
IMI Course on Atomistic Modeling of Glass Structure

Bond models and cluster expansion in silicates

Matthieu Micoulaut, UPMC, September 2013

The short range order in modified alkali silicates $(1-x)SiO_2-xM_2O$ (M=Li,Na,K) can be described from Qⁿ populations (Figure) representing a Si tetrahedron with (4-n) non-bridging oxygens. For instance, Q⁴ is the local structure of the base network former SiO₂ (silica) when x=0. We assign to each of these Qⁿ functions a probability p4(x), p3(x), p2(x), p1(x) and a corresponding coordination number r_n=n connecting to the rest of the network, i.e. r₄=4 for silica.

- 1. The chemical formula of a 100% Q^3 network is $M_2Si_2O_5$. What is the corresponding composition x ? Can you provide both chemical formula and composition for networks made of 100% Q^4 ? 100% Q^2 ? 100% Q^1 ? 100% Q^0 ?
- 2. **Reproducing the results of the lecture 3**. We first focus on the low modified alkali content (x<33%) when one can safely set p1 and p2 to zero.
 - a. Write down the normalization condition and the charge conservation law. Provide an estimate of p4(x) and p3(x).
 - b. We now assume that in the region x < 50%, one has p4=A(1-2x) and p3=A(3-5x). How can one justify such assumptions? Using the charge conservation law+normalization, estimate A, and calculate the population p4(x), p3(x) and p2(x). Check that the statistics is valid only for 28.2% < x < 50% alkali.
- 3. We now **investigate the region at higher composition** (x > 50%) where p4 can be set to zero. As before, one assumes that p3=B(3-5x), but also that p2=B(3-4x). Justify again, this choice.
 - a. Do the same job as before. Extract a statistics of p3(x), p2(x) and p1(x). Check that these results are valid only for 44.6% < x < 60%.
 - b. How do these results connect to the previous ones found in 2 ? Comments ?

4. One of the major flaws of such simple (but nice) methods is that one does not distinguish between the effect of different alkalis (see the experimental Qⁿ distribution of Maekawa et al. on slide 20 of lecture 3 for Li, Na and K silicates). An interesting way to circumvent this problem is to introduce an equilibrium constant K_e associated with a disproportionation reaction involving Q⁴, Q³ and Q² species:

$$2Q^3 \leftrightarrow Q^4 + Q^2$$

Equation above can be considered as an equilibrium reaction with an equilibrium constant defined from the probabilities of finding the different species:

$$K_e = \frac{p_4 p_3}{p_3^2}$$

- a. Using the normalization condition and the charge conservation law, write now the probability distribution p4(x), p3(x) and p2(x) for x < 50% as a function of the parameter K_e.
- b. Represent these distributions for some cases in $K_{e\cdot}$ Comments ?
- c. If you have a great software, you may even try to fit your distribution (p3,p2,p4) with the data of Maekawa.
- 5. Coming back to the statistics of Qⁿ of question 1 and 2, build up all possible doublet clusters Qⁱ-Q^j (I,j=4,3,2) and their corresponding probabilities. Try to extract a probability of finding Q⁴, Q³ and Q² structures from the obtained statistics. Would you mind doing it for triplet clusters Qⁱ-Q^j-Q^k?