Electrochemical Applications of Glass: New Functionalities for a Greener Future

Steve W. Martin

Anson Marston Distinguished Professor in Engineering Department of Materials Science & Engineering Iowa State University of Science and Technology <u>swmartin@iastate.edu</u>

The Carbon Energy Problem...

 Consider the world's energy use...

Sources: **History**: Energy Information Administration (EIA), Office of Energy Markets and End Use, International Statistics Database and *International Energy Annual 1999*, DOE/EIA-0219(99) (Washington, DC, January 2001). **Projections:** EIA, World Energy Projection System (2001).

Leading to Increasing World CO₂ Emissions...

Sources: **History:** Energy Information Administration (EIA), Office of Energy Markets and End Use, International Statistics Database and *International Energy Annual 1999*, DOE/EIA-0219(99) (Washington, DC, January 2001). **Projections:** EIA, World Energy Projection System (2001).

That lead to Global Warming...

swmartin@iastate.edu

That Suggests Alternative Zero-Carbon Energy Harvesting Systems...such as solar...

Photovoltaic...

Thermal...

Solar source ~ 6,600 TW/year

World use ~ 16 TW/year

swmartin@iastate.edu

swmartin@iastate.edu

However....

- Solar-based energy systems are temporal
- and...Energy demand is temporal
- Energy storage systems are necessary to balance the mismatch between supply and demand
 - □ Mechanical pressure, m·g, hydro...
 - □ Electrical capacitors...
 - Chemical batteries...

Further...

Portable energy is also required for....

- Transportation
- Mechanical work
- Electronics
- Health care
- Food production
- ...

Portable energy for transportation...

- Must be developed
- Will be more expensive than oil
- Must be used as efficiently as possible
- Consider the demand...
 - ~8,000 cars and ~150 miles of paved roads in 1900
 - ~600,000,000 passenger cars in 2008
 - ~1,200,000,000 passenger cars expected in 2030
- Will half of all cars be hybrids in 2030?
 - 600,000,000+ battery systems?

Portable energy for personal electronics...

- ~6 Billion people, ~4 billion cell phones in 2008
- In 30 countries, cell phone use now exceeds 100%
 - Italy ~ 122%
 - Sweden ~ 110%
- Consider the demand...
 - □ ~9 Billion people in 2050?
 - ~10 Billion cell phones?
 - ~10+ Billion Lithium batteries?

The paradigm has changed....

Thus...Portable Energy Sources are Critical Technologies

swmartin@iastate.edu

But....what's the problem...?

12

Anode and Cathode Combinations Determine the Voltage and Energy Density of Lithium Batteries

swmartin@iastate.edu

Just for comparison...

Where we are...

swmartin@iastate.edu

Where we can go...

14

Li-ion Batteries

C₆ is a common anode material for Li-ion batteries

The maximum capacity of graphite (LiC_6): 410Ah/kg 1339 C/g

Good cycle-life

But, Low capacity for new portable devices

New Lithium Battery Designs - Anode

- Higher energy storage in the anode
 - Move closer to unit activity of metallic lithium
 - Yet maintain safety
 - Stability in contact with electrolyte and other battery materials
 - Preference is to manufacture Lithium batteries in the discharged state
 - Does not require handling high activity material
 - Increases shelf life of battery before selling
 - Reduces time and cost of manufacture
 - Increases safety during storage and shipment
 - Increases the lifetime of the battery for the consumer

New Lithium Battery Designs - Anode

- Need a cheap material that will store lithium safely near unit activity that will charge and discharge Li reversibly, ~4000x (~10 years), near 0 V (vs. Li/Li⁺) at a density near that of Li
- To obtain 50% loss after ~ 10 years, ~4000 cycles, reversibility at each cycle must be ? % reversible?

$$(.9998)^{4000} = 0.5$$

swmartin@iastate.edu

Carbon as a Negative Insertion Electrode

- $Li_x C_n \leftrightarrow xLi^+ xe^- + C_n$
- x ~ 1, n ~ 6
- C has high e-conductivity
- Cheap
- Plentiful
- Good voltage
- However, relatively low capacity, small x

M. Winter, J. Besenhard, M. Spahr, P. Novak, Adv. Mater. 10(1998) 10

New Lithium Battery Designs - Anode

- Metallic alloy anodes
- Metal + xLi → Li_xM
- x can be greater than 1
- Li_{4.4}Si, for example
- However, large capacity fade
- Associated with large volume change
- +400% from Si to Li_{4.4}Si

Table 1

Crystal structure, unit cell volume and volume per Si atom for the Li–Si system [10]

Compound and crystal structure	Unit cell volume ($Å^3$)	Volume per silicon atom $(Å^3)$
Silicon cubic	160.2	20.0
$Li_{12}Si_7$, $(Li_{1.71}Si)$ orthorhombic	243.6	58.0
$Li_{14}Si_6$, $(Li_{1.71}Si)$ rhombohedral	308.9	51.5
$Li_{13}Si_4$, $(Li_{3.25}Si)$ orthorhombic	538.4	67.3
$Li_{22}Si_5$, $(Li_{4.4}Si)$ cubic	659.2	82.4

A.J. Appleby, et al. J Power Sources 163(2007)1003

New Lithium Battery Designs - Anode

- Nano-structured Si
- To increase surface area
- Increase reaction rate
- Decrease volume change on intercalation

Y. Cui et al., Nature Nanotechnology 2007

swmartin@iastate.edu

Nano-Structured Si anode

- Nano-structured Si does improve cyclability
- But..cycle fade is still strong
- 1000s of cycles is a design goal

Fig. 5. ^{§§}Charge–discharge curves between 0.0 and 0.8 V at 0.1 mA cm⁻² for nano-Si anode with 4:4:2 weight ratio of nano-Si, carbon black and PVDF binder. Electrolyte: 1 M LiPF₆ in ethylene carbonate (EC)–diethyl carbonate (DEC) (1:1) [22].

1 mAhr/g = 1 Ahr/kg

A.J. Appleby, et al. J Power Sources 163(2007)1003

swmartin@iastate.edu

Opportunities for Improved Lithium Batteries

- Cycle life, the number of times the Lithium battery can be discharged and recharged, is often only a few hundred to at most a thousand
 - This leads to lifetimes of only a year or two
- Unbroken paradigm of good cyclability and low Lithium capacity (activity) at the anode
 - Li metal has the highest activity, but the poorest cyclability
 - \Box Li-C has low activity, Li₆C, but among the highest cyclability
- New materials are needed that can help break this paradigm of low capacity (activity), but good cyclability

New Anodes for Lithium Batteries

- How can we store more Li at near unit activity, but safely, reversibly, and cheaply?
- Li readily alloys with many metals
 - Li-Si, Li-Ge, Li-Al...
 - However, large volume changes often occur (> 100 %) with these alloy reactions
 - Anode cracks and crumbles after only a few cycles
- Can we create these Li-alloys inside a buffering material that will accommodate the volume changes leading to improved cyclability, but maintain Lithium activity, hence high voltage and energy density?

New Anodes for Lithium Batteries

- Needed: An Anode Material which:
 - Conducts Li⁺ ions rapidly to insure fast electrode kinetics and charge transfer
 - Has significant fractions of alloying metal, such as Si or Ge, to store large amounts of Li to insure high Li activity and cell voltage
 - Has a relatively low mechanical modulus that will accommodate volume changes during alloying reactions
 - Is chemically stable under highly reducing conditions of the Lithium battery anode
 - Relatively cheap, plentiful, and easily manufactured

Glasses as High Capacity, High Voltage, High Cyclability, Safe Lithium Battery Anodes

- Idea: Li⁺ ion conducting chalcogenide glass anodes
 - Chalcogenide glasses are among the highest of all Li⁺ ion conductors known, 10⁻³ (Ωcm)⁻¹ at 25°C
 - Chalcogenide glasses can be readily made using Si and Ge over a continuous range of compositions, ~50 at% to ~ 10 at%
 - Chalcogenide glasses are significantly "softer" than oxide glasses, MPa moduli versus GPa, for example
 - Sulfide glasses while commonly unstable under oxidizing conditions can be quite stable under reducing conditions
 - Due to their ease of preparation, glasses can be inexpensively prepared, especially in powder form, using mechanical milling where no melting is required

Inorganic Glasses as Hosts for Active Materials

- Sulfide glasses show significantly higher Li⁺ ion conductivity over their oxide counterparts
 - □ $\text{Li}_2\text{O} + \text{P}_2\text{O}_5$ has $\sigma_{\text{RT}} \sim 10^{-9}$ (S/cm)
 - □ $\text{Li}_2\text{S} + \text{P}_2\text{S}_5$ has $\sigma_{\text{RT}} \sim 10^{-3}$ (S/cm)
 - Perhaps sulfide glasses might serve as high capacity anodes?

Comparative behavior of pure Ge

swmartin@iastate.edu

Comparative behavior of GeO₂ Glass

swmartin@iastate.edu

GeS₂ Glass Li anodes

swmartin@iastate.edu

Ge-based Active Material Anodes

GeS₂ glass
based anode
has best
reversibility

Fig. 5. Cycle-life performance of Ge metal, GeO_2 glass, and GeS_2 glass, respectively. They are operated between 1.5 and 0 V at the rate of 0.1 C.

Kim and Martin et al. Electrochimica Acta 53(2008) 5058

swmartin@iastate.edu

Plausible mechanism of Glassy Anodes

Reaction steps:

$x/2GeS_2 + 2xLi \rightarrow xLi_2S + x/2Ge$

Ge + nLi → Li_nGe

Components of Li-ion Batteries

swmartin@iastate.edu

Li-Battery Anode and Cathode Combinations

swmartin@iastate.edu

Lithium Dendrite Formation in Lithium Batteries

- Non-epitaxial deposition of lithium after each cycle leads to the growth of uneven "fingers" or dendrites
- Internal connection results in short circuits in the battery

M. Dolle et al. Electrochemical and Solid-State Letters, 5(12) (2002)A286

swmartin@iastate.edu

Components of Li-ion Battery

swmartin@iastate.edu

Advantages of Solid State Thin Film Batteries

- High power and energy densities (Li metal as an anode material)
- Various sizes (thickness and area to optimized capacity)
- Wide operating temperatures (between -40 °C and 150 °C) (Low temperature dependence)
- No liquid components (No leakage problem)

 High cyclability (Reversability over many charge and discharge cycles)
LiPON (Li₃PO₄ sputtered in N_2) Thin Film Battery

Long term stability with lithium metal

- Good stability in air
- Easy preparation and characterization

Relatively low ionic conductivity, ~ 10⁻⁶ (S/cm) at 25 °C J.B. Bates, N. J. Dudney, et al. Solid State Ionics 135(2000)33

swmartin@iastate.edu

Materials Selection

swmartin@iastate.edu

Experimental Methods

Introduction

Experimental Methods

Surface and structural characterization by XRD, IR and Raman

Compositional characterization by XPS

Ionic conductivity measurement by impedance spectroscopy

Conclusions and Future Work

RF Magnetron Sputtering System

swmartin@iastate.edu

RF Magnetron Sputtering System

swmartin@iastate.edu

Target Preparation

- Commercial source for $Li_2S (Alfa, 99.9\%)$
- Ge + 2S → GeS₂ Sealed SiO₂ tube

swmartin@iastate.edu

Target Preparation

- nLi_2S+GeS_2 (n=1, 2 and 3) \rightarrow 950 °C for 15 min.
- Melted target materials were quenched onto a brass plate
- Quenched materials were milled using Spex milling to make powder

Pressed using 2" stainless steel die set

Loaded with 30,000 lbs overnight

Target Preparation

Targets are attached onto a copper plate by silver paste

Sputtering Conditions

- The pressure for sputtering : 30mtorr
- Sputtering power : 50 W
- Ar gas atmosphere (N_2 in future work)

 nLi_2S+GeS_2 target with Ar atmosphere

swmartin@iastate.edu

Results and Discussion

Introduction

- Surface and structural characterization by SEM, Raman and IR
- Compositional characterization by XPS
- Ionic conductivity measurement by impedance spectroscopy
- Conclusions and Future Work

The Outline of the Characterizations

Materials		Stru	cture		Composition	Ionic Conductivity
	SEM	XRD	Raman	IR	XPS	Impedance spectroscopy
$\begin{array}{c} \textbf{Starting} \\ \textbf{materials} \\ \text{Li}_2 S \\ \text{GeS}_2 \end{array}$		✓	\checkmark	\checkmark		
$\begin{array}{c} \textbf{Targets} \\ \text{Li}_2\text{GeS}_3 \\ \text{Li}_4\text{GeS}_4 \\ \text{Li}_6\text{GeS}_5 \end{array}$		~	✓	\checkmark	\checkmark	
$\begin{array}{c} \textbf{Thin} \\ \textbf{films} \\ \text{Li}_2\text{GeS}_3 \\ \text{Li}_4\text{GeS}_4 \\ \text{Li}_6\text{GeS}_5 \end{array}$	\checkmark		\checkmark	\checkmark	\checkmark	✓

swmartin@iastate.edu

 No cracks or pits that increase contact resistance between electrodes and electrolytes
 Sputtering time : 4 hours
 Sputtering rate : 1.35 µm/4h ≈ 6 nm/min.
 Sputtering power : 50 W@ 30 mtorr

swmartin@iastate.edu

XRD Data of the Starting Materials

- (a) Li₆GeS₅ target polycrystalline
- (b) Li₄GeS₄ target polycrystalline
- (c) Li₂GeS₃ target amorphous

swmartin@iastate.edu

XRD Data of the Target Materials

swmartin@iastate.edu

Raman Spectra of the Starting Materials

swmartin@iastate.edu

Raman Spectra of the Target Materials

swmartin@iastate.edu

Raman Spectra of the Starting, Target Materials, Thin Films

swmartin@iastate.edu

swmartin@iastate.edu

Deconvoluted S2p Core Peaks of the Starting Materials

> Deconvoluted S2p core peaks for Li_2S

 \blacktriangleright Deconvoluted S2p core peaks for GeS₂

XPS Compositional Data of the Target Materials

Li-GeS.	Li 1s (0.028)	Ge 2p3 (5.400)	S 2p (0.717)	C 1s (0.314)	O 1s (0.733)	Comments (Sensitivity factor)
target	26.1	16.4	41.3	10.3	5.9	(±3%) As prepared
(n=1)	31.1	19.5	49.4	-	-	Ignore C and O
	33.3	16.7	50.0	0	0	Theoretical values

LiGeS	Li 1s (0.028)	Ge 2p3 (5.400)	S 2p (0.717)	C 1s (0.314)	O 1s (0.733)	Comments (Sensitivity factor)
target	36.5	9.6	40.2	8.6	5.1	As prepared
(n=2)	42.3	11.1	46.6	-	-	Ignore C and O
	44.4	11.2	44.4	0.0	0.0	Theoretical values

Li GeS.	Li 1s (0.028)	Ge 2p3 (5.400)	S 2p (0.717)	C 1s (0.314)	O 1s (0.733)	Comments (Sensitivity factor)
target	40.4	8.0	37.2	6.5	7.9	As prepared
(n=3)	47.2	9.3	43.5	-	-	Ignore C and O
	50.0	8.3	41.7	0	0	Theoretical values

swmartin@iastate.edu

XPS S2p Core Peaks of the Li₂GeS₃ Target Material

$E_{\rm b}{ m S2p}_{ m 3/2-1/2}$	Experimental ratio	Theoretical ratio
160.7 – 161.9	NBS (64.5 %)	NBS (66.7 %)
161.7 – 162.9	BS (35.5 %)	BS (33.3 %)

swmartin@iastate.edu

XPS S2p Core Peaks of the Li₄GeS₄ Target Material

$E_{\rm b}{ m S2p}_{ m 3/2-1/2}$	Experimental ratio	Theoretical ratio
161.0 - 162.2	NBS (92.2 %)	NBS (100 %)
161.9 - 163.1	BS (7.8 %)	BS (0 %)

swmartin@iastate.edu

XPS S2p Core Peaks of the Li₆GeS₅ Target Material

swmartin@iastate.edu

swmartin@iastate.edu

Compositions of the Li₂GeS₃ Thin film

 $(\pm 3 \% \text{ error})$

Li1s (0.028)	Ge2p3 (5.400)	S2p (0.717)	C1s (0.314)	O1s (0.733)	Comments (Sensitivity factor)
27.2	8.5	37.1	18.6	8.6	As prepared
32.6	15.9	47.8	0.0	3.7	Ar etching for 1 min.
31.7	16.1	48.1	0.0	4.1	Ar etching for 5 min.
33.3	16.7	50.0	0.0	0.0	Theoretical values

swmartin@iastate.edu

Compositions of the Li₄GeS₄ Thin Film

 $(\pm 3 \% \text{ error})$

Li1s (0.028)	Ge2p3 (5.400)	S2p (0.717)	C1s (0.314)	O1s (0.733)	Comments (Sensitivity factor)
31.0	5.5	32.1	18.3	13.1	As prepared
40.6	12.6	41.3	0.0	5.5	Ar etching for 1 min.
41.9	12.9	40.5	0.0	4.7	Ar etching for 5 min.
44.4	11.2	44.4	0.0	0.0	Theoretical values

Merged XPS Spectra of the Li₄GeS₄ Thin Film

swmartin@iastate.edu

Compositions of the Li₆GeS₅ Thin Film

()					
Comments (Sensitivity factor)	O1s (0.733)	C1s (0.314)	S2p (0.717)	Ge2p3 (5.400)	Li1s (0.028)
As prepared	11.3	14.7	33.2	4.9	35.9
Ar etching for 1 min.	5.6	0.0	41.8	8.9	43.7
Ar etching for 5 min.	3.1	0.0	41.2	11.1	44.6
Theoretical values	0.0	0.0	41.7	8.3	50.0

 $(\pm 3\% \text{ error})$

swmartin@iastate.edu

Merged XPS Spectra of the Li₆GeS₅ Thin Film

swmartin@iastate.edu

US - China Winter School on New Functionalities in Glass

swmartin@iastate.edu

Sample Preparation of the Targets for Ionic Conductivity

Sputtered Au electrode Target (13 mm diameter)

Composition	Thickness (± 0.002 mm)	Area
Li ₂ GeS ₃ target	0.96 mm	0.7854 cm^2
Li ₄ GeS ₄ target	1.05 mm	0.7854 cm^2
Li ₆ GeS ₅ target	0.85 mm	0.7854 cm^2

Before assembly

After assembly

swmartin@iastate.edu

Ionic Conductivities of the Li₂GeS₃ Target

swmartin@iastate.edu

Ionic Conductivities of the Li₄GeS₄ Target

swmartin@iastate.edu
Ionic Conductivities of the Li₆GeS₅ Target

swmartin@iastate.edu

Arrhenius Plots of the d.c. Conductivity of the Targets

swmartin@iastate.edu

Sample Preparation of the Thin Film for Ionic Conductivity

Before assembly

After assembly

swmartin@iastate.edu

Ionic Conductivities of the Li₂GeS₃ Thin Film

swmartin@iastate.edu

Ionic Conductivities of the Li₄GeS₄ Thin Film

swmartin@iastate.edu

Ionic Conductivities of the Li₆GeS₅ Thin Film

swmartin@iastate.edu

Arrhenius Plots of d.c. Ionic Conductivity of the Thin Films

swmartin@iastate.edu

Arrhenius Plots of the Ionic Conductivities of the Thin Films

swmartin@iastate.edu

Arrhenius Plots of the Ionic Conductivities of Targets and Thin Films

swmartin@iastate.edu

Ionic Conductivities of Li4GeS4 Thin Films under various Conditions

Li ₄ GeS ₄ thin film	Sputtering time	Pressure	Power	Width	Space	Thickness (microns)	k = t/A (cm ⁻¹)
(a)	90	30	45W	10 mm	2 mm	0.5	4,000
(b)	90	25	45W	10 mm	2 mm	0.5	4,000
(c)	30	25	50W	10 mm	3 mm	0.17	17,647
(d)	30	25	50W	10 mm	2 mm	0.17	11,765

swmartin@iastate.edu

Summary and Conclusions

- □ We have successfully made $nLi_2S+GeS_2(n=1, 2 \text{ and } 3)$ thin films in Ar atmosphere.
- □ From the SEM data, the thin films showed high quality surface morphology.
- ☐ Raman and IR data showed consistent structures between targets and thin films.
- Target XPS compositional data are close to thin film composition and both closely match theoretical values. In addition, C exists only 1 nm from the surface and minor O exists 1 nm below the surface.
- □ The ionic conductivities of thin films at RT are 100 to 1000 times larger than oxide thin films (LiPON) which are the current commercial products. In addition, the thin films are thermally stable up to 100 °C
- □ The lithium thio-germanate thin film electrolytes are very promising for solid state Li-ion batteries.

Acknowledgements – ISU Glass and Optical Materials Research Group

swmartin@iastate.edu

Future work (Ge based system)

- Add GeO₂ to nLi₂S + GeS₂ system to increase chemical stability (and Li+ ion conductivity?)
- Use an Ar + N₂ atmosphere for sputtering to increase ionic conductivity of the thin film electrolytes (and stabilize electrolyte-lithium interface?)
- Test lithium thin-film solid state batteries with lithium anodes and transition metal oxide cathodes

Concluding comment....

It's all we've got....let's take good care of it....

swmartin@iastate.edu