

Preparation, Properties and Applications of Chalcogenide Glasses

**Guorong Chen** School of Materials Science and Engineering East China University of Science and Technology My Research Work



- Non-oxide glasses: chalcogenide and chalcohalide glasses, their IR optical properties;
- Oxide glasses: scintillating glasses, luminescence glasses for LED lighting, quantum cutting effects;
- Radiation induced effects on glasses etc..
- <u>Tel : +86 21 64250189, +86 13701726294</u> <u>E-mail : grchen@ecust.edu.cn</u> <u>msn: grchen54@hotmail.com</u>



### References



- 1. A. Feltz, Amorphous Inorganic Materials and Glasses, VCH, 1993
- 2. W.Vogel, Glass Chemistry, Springer-Verlag, 1992
- Journals: J. Non-Cryst. Solids,
  J. Am. Ceram. Soc., Chem. Phys.
  Lett., Chin. Phys. Lett., Appl.
  Phys. Lett., Opt. Lett., Opt.
  Express, Adv. Mater., etc.



## Outline



- Generality
- Preparation
- Structure and properties
- Thermal treatment



• Main applications in passive and active infrared optics





The chalcogenide glasses (ChG)

- Named after the chalcogen elements including sulfur, selenium and tellurium.
- To be combined with various others, such as germanium and arsenic, to form stable glasses.



#### **Element Periodic Table**



#### Tracing Back



- **1870's** As<sub>2</sub>S<sub>3</sub> glass formed
- **1950's ChG discovered as semiconductor**
- 1960'sChG used as IR transmitting<br/>materials (passive applications)
- 1990'sActive applications interest for IRphotonic technologies



#### **Passive Optics**



The passive applications utilize chalcogenide fibers as a light conduit from one location to another without changing the optical properties.

> J. S. Sanghera, et al., *J. Non-Cryst. Solids*, 1999, 256-257:1-16







Active applications of chalcogenide glass fibers are where the initial light propagating through the fiber <u>is modified by a process</u>.



J. S. Sanghera, et al., *J. Non-Cryst. Solids*, 1999, 256-257:1-16

# 2. Preparation



#### Melting process





Quartz glass ampoule with batch

Ş



#### Rocking furnace





# **Purification in order to remove impurities containing O, H and C**

• Etching ampoule in hydrofluoric acid



- Distillations by heating the batch components in situ under vacuum
  - Addition of oxygen getter for examples, Zr, Al, Mg, Ca, Gd)

### An exa Naval Research Laboratory USA





IR transmission spectra of As-Ge-Se-Te system glass under different purification conditions

- 1 Unpurified
- 2 Se purified
- 3 As, Se purified
- 4 As, Se, Te purified
- 5 Glass (3) distillated
- 6 Glass (4) distillated

J.S. Sanghera, et al., J. Non-Cryst. Solids, 1993, 161: 320-322



| Purification<br>conditions | Abs. coefficient $\alpha$ (cm <sup>-1</sup> at 10.6 $\mu$ m) | Estimated O <sub>2</sub> content<br>(ppm wt) |
|----------------------------|--------------------------------------------------------------|----------------------------------------------|
| Ge-As-Se system            |                                                              |                                              |
| 1 Unpurified               | 0.2030                                                       | 144.2                                        |
| 2 As, Se purified          | 0.0991                                                       | 3.1                                          |
| <b>3 Glass distillated</b> | 0.0454                                                       | 1.3                                          |
| Ge-As-Se-Te system         |                                                              |                                              |
| 1 Unpurified               | 0.1814                                                       | 103.4                                        |
| 2 Se purified              | 0.1160                                                       | 66.7                                         |
| 3 As, Se purified          | 0.0893                                                       | 17.4                                         |
| 4 As, Se, Te purified      | 0.0308                                                       | 5.6                                          |
| 5 Glass (3) distillated    | 0.0209                                                       | 0.8                                          |
| 6 Glass (4) distillated    | 0.0071                                                       | 0.6                                          |

# **3 Thermal Treatment**



• Shortcoming of ChG: weak bond strength

$$v = 2\pi \sqrt{\frac{\kappa}{\mu}}$$



- v = vibration frequency
- $\kappa =$  force constant
  - $\mu = reduced mass of the$ vibrating ions $(\mu = m_c m_o/(m_c + m_o))$

### Controlled crystallization



#### **Key points:**

- Glass composition
- Thermal treatment conditions



# Université de Rennes 1, France ECUST, China



Fang Xia, et al., J. Am. Ceram. Soc., 2006, 89(7) 2154-57

### Crystallization ability



- VSG region where glasses with larger  $\Delta T (> 170^{\circ}C, T_c - T_g)$ , or no exothermal peak in DSC unable crystallized even for long time (>100 h) heating .
- Glasses near the border of glass forming region not thermally stable and tended to crystallize but very difficult to control crystal growth thus affecting IR transmission of materials.



### Controlled crystallization



• Compositions suitable for controlled crystallization fall into dark shadow area which is classified as sub-stable glasses (SSG) region.



With these glasses under proper annealing conditions,
IR transmitting glass
ceramics with improved properties can be obtained.

#### SEM results





(a) P9 at 330°C for 163 h,
(b) P7 at 300°C for 5 h,
(c) P5 at 340°C for 15 h,
(d) P5 at 310°C for 15 h,
(e) P5 at 310°C for 32 h,
(f) P5 at 310°C for 85 h.

**P5: 51GeS<sub>2</sub>-9Sb<sub>2</sub>S<sub>3</sub>-40PbS** P7: 30GeS<sub>2</sub>-35Sb<sub>2</sub>S<sub>3</sub>-35PbS P9: 55GeS<sub>2</sub>-30Sb<sub>2</sub>S<sub>3</sub>-15PbS

Crystal size: < 100 nm

#### IR transmittance



IR transmission of glass-ceramic beyond 2µm is nearly the same as the glass matrix.

#### **Resistance to fracture**







Glass-ceramics derived from SSG possess higher fracture toughness and lower thermal expansion coefficients.

"WITY OF SCIEN

### Shanghai Institute of Ceramics, China Université de Rennes 1, France



Controlled crystallization of GeSe<sub>2</sub>-Ga<sub>2</sub>Se<sub>3</sub>-CsI ChGs during molding: (left) IR transmission spectra; (right) Resistance to crack propagation of (a) the base glass and (b) glass-ceramic

Wei Chen, et al., J. Am. Ceram. Soc., 2008, 91, 2720

## **4** Structure and Properties



# A comparison of glassy-like A<sub>2</sub>B<sub>3</sub> structure with crystalline one after Zachariasen



Feature of glass network: Short-range in order, longrange disorder

# ChG can be classified by reference to dimensionality

- 1D spaghetti-type, such as Se glass made of infinite chains
- 2D distorted planar glasses such as As<sub>2</sub>S<sub>3</sub> made from connections of 2
   coordinated S atoms and As 3 coordinated As atoms
- 3D glasses, such as GeSe<sub>2</sub> being result of GeSe<sub>4</sub> tetrahedra connections











#### Different from oxide glasses

- Narrower bandgap (1-3 eV)
  - semi-conducting
- Lower phonon energy (<350 cm<sup>-1</sup>)
  - IR transmittance
- Photo-induced effects



#### **Optical transmission**







Evolution of the bandgap energy for GeSe<sub>2</sub>-Ga<sub>2</sub>Se<sub>3</sub> -CsCl glasses with 0, 10, 20, 30, and 40 mol% CsCl.

L. Calvez, et al., Adv. Mater. 2007, 19, 129





Grains homogeneous (ca. 100 nm) with uninfluenced FIR transmittance and the same *a*, and almost doubled toughness from 0.227 to 0.425.





Tellurium based glasses have excellent transmission in  $3-20 \ \mu m$ . Especially, Ge-As-Te system exhibits the best stability, more amenable for larger scale production.



P. Lucas, et al., J. Am. Ceram. Soc., 2009, 92, 2920



- PI dissolution (doping)
- PI refractive index (RI) change
- PI phase change
- PI bandgap energy change (darkening or bleaching)
- PI contraction
- • • • •





T. Wagner, et al., Appl. Phys. Lett., 92 (2008)011114

### Michigan State University, USA Aristotle Univ.of Thessaloniki, Greece

1.82 eV  $\implies$  1.67 eV





TSITY OF SCIENC

Schema of photo-induced phase change material KSb<sub>5</sub>S<sub>8</sub>

T. Kyratsi, et al., Adv. Mater., 2003,15(17):1429





#### pto-stable Se<sub>55</sub> films

#### **Lapress**, 2008,16:10565

# University of Arizona, USA Université de Rennes 1, France





Effect of intensity on PI volume change in GeAsSe<sub>13</sub> glass. The annealed glass (black) shows PE, the quenched (red) PC. For large intensity, the latter eventually expansion.

L. Calvez, et al., Opt. Express, 2009,17:18581



- Passive optics
  - Laser transmission
  - Thermal imaging
- Active optics
  - Non-linear optics
  - •IR amplifier



#### Laser power delivery





(a)CO laser transmission, (b)  $CO_2$  laser transmission and (c) pulsed high energy laser transmission in the 2-5  $\mu$ m region (±0.01 mW)

J. S. Sanghera, J. Non-Cryst. Solids, 1999, 256-257:6

### Thermal imaging



TECHNOLOG





 Lower cost production by moulding compared with singlepoint diamond turning process
 for crystalline materials, e.g. Ge





#### Night-vision car





New 2006 BMW Series equiped with IR night-vision system with molded chalcogenide glass optics



IR transmission of GCs compared with  $Ga_5Sb_{10}Ge_{25}Se_{60}$  glass

X. Zhang, et al., J. Non-Cryst. Solids, 2004, 336: 49

#### Molded lens





#### A molded GC lens (D=30 mm)

Molding precision: form defect of molded lenses by comparing the designed profile and the measured profile of the lens is  $< 0.5 \mu m$ .



#### light/fiber/amplifier/fiber/light



#### Matrix material is a key





Comparison of emission spectra between Ge-Ga-S glass and oxide glass doped with Pr<sup>3+</sup> ions

#### Multiphonon relaxations (MPR)





$$W_{tot} = W_{rad} + W_{MP} + W_{ET} + \dots$$

Radiative Multiphonon Energy Transfer

• Quantum efficiency:  $\eta = \frac{W_{rad}}{W_{rad} + W_{MP} + W_{ET}}$   $W_{MP} \uparrow with \uparrow phonon$ energy of the host



# Pohang University of Science and Technology, Korea



J. Heo et al., Chem. Phys. Lett., 2000, 317: 637

EAST CHINA UM

RSITY OF SP

TECHNOLO

#### Raman spectra





Addition of CsBr resulted in a new lowphonon band at 245 cm<sup>-1</sup>, associated with the Ga–Br bonds vibration, a major phonon mode determining the MPR process.

Normalized Intensity

# Shanghai Institute of Optics and Fine Mechanics, China ECUST, China



Broad NIR emission from Er<sup>3+</sup>-Tm<sup>3+</sup> codoped 70GeS<sub>2</sub>-20In<sub>2</sub>S<sub>3</sub>-10CsI glasses DIECHNOLOW

Yinsheng Xu et al., Opt. Lett., 2008, 33(20):2293

### Shanghai Institute of Optics and Fine Mechanics, China ECUST, China





Emission spectra of Bi-Dy co-doped  $70GeS_2-9.5Ga_2S_3-$ 20KBr chalcohalide glasses melted at the different temperature

Guang Yang, et al., J. Am. Ceram. Soc., 2007, 90, 3670

### Shanghai Institute of Optics and Fine Mechanics, China Zhejiang University, China





Emission spectra of Bi-doped 80GeS<sub>2</sub>-20Ga<sub>2</sub>S<sub>3</sub> chalcogenide glasses

**FWHM ~ 200 nm** 

Jianrong Qiu, et al., Chin. Phys. Lett., 2008, 25:1891

### All-optical device (AOD)









All-optical dual core coupler (A) setup, (B) schematic dual core SiO<sub>2</sub> fiber, (C) two single-mode cores as waveguides.

Intensity of incoming light controls coupling from one core to the other.

Vogel E M, J. Am. Ceram. Soc., 1989, 72(5):719

### Optical nonlinearity





With the higher susceptibility  $\chi^{(3)}$  and SHG  $\chi^{(2)}$ , ChG photonic chips allow all-optical signal processing.

Plot of n<sub>2</sub> versus the term containing the normalized photon energy

J. S. Sanghera, et al., J. Non-Cryst. Solids, 2008, 354:462

### Université de Rennes 1, France



$$n^{(2)} = 8.0 \text{ pm/V}$$

TECHNON

MF patterns of thermal poled Ge-Sb-S samples recorded for three temperatures: (a) 170°C and (b) 230°C (full line) and 310°C (dashed lines)

M. Guignarda, et al., Opt. Express, 2006, 14(4) 1528

### Kyoto University, Japan ECUST, China





$$n^{(2)} = 7.0 \text{ pm/V}$$

Maker fringe of 60GeS<sub>2</sub>-20Ga<sub>2</sub>S<sub>3</sub>-20KBr glass with higher alkali content after thermal poling

Jing Ren, et al., Opt. Lett., 2006, 31(23):3492

### Wuhan University of Technology, China



$$n^{(2)} = 5.36-7.3 \text{ pm/V}$$

Maker fringe patterns of the  $\beta$ -GeS<sub>2</sub> crystallized glasses without poling treatment

Xiujian Zhao, et al., *Opt. Lett.*, 2009, 34(4):437

#### **XRD** and Raman spectra





### Fudan University, China ECUST, China





$$\chi^3 = 10.07 \times 10^{12}$$
 esu

**Optical Kerr Effect Siganl of GeSe<sub>2</sub>-In<sub>2</sub>Se<sub>3</sub>-CsI glasses** 

Yinsheng Xu, et al., Phy. Chem. Lett., 2008, 462, 69-71

#### Raman spectra





[GeSe<sub>4</sub>] at 200 cm<sup>-1</sup> and [InSe<sub>4</sub>] at 154 cm<sup>-1</sup> are the main structural units while the increasing CsI does not cause clear structural



#### **Optical Kerr Effect Siganl of As<sub>2</sub>S<sub>3</sub> glass before and after laser radiation**

Lei Xu, et al., Appl. Phy. Lett., 2007, 91, 181917





- Purification is an important procedure for synthesis of high purity ChGs.
- Controlled crystallization is an effective way to improve mechanical and thermal properteis of ChGs.
- Different from oxide glasses, ChGs have narrower bandgap, lower phonon energy, and are photosensitive.
- ChGs are potential for applications in active optics due to unique IR optical properties.



# Thank You for Your Attention

