x € W, and y € R¥ such that x + y; € W we put

Ry(x,1n) = max{R; (X, Psg), Ry (X, Psg(x))},
Re(x,y.n) = max{Rs (X + s, Psg)s Ry (X + s, Prg(n)s Re(X + s — Y5 Prgix) — ¥s))
and define the events
AP,y ) =R, m) = Ny l1/2),
AP (e, y,m) = {Ry(x, v, m) > llysll/2},
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and
A, y, ) = APy, U AP (1, y, 7).

It follows from (2.9) that A§1)(x, v, n)¢ and A§2) (x, y,n)¢ are independent. By exponential
stabilization (2.10) and (2.11), there are constants Co, ¢g € (0, 00) such that, for all s > 1,
xeW,and y e R withx + y; € W,

(6.1) P(As(x, y, 7)) < Coexp(—colly[l9).

LEMMA 6.1. There exist constants C1, cy € (0,00) such that for all i, j € {1,...,m},
X € W,ye]Rd,ands > 1 with x + y; € W, we have

§ = [BED (R, LD (x+ 3y, PR A (x, v, m)

—BED F, PLED (s PR 1A v )|

< Cy(s™V4 4574y 9! £ exp(—c1s d(x, dW)9)) exp(—cilly]|¥).

PROOF. We use the abbreviations
£09) (x. y.m) = 60 (7 P )ED (30 PR+ 60 (7. PL e (T 30 Pl
and
Us(x,y,m)
= {Psg N B (x, Ry(®, Psg)) # Prg(vy N B! (x, Ry(F, Pyg)) )
U {Pyg N BY(x + y5, Ry(Xx + Y5, Psg)) # Psgtry N B (x + yg, Ry(x + ¥s, Pygn) }-

Given the event U, (x, y, n)¢ we have by the definition of the radius of stabilization in (2.8)
that

ED® PLED (T 3, PL) =93, fgtii)é‘(’)(x + 35 Plye)-
This leads to
(6.2) S <ENU; (x, y. m}E5 @y, ;A (e, v, ).
From (2.9) we deduce that, for M|, M, eNand? € W,
Ry(Z. M) =RyZ My) if My N B?(z, Ry(Z, My)) = My N BY(z, Ry, M)).
Let (a, b) denote the interval [min{a, b}, max{a, b}] for a, b € R. We thus obtain
1{Pyg N B (x, Ry(X, Pyg)) # Psg(x) N B (x, Ry®, Pygr)) }

<HRo(x.m) =dx, aW)}+ Y 1z es(g@). g llz — x|l < Ry(x, )}
(z,t,M;)en

and
I{Psg N Ed(x + Vs, Rs(mv Psg)) 7é Psg(x) N Ed(x + Vs, Rs(m» Psg(x)))}
<1{Rs(x,y,n) = d(x + y;, OW)}

+ > 1reslg@, g llz — x — ysll < Ry(x, y, )}
(z,t,M;)en
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Combining the previous bounds yields
S <E({Rs(x,m) = dx, W)} + 1{R(x, y,m) = d(x + y5, dW)})
x £ 0,y MU Ag(x, v, )

+E Z 1{t € s(g(2), g)NES (x, y, D Ag(x, y, )}

(ZalaMz)eﬂ
x (1{llz —xI < Ry, m)} +1{llz — x — ysll < Rs(x,y,m)]})
=: 51+ 95.

Using the Holder inequality together with (2.10), (2.11), (2.12), (2.13), and (6.1), we obtain
S1 <4CSHr e Cy” exp(=collyll/3)
x (exp(—Cstabs d(x, dW) /3) + exp(—cyaps d(x + ys, dW)?/3)).

Let « € (0, 00). Using the triangle inequality and the inequality |a — b|¢ > |a|? /297! — |p|?
for a, b € R, which follows from convexity of u |u|d, we obtain

exp(—as d(x + y5, OW)?) < exp(—as|d(x, aW) — [lysl1|)
<exp(—asd(x, dW)? /277" + ally||9).

Since we can choose « sufficiently small, this implies that there exist constants C 1,C1 €
(0, 0o) such that

(6.3) S < Crexp(—ésd(x, W)Y exp(—¢é1ly]|%).

For §; it follows from the Mecke formula, the assumed monotonicity of the radius of
stabilization, and the Holder inequality that

$H<2E > 1res(g@, gD (x v mI{As(x, v, m)}
(z,t,Mz)en

x Iz — x| < max{R;(x, n), Ry(x,y, ) + llysll}}

=2 [ [ Etlr esle@. gl (e, n A .y )

x |z — x| < max|Ry (x, n&"™")), Ry(x, y, @) + [lys 1]}
x Qui(dm;)drdz

= 2/]1%‘1,/0 /MEI{Z € S(g(z)’ g(x)>}§§i,j)(x’ y, n(z’t’mz))l{As(X, y, 77)}
x Uiz = x| < max{Ry(x, m), Ry (x, y.m) + ysll}}Qua(dm;) dr dz
< 2/]1&61/0 1{t € s{g(2), g )BT (x, y, n(z”’MZ))3)1/3P(AS(x, y, 77))1/3

x P(|lz — x|| < max{ Ry (x, ), Ry (x, y, ) + llys 1)) dr dz.
From (2.12) and (2.13) we know that

E&D) (x, y, U {(z.1, M)})° < 8CYLGHD,
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By (2.10) and (2.11) we obtain
P(||z — x|l < max{Rg(x, n), Re(x,y.n) + I ys]})
<P(Rs(x,m) = [z — x[) + P(Rs (x, y. ) = llz — x11/2) + Iz — x1/2 < [l ys]l}
< 5Cquabexp(—csunsllz — x[4/27) + {1z — x| <257/ p]}.

Together with (6.1) these estimates imply that

o0
S:= [ 4CUSPC [ 1 e sl gl ar exp(—collyl/3)

x (2CL exp(—csasllz — x11/(3 - 29)) + 1{llz — x|l < 25~ /4|1 y|l}) dz.

The Lipschitz continuity of g at (2.14) (including the definition of L there) as well as substi-
tution and spherical coordinates yield that

1/3
Sy < 4CHGEP ¢y exp(—collyl*/3)

x /R [ Lsllz = 1 (2C 3 exp(—caapsliz = x114/(3 - 2%) + 1{llz = xl| = 25~ Iyl}) dz

= 4C2 TP V3 L exp(—colly/3)

mom, p

o0
s ey fo u (2C 3 exp(—csanu /(3 -2)) + 1{u < 2l1y11}) du.

Thus, there exist constants (~72, ¢2 € (0, 00) such that
(6.4) Sy < Coexp(—éally ) (1 + [y *F1)s ™17,
Combining (6.3) and (6.4) completes the proof. [J

LEMMA 6.2. There exist constants Ca, cp € (0, 00) such that for all i, j € {1,...,m},
xeW,ands > 1,

IEED (X, Psg)e) (R, Pyg) — BED R, Pygn))EY R, Psgn))]
< Cz(s_l/d +exp(—cas d(x, 8W)d)).

PROOF. Using the abbreviation
ECD(x,m) = £V R, Pi)& D &, Pog)| + [EF &, Pogn)EY (%, Prga)|,
we see that
[BED (R, Pig)&) (R, Pug) — BED R, Puge))EY (F, Prg)]
< E1{Pyg N B (x, Ry(X, Psg)) # Psgx) N B (x, Ry (F, Pig(x))) JEES (x, ).

Estimating the right-hand side similarly as the right-hand side of (6.2) in the proof of Lemma
6.1 gives the claimed bound. [J

LEMMA 6.3. There exist constants C3, c3 € (0, 00) such that for all i € {1,...,m}, x €
W,yeRd,andszlwithx—i-yseW,

B (&, Ps) 1{AL (x, y, )} — BV R, Pigo) AL (x, v, m}|
< C3(s*1/d + exp(—cas d(x, BW)d)) exp(—C3||y||d)
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and
[EED &, Pi)1{AD (x, y, 1)} — BED R, Prgo)1{AV (x, y, )}
< C3(s 7V 4 exp(—c3s d(x, aW)?)).

PROOF. Putting Es(i)(x, n) = Iés(i)(f, Pso)| + Iés(i)(f, Psgx))|, we have
[EED (&, Pi) {AL (x, y, )} — BED &, Pyge) AL (x, y, m}]
< E1{Pse N BY(x, Ry(X, Psg)) # Psgxy N B (x, Rs(F, Pig(x)) )
x ED (e, m{AD (x, y,m)

and
B @, Ps)1{ AN (x, y, )} = BED R, Pygop) 1AL (x, y, )Y

<E1{Pye N B (x. Ri(®. Pug)) # Py N B (x, Ry Prgo) J5 (. 1)
We complete the proof by bounding the right-hand sides similarly as for the right-hand side
of (6.2). O

LEMMA 6.4. For any u > 0O there exist constants C4 € (0, 00) and c4 € (0, u) such that
forallie{l,....m},xeW,yeR? ands>1withx +y, €W,
BED (x4 35, Ps) AP (x, y, m} — BED (x4 35, Prgo) AP (x, v, )}
< Ca(s™ 457V p 1T + exp(—cas d(x, 0W)?)) exp(—cally[19)

and

[BED (x + 35, Psg) — E&ED (X + 35, Pogio))|

< Ca(s™ 457y + exp(—cas dx, aW)? 42 ca [y [9)).

PROOF. Introducing the shorthand
ED e, y, m) = [ED G+ s, Poo)| + 1ED T+ 355 Prg)]»
we have
IEED (x + y5, Psg) HAP (x, y, )} — EED (04 35, Poge)1{AP (x, y, )}
< E1{Pyg 0 B (x + y5, RyE+ ¥s, Pyg)) # Prgir N BY(x + 3, R+ 35, Pog))}
< ED(x, y, mUAP (x, v, m))
and
EED (X F 3. Pag) — BED (X + v Prgo))|
<E1{Pyg N B (x + yy. Ro(x + ys. Pyg))

#* Psg(x) N Bd(x + Vs Rs(ﬂ, Psg(x)))}gs(i)(X, y,1m).

Once more, bounding the right-hand sides similarly as in the right-hand side of (6.2), we
complete the proof. [J

For W = R? we have d(x, W) = oo for all x € W so that the corresponding exponential
expressions in the previous lemmas vanish.

Our final lemma is a consequence of Lemma 5.12 of [17], together with the assumptions
(2.1) and (2.2). We denote by 7¢~! the (d — 1)-dimensional Hausdorff measure.
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LEMMA 6.5. (a) For any measurable and bounded A C W there exists a constant C4 €
(0, 00) such that

HI (x e Ard(x, dW) =r)) < Ca(14r77Y, r>o0.
(b) Foranyi € {1, ..., m} there exists a constant 6A,- € (0, 0o) such that
HI ((x eRY:d(x,84;) =7)) < Ca,(14+797Y), r>0.
PROOF OF PROPOSITION 5.1.  Throughout we use the shorthand notation g; := f; - g and

gij:=/fi-fj-gfori,je{l,...,m}. Notethat g; € Lip(A;) and g;; € Lip(A;NAj) fori, j €
{1, ..., m}. We use the multivariate Mecke formula to rewrite Cov((ugl), fi), (ng ), fiN/s as

Cov((i”, fi), (s, i)
N

=/, Eé% Puo)e R, Pyg) fi (x) f(x) g (x) dx

+s / [, B G PRED (5.7 ~ B0 @ Pup)BE G Pr)
X fi(x) fj(y)g(x)g(y)dydx

_ / EED@ P (. Pug)gij () d
it 1aj

) (= pitv\e() (T pF
+/Ai /sl/d(Aj_x)(Eés (%, Pig )& (x 4 s, Piy)

B (X, Psg)EEY (X + ys, Psg))
x gi(x)gj(x + ys)dydx
=:J1 + /o

We begin by comparing J; with the first integral in (2.16). It follows from (2.5) and Lemma
6.2 that

Ji —/ E& DR, Py (X, Pyr))gij (x) dx
AiﬂAj

— |5 - / EED R, Pyge)ED) R, Prgrry)gi () d

iNAj

= v/A NA }Eés(i)(f’ Psg)és(j)(f’ Psg) - Egs(i)(fv Psg(x))és(j)(f, Psé’(x))‘ ’gij (x)’ dx
itiaj

< sup |g,-j(x)|(C2 Vol(A; N Aj)s™ /4 + C2/ exp(—cas d(x, dW)?) dx).

XEAl‘ﬁAj AiﬂAj

Noting that d(-, 9 W) is a Lipschitz function whose gradient exists almost everywhere and has
norm one, we apply the co-area formula (Corollary 5.2.6 of [14]) and Lemma 6.5(a) to obtain

/ exp(—cas d(x, dW)?) dx
AiﬂAj

o0
— / / exp(—casr )M (dy) dr
0 J{xeA;NAj:d(x,0W)=r}
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(0,0
(6.5) < Caina; / eXp(—02srd)(1 + rd_l) dr
0
> d—1
:CA,-ﬂAj/ eXp(—czud)(l + (u/sl/d) - )S—l/ddu
0

o0
< CAimAj/o exp(—cou) (1 +u?=") du s71/4

for s > 1. Thus, there exists a constant C € (0, o0) such that

itiaj

Next we consider J,. Forall s > 1, x € W, and y € RY with x + vs € W, the indepen-
dence of A§1)(x, v, n)¢ and AEZ) (x,y,n)¢ (recall (2.9)) and the definition of the radius of
stabilization in (2.8) yield that

D@ PLIYAD Ly, ) and D (x+ ys, PE)HAP (x, y, )}
are independent. This implies that
BED (%, Pl )6 (x4 s P As (x, y. )"}
=B &, Py {AD (x, y, ) JEED (x4 35, Pog) 1{AP (x, y, )}

By inserting indicator functions, J> thus breaks into three integrals as follows:

Jo= / / B (R, PLPED (x4 35, PRI As(x, v, m) g () g (x + y5) dy dx
A; Jsl/d(Aj—x)

[ [ EEOG POYAD o B (3, Py
i Jsl/d(Aj—x)

X gi(x)gj(x + ys)dydx

L EEOE P AL ey B L Pt (AP )
i Jst(Aj—x

x gi(x)gj(x + yg)dydx
=1 -5 —1I.

Now we define
(t) X+ys () 53

lii= / /sl/d(A i—x) B8 Ag(X))‘E (x J’_y"Psg(X))l{AS(x’y’ m}

x gi(x)gj(x + ys)dydx,
I = / f | EED (%, Pygn AL (v, mIEED X+ Vs, Prgin)

i sV (Aj—x)

x gi(x)g;(x + ys)dydx,
I3 = f / & (. Pogo)HA (. y )Y EET (0 3y Pegeo) AP (v v, )

A; Jsl/d(Aj—x)

x gi(x)gj(x + ys)dydx.

By applying Lemma 6.1, Lemma 6.3, and Lemma 6.4 (to the differences of expectations) as
well as Holder’s inequality, (2.12), (2.13), and (6.1) (to the terms that are not differences of
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expectations), one sees that there exist constants C’, ¢’ € (0, co) such that

max |y — I
kell.,2.3)

< C//AA '/H;d(s_l/d +s7 V) y 4t 4+ exp(—c’sd(x, BW)d)) exp(—c/||y||d) dydx

for s > 1. A similar computation as in (6.5) yields now that the right-hand side can be
bounded by a constant times s /4.
For U € B(RY) with U C A; let

’ — (@) X+)’ ) x
Il/ )= /U/sl/d(A;—x) Essl ( ég x) )E ’ (x s — ys’Psxg(x) o ys)l{As(x, Vs ")}
x gi(x)g;j(x)dydx,

1 ,_ @) (= (€))]
BOy= [ [, B G Patial e vm)

X EED (X + 35 — ¥5: Prgx) — ¥s)8i (1) (x) dy dx,

1 ._ @) = 1) c
rwy=[ [ i @ P 1AL )

X BED (X + ys — s, Psgry — ) AP (x, y, )} gi (x) g (x) dy dx.

Using the Lipschitz continuity of é(l) and S(J ) with respect to translations (see (2.6)) and
the Lipschitz continuity of g; and g; and bounding the remaining expectations with Holder’s
inequality, (2.13), and (6.1), we see that there exist constants C”, ¢’ € (0, o0) such that, for
s>1,

I—/A' <C//// L dddx
ker{nlazx3}| p = I (AD] < . S Lysllexp(=c"llyl) dy

= C"ha(A) [ Iylexp(=cIyI")dy s~/

Bounding the integrands again by Holder’s inequality in combination with (2.13) and (6.1),
we see that there exist constants C”’, ¢’ € (0, 0o0) such that

I”A I”A NA) = I”A N A€
kerr}a2x3}| K (Ai) — I ( )} m32’<3}| i ( )|

= CW/;X NAS /l/d(A )CXP( CW”y” )dydx.
iNAS Js j—x

The integral on the right-hand side can be bounded by

i
/A,-mAC. de(o,sl/dd(x,aA»))ceXp( iyl )dydx

5[ exp(—c”[|y14/2) dy/ exp( "sd(x,dA;)?/2) dx

(6.6)

Here the first integral is a constant and a computatlon similar to that in (6.5) together with
Lemma 6.5(b) shows that the second integral is bounded by a constant times s~ !/,
Using (2.5), the double integral in (2.16) can be rewritten as

T::/ Re® x+> D(xF P
i, L AEEV (R Py )8 (¥ 5 =7 Py =)

Ee DR, Pee)EED (X +y — ¥, Pox) — )} i (x)gj (x) dy dx
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_ (i) (= 1/d (X +Ys
B /,ﬂA- Rd{ES VF st (Pleey =)

— Eé(l)(f’x + sl/d(Psg(x) _x))ES(]) (x/_+_\yY — Vs, X +Sl/d(P§‘g(x)_ys _ x))}
x gi(x)gj(x)dydx
. v - N
- /,QA. %I;d{]EES(I) ;Cg(z))ém(x + s — yS’P;Cg(x) - )’s)
it1aj

—EED R, Poge)EED (X + 35 — ¥s. Pogoy — ¥s)}8i (x) g5 (x) dy dx.
Fors > 1,x € W, and y € R? we define the events
AP (x, y, 1) i= {Ry (R, Pygiey) = Ilysll/2},
AP,y m) = {Re(X + Y5 — V5. Prgioy — ¥s) = I1ys11/2},
and As(x, v, n) = Agl)(x, y,nu Aﬁz)(x, v, ). Note that
(6.7) P(A,(x, y,m) < Coexp(—collyl9), x,yeR? s>1,

with the same constants as in (6.1). By the independence of Agl)(x, vy, n)¢ and A§2) (x,y,n)°
and the definition of R; in (2.8), we have that

HAL (x, y, )6 (=, Pi‘;(;;) and AP (x,y, n) VD (X + 35 = ¥ Plygr) — 3s)

are independent. This implies that
. o - -
HYs\1( i
6.8) =E& (%, fg&)) (AP e,y m)
x BED (X + ys — ys» P;‘Ag(x) —y) AP (x, y, )¢},
Fors >1,x € W, and y € R? such that x + y, € W the independence of
HADL G, y, 1) )eP (7, i‘;(,f;) and AP (x, y, ) VED (X + 35 = ¥ Plye) — 3s)
leads to
Eg (=, fggi)é(”(x F Y5 = Vs Phoery — ¥s) A,y )¢}
v+Ys
(6.9) =B (@ P A @y, n)
x BED (X F 35 — Yoo Plyey — ¥s)HAP (x, v, )}
Applying (6.9) if x + y; € A; and (6.8) if x + y; ¢ A, we can rewrite T as
T=I1"(A;N Aj) — L"(A;iN Aj) — LA N Aj) + L -0n"-5R"
with

"o.__ @) X‘H’s ) 53 N A
L= fAimAijd\sl/d(Al_x)Eés (%, P )67 (35 = s Py = w5) U As (v, m))

x gi(x)gj(x)dydx,
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2 AinAj JRA\sV/4(Aj—x) 2 Sg(x)) { s oy 77)}
x BED @+ s = . Psgx) — ¥s)&i(x)g;j(x)dydx,

1”’32/ / £ R, Pygo) AL (x, y, m)°

’ AinA; JRA\s/d(A;—x) &YX, Pogoo) A (x, v, m)°)

x BED (X + 35 = ¥5, Prgeny — ¥ AP (x, v, m i (x)g; (x) dy dx.
By the Holder inequality, (2.13), and (6.7), we obtain

max I/// <C///// / exol—c"" d dv dx
ke{123}| | AinA; s Ay P( Iyl ) y

////

with some constants C””, ¢’ € (0, 00). The integral on the right-hand side is at most

"1
ex (Iy]1“)dy dx,
/A,-mA_, /}_‘?d(O,sl/dd(x,BA_,-))‘ p(=<"lly ) Y

which can be bounded by a constant times s~ /¢

Because of

similarly as explained next to (6.6).

JH—T|<3 max |l —I|+3 max |I] —I/(A;
|J2 | < ke{1,2)f3}| k k|+ ke{1,§3}| & 1 ( z)|

3 L'(A)—I/(A;NA; 3 I
3y | (A = I (A N AD] +3, max [T
combining the estimates above completes the proof of Proposition 5.1. [

REMARK. Note that (2.15) requires weaker assumptions than Proposition 5.1. Indeed g
is only almost everywhere continuous, the test functions are only bounded, and the sets W
and Ay, ..., A, do not have to satisfy (2.1) and (2.2), respectively.

In the following, we sketch how one can deduce (2.15) by combining arguments from
the proof of Proposition 5.1 and the proof of Theorem 2.1 in [22]. We believe that this is
more transparent than only referring to [22] since there are some slight differences in the
assumptions and the notation differs.

Since we have 1;(dW) = 0 for (2.15), we can assume without loss of generality that W
is open. Under the weaker assumptions of (2.15) we still obtain that the left-hand sides in
the Lemmas 6.1, 6.2, 6.3, and 6.4 vanish for all continuity points x € W of g as s — o0
because the probability of the event U;(x, y, 1) in the proof of Lemma 6.1 goes to zero. This
observation yields that, for almost all x € W and y € R4,

6.10)  lim E&V (R, Pyp)E) (7, Pyg) — BED R, Pig0)8”) (%, Prg)) =0

and
Jim (BED (@, PLnED (0 3, Pry) = &, PodBED (5 3y, Pay)
. i )C+ s
(6 11) - (Egv( )( sg(;))g(])(x +y3’7)5g(x))

- Ess(i)(x’ Psg(x))Egs(j)(x + Vs Psg(x))) =0

To obtain the second limit, one has to insert indicator functions and to use independence as
in the proof of Proposition 5.1 above. This argument also implies that there exist constants
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C, ¢ € (0, 00) such that
B8O (%, P )6l (V4 35, Pl) — BeD R Pe) BED (33, Py (v +571/4y)

< Cexp(—cliyll)

foralls >1,x e W,and y € R? with x + vs € W. This bound is the analog to (4.27) in [22].

Next we show that J; and J> as defined at the beginning of the proof of Proposition 5.1
converge to the desired terms in (2.16). From (6.10) and the dominated convergence theorem
this follows immediately for J;. Combining (6.11) with (2.6), we obtain that, for almost all
xeWandyeR?,

Tim (BED (%, Py )67 (x+ vs, Ply) —EED R, Py EEY (X + s, Pyy)

. + s -
— (BED R Pi)&” (F+ 3 = 3o Py = s)

E£" (%, Prg(x))EEY (X Vs = Y. Prgt) = 35)) =0,

which can be rewritten as

Jlim e+ ) (EED @ PE)ed) (7 v, P) — B (R, P BED (4 35, Pog)
=g (EED(® Py )EV (x+y = v, Py — V)

—EED R, P )EEV (x + 3 — v, Peiry — )

This is the counterpart to (4.26) in [22]. Now one can prove with the Lebesgue differentiation
theorem as on page 1011 of [22] that J, — T as s — oo, where T is the second term on the
right-hand side of (2.16).
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