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Abstract

We examine powers of Hamiltonian paths and cycles as well as Hamiltonian
(power) completion problems in several highly structured graph classes. For
threshold graphs we give efficient algorithms as well as sufficient and minimax
toughness like conditions. For arborescent comparability graphs we have similar
results but also show that for one type of completion problem an ‘obvious’
minimax condition fails. For cographs we give examples showing that toughness
and other ‘obvious’ necessary conditions are not sufficient. For threshold graphs
we give additional necessary and sufficient conditions in terms of vertex degrees
as well as a minimax formula for the length of a longest cycle power.

1 Introduction

A graph G contains the kth power of a Hamiltonian path if the vertices can be ordered
so that vertices at distance k or less are adjacent in G. A graph contains the kth power
of a Hamiltonian cycle if the ordering is cyclic. That is, G contains the kth power of
a Hamiltonian path if the vertices can be labeled 1, 2, . . . , |V | such that |i − j| ≤ k
implies ij ∈ E and the kth power of a Hamiltonian cycle if the vertices can be labeled
1, 2, . . . , |V | such that |i− j| ≤ k or |i− j| ≥ |V |−k implies ij ∈ E. If |V | ≤ k we will
say that the graph contains a kth power of a Hamiltonian path and cycle if and only
if it is complete. The cases k = 1 are paths and cycles (except our definition includes
a single vertex or edge as a cycle). A k path power in a graph is an induced subgraph
which contains the kth power of a Hamiltonian path and similarly for k cycle powers.
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Analogous to Hamiltonian completion problems we look at vertex completion,
the minimum number of additional ‘new’ vertices adjacent to all vertices so that
G contains the kth power of a Hamiltonian path and path partition, the minimum
number of k path powers needed to cover the vertices.

Toughness was introduced by Chvátal [2] as a basic necessary (but not sufficient)
condition for the existence of Hamiltonian cycles in a graph. See the definition below.
It is conjectured that 2-toughness is sufficient for the existence of a Hamiltonian
cycle in general graphs. Not surprisingly an analogous conjecture for kth powers of
Hamiltonian cycles fails. In [1] triangle free graphs with arbitrarily large toughness are
constructed. Such graphs can not contain even a square of a Hamiltonian cycle. For
highly structured graph classes, such a cocomparability graphs (and hence cographs,
interval graphs, threshold graphs etc), 1-toughness is sufficient for the existence of
Hamiltonian cycles [5], [6], [7].

Our aim in this paper is to look at graph classes where k-toughness is sufficient for
the existence of a kth power of a Hamiltonian cycle and also to look where this fails.
We will also examine minimax results for related Hamiltonian (power) completion
problems.

The following gives definitions and easily verified facts relating toughness like
conditions and Hamiltonian powers. (See [12] for more details.) Let C(S) denote the
number of components in the graph induced by V − S.

• If G contains the kth power of a Hamiltonian path then

|S| ≥ k(C(S)− 1) for all S ⊆ V. (1)

We call a graph satisfying the condition in (1) k-path tough. So k-path tough-
ness is a necessary condition for a graph to contain the kth power of a Hamilto-
nian path.

• If G contains the kth power of a Hamiltonian cycle then

|S| ≥ kC(S) or C(S) = 1 for all S ⊆ V. (2)

A graph satisfying the condition in (2) is k-tough. So k-toughness is a necessary
condition for a graph to contain the kth power of a Hamiltonian cycle.

• The vertex completion number of G, denoted V Ck(G), is the minimum t such
that the join of G and Kt, denoted G ∨Kt, contains the kth power of a Hamil-
tonian path.

V Ck(G) ≥ max
S⊆V

{k(C(S)− 1)− |S|} . (3)
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• The path partition number of G, denoted PPk(G), is the minimum t such that
there exist Q1, Q2, . . . , Qt partitioning V and for each i, Qi is a k path power.

PPk(G) ≥ max
S⊆V

{
C(S)−

⌊ |S|
k

⌋}
. (4)

In general the necessary conditions above are not sufficient and the bounds are
not tight. Our results and examples examine when the conditions are sufficient and
when equality holds in the bounds. We can summarize the results as follows.

• For arborescent comparability graphs (and hence threshold graphs) the nec-
essary toughness conditions for Hamiltonian path and cycle powers are also
sufficient. We can give efficient algorithms to test for such powers on these
graph classes.

• For cographs the necessary toughness conditions for Hamiltonian path and cycle
powers are not sufficient. We give infinite families of cographs that satisfy the
toughness conditions but do not contain the corresponding Hamiltonian path
or cycle powers.

• For arborescent comparability graphs (and hence threshold graphs) equality
holds in (3) for vertex completion. That is,

V Ck(G) = max
S⊆V

{k(C(S)− 1)− |S|} .

For cographs, the inequality can be strict and the gap can be arbitrarily large.

• For threshold graphs equality holds in (4) for path partitions. That is,

PPk(G) = max
S⊆V

{
C(S)−

⌊ |S|
k

⌋}
.

Additionally, for threshold graphs a partition can be found that consists of
one ‘big’ part Q1 with the remaining parts consisting of isolated vertices. For
arborescent comparability graphs (and hence cographs) the inequality can be
strict and the gap can be arbitrarily large.

Actually, the sufficiency of the toughness conditions follows from vertex com-
pletion results but we have stated them separately here to emphasize the different
problems. Some of the path results follow from [12].

For threshold graphs, we provide additional results, giving necessary and sufficient
conditions for Hamiltonian powers in terms of vertex degrees, a minimax theorem on
the length of a longest cycle power and power ‘pancyclic’ conditions.
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2 Cographs, Arborescent Comparability and Thresh-

old Graphs

In this section we briefly review definitions and representations of the various graph
classes of interest here. For more information and history see for example [4], [10],
[11] or [15]. For more general graph theory terms see [16].

The join of two graphs on disjoint vertex sets, denoted G∨H is formed by taking a
copy of G and a copy of H and adding all possible edges between the two. The union
G∪H consists of disjoint copies of G and H (G∨H without the edges between G and
H.) The disjoint union of m copies of G will be denoted mG. We will use G to denote
the complement of G, Pn and Cn to denote ‘the’ path and ‘the’ cycle on n vertices and
Kn to denote ‘the’ complete graph on n vertices. The open neighborhood N(v) of a
vertex is the set of adjacent vertices and the closed neighborhood is N [v] = N(v)∪{v}.
A comparability graph of an order has vertex set corresponding to the elements of
the order and xy an edge if and only if the corresponding elements are related in the
order.

Cographs: Graph G is a cograph if and only if it does not contain an induced P4

(path on 4 vertices). Alternatively, G is a cograph if and only if it can be expressed
in terms of complete graphs using ∪ (union), ∨ (join) and complementation (actually
any two of these three operations suffices). Cographs are comparability graphs (and
also cocomparability graphs) of series parallel orders.

Arborescent Comparability Graphs: Graph G is an arborescent comparabil-
ity graph if and only if it does not contain an induced P4 or an induced C4. Alterna-
tively (and the origin of the name), G is an arborescent comparability graph if it is
the comparability graph of an order P whose diagram is a set of rooted forests, i.e.,
for x ∈ P , {y|y Â x} is a chain. We will call the set of elements (vertices) preceding
all other elements (adjacent to all other vertices) the root chain. There is a unique
(up to isomorphism) order representing a given arborescent comparability graph. We
can also express an arborescent comparability graph in terms of complete graphs,
using ∪ and ∨ with the condition that ∨ can only be used as Kn ∨H where H is an
arborescent comparability graph.

Threshold Graphs: Graph G is a threshold graph if and only if it does not
contain an induced P4 or an induced C4 or an induced K2∪K2 = 2K2. Alternatively,
we can partition the vertices into (a possibly empty) set of isolated vertices D0 and
non empty sets D1, D2 . . . , Dm such that x ∈ Di and y ∈ Dj are adjacent if and only
if i + j > m. This is called the degree partition. Also note that D0 ∪D1 ∪ · · ·Dbm/2c
is an independent set and Ddm/2e ∪ · · ·Dm−1 ∪Dm is a clique. We can also express a
threshold graph in terms of complete graphs, using ∪ and ∨ with the conditions that
∪ can only be used as Kn∪H where H is a threshold graph and ∨ can only be used as
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Kn ∨H where H is a threshold graph. Let p(i) =
∑i

j=1 |Dm+1−i|. A threshold graph
is the comparability graph of an order which consists of |D0| isolated elements along
with a chain x1, x2, . . . , xp(1), . . . , xp(dm/2e) such that for i = 1, 2, . . . , bm/2c there are
|Di| leaves attached to xp(i).

Observe that every threshold graph is an arborescent comparability graph and
every arborescent comparability graph is both an interval graph (see [11]) and a
cograph.

3 Cycles, Paths and Vertex Completion

In this section we show a minimax result for vertex completion in arborescent compa-
rability graphs (and hence in threshold graphs). This yields an efficient algorithm as
well as sufficiency of the toughness conditions. Note that the cycle results imply the
path results (see similar observations in [13], [12]), but for the inductive proof it is
easier to do it all together. Also note that the results for paths and vertex completion
(but not cycles and not the structure of the sets S) are implied by results for interval
graphs in [12].

In order to simplify the proof we need one new definition. The vertex cycle
completion number, denoted V CCk(G), is the minimum t such that G ∨Kt contains
the kth power of a Hamiltonian cycle. Observe that two immediate corollaries will be
sufficiency of the toughness conditions for paths and cycles.

Theorem 1 Let G be an arborescent comparability graph. Then

V Ck(G) = max
S⊆V

{k(C(S)− 1)− |S|}

and
V CCk(G) = max

S⊆V,C(S)>1
{kC(S)− |S|, 0} .

Furthermore, when the maximum is at least 1, there is an S attaining the maximum
which corresponds to an upper order ideal in the arborescent order representing G.

Proof: In each case ≥ is simply an extension of the necessity of the toughness condi-
tions and easy to check.

To show = we will use induction on the number of vertices. If G is complete the
results are obvious.

Let R with |R| = r (possibly empty) be the root chain. That is, G = Kr ∨ (H1 ∪
H2 ∪ · · · ∪ Hc). If R is empty then c ≥ 2 so we can assume the result holds for the
components Hi. If the maximum is 0, let Si = ∅. Otherwise, let Si be an upper order
ideal attaining the maximum in the Hi.
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It is easy to see that if

ρ =
c∑

i=1

V Ck(Hi) + k(c− 1)

then Kρ ∨ (∪c
i=1Hi) has a kth power of a Hamiltonian path. (We use

∑c
i=1 V Ck(Hi)

vertices to finish path powers in the Hi and k(c− 1) vertices to ‘patch’ together the
pieces Hi.) Similarly if

σ =
c∑

i=1

V Ck(Hi) + kc

then Kσ ∨ (∪c
i=1Hi) has a kth power of a Hamiltonian cycle. Note that the pieces

that are ‘patched’ together are Hamiltonian paths, not cycles, so we will use V Ck(Hi)
inductively, not V CCk(Hi).

We show the result for paths first. If |R| = r ≥ ρ then G contains the kth power of
a Hamiltonian path and we are done. If not, the comments of the previous paragraph
show that V Ck(G) ≤ ρ−r. So we need to show that there exists an upper order ideal
S with k(C(S)− 1)− |S| = ρ− r. Observe this will also show that the case when the
maximum is 0 implies |R| ≥ ρ.

Let Ci(Si) denote the number of components when Si is deleted from Hi. So
V Ck(Hi) = k(Ci(Si)− 1)− |Si| for i = 1, 2, . . . , c.

Let S = R∪(∪c
i=1Si) and observe that |S| = r+

∑c
i=1 |Si| and C(S) =

∑c
i=1 Ci(Si).

Then

k(C(S)− 1)− |S| = k

([
c∑

i=1

Ci(Si)

]
− 1

)
− r −

c∑

i=1

|Si|

=
c∑

i=1

[kCi(Si)− |Si|]− k − r

=
c∑

i=1

[k(Ci(Si)− 1)− |Si|] + (c− 1)k − r

= ρ− r

The proof for cycle powers is the same except add k to each term in the above
sequence of equations. 2

The following corollary is immediate, we state it for completeness.

Corollary 1 For an arborescent comparability graph G, k-path toughness is a neces-
sary and sufficient condition for the kth power of a Hamiltonian path and k toughness
is a necessary and sufficient condition for the kth power of a Hamiltonian cycle. Fur-
thermore, if G is not k-path tough, there is a set S corresponding to an upper order
ideal with |S| < k(C(S) − 1) and if G is not k-tough there is a set S corresponding
to an upper order ideal with C(S) > 1 and |S| < kC(S).
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Since threshold graphs are also arborescent comparability graphs the sufficiency
in the next corollary is the same as the previous, however this corollary specifies the
form of ‘violating’ sets in threshold graphs.

Corollary 2 For a threshold graph G k-path toughness is a necessary and sufficient
condition for the kth power of a Hamiltonian path and k toughness is a necessary
and sufficient condition for the kth power of a Hamiltonian cycle. Furthermore, if
G is not k-path tough, there is a set S of the form Dm ∪ Dm−1 ∪ Dm−j for some
j < bm/2c with |S| < k(C(S) − 1) and if G is not k-tough there is a set S of the
form Dm ∪Dm−1 ∪Dm−j for some j < bm/2c with C(S) > 1 and |S| < kC(S).

Proof: This follows from the description of orders representing threshold graphs and
from observing that if a set is an upper order ideal violating the condition for tough-
ness and it contains a leaf then removing that leaf from the set produces a new set
which also violates the condition. 2

It is easy to see how the inductive proof of Theorem 2 can be translated into a
recursive algorithm. So we have the following corollary. We will not go into details
of implementation.

Corollary 3 There are efficient algorithms for Hamiltonian cycle power, Hamilto-
nian path power and vertex completion in arborescent comparability graphs.

For threshold graphs, additional very natural algorithms can be found in [8].

4 Threshold Graphs

In this section we will discuss various additional structural results that can be ob-
tained for threshold graphs, including path partitions, longest cycle length, power
pancyclicity and various conditions in terms of degrees and the degree partition.

Throughout this section we will assume that the vertices of a threshold graph are
labeled with non-decreasing degrees. So (v1, v2, . . . , v|D0| ∈ D0), (v|D0|+1, . . . , v|D0|+|D1| ∈
D1), . . ., (v

1+
∑m−1

i=1
|Di|, . . . , v

∑m

i=1
|Di| ∈ Dm).

We will show in the next section that the bound for path power partitions noted
in the introduction is not tight for arborescent comparability graphs. Here we show
that it is tight for threshold graphs.

Theorem 2 If G is a threshold graph then

PPk(G) = max
S⊆V

{
C(S)−

⌊ |S|
k

⌋}
.

Additionally, a partition can be found that consists of one ‘big’ part Q1 with the
remaining parts consisting of isolated vertices.
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Proof: Let γ = maxS⊆V

{
C(S)−

⌊ |S|
k

⌋}
and let D0, D1, . . . , Dm be the degree parti-

tion of G.
Consider first γ = |V |. In this case, the graph consists of isolated vertices, so the

size of a minimum path partition is |V |. Since |V | = γ = maxS⊆V

{
C(S)−

⌊ |S|
k

⌋}

(with S = ∅), we are done.

Next consider γ = 1. Then for all S ⊆ V , C(S) −
⌊ |S|

k

⌋
− 1 ≤ 0. So C(S) − 1 ≤⌊ |S|

k

⌋
≤ |S|

k
. Then k (C(S)− 1) ≤ |S| for all S ⊆ V , i.e., G is k-path tough. So,

by Corollary 2, G contains a kth power of a Hamiltonian path and PPk(G) = 1 as
required.

So assume that 1 < γ < |V |. Let R = {v1, v2, . . . , vγ−1} (recall the label of vertices
by non-decreasing degree) and let G′ be the subgraph induced by V − R. We will

show that G′ contains the kth power of a Hamiltonian path. If γ − 1 ≥ ∑bm/2c
i=1 |Di|

then G′ is a complete graph and so must contain the kth power of a Hamiltonian path.
So we may also assume that γ − 1 <

∑bm/2c
i=1 |Di|.

Assume towards a contradiction that G′ does not contain a kth power of a Hamil-
tonian path. G′ is an induced subgraph of a threshold graph and so is also a threshold
graph. By Corollary 2, there exists S ′ such that |S ′| < kCG′(S

′)− k.

We claim that CG(S) = CG′(S
′)+ |R|. Since γ−1 <

∑bm/2c
i=1 |Di|, R is an indepen-

dent set. So, if CG(S) 6= CG′(S
′) + |R|, there is some v ∈ R and some u ∈ V (G′)−S ′

such that vu ∈ E(G). Then, if v ∈ Di and u ∈ Dj, we have i + j > m from the
definition of degree partition in a threshold graph. It follows because of the way that
we formed R, that for every v′ ∈ V − R, v′ ∈ Di′ for i′ ≥ i and thus i′ + j > m
and v′u ∈ E. So CG′(S

′) = 1 and |S ′| < kCG′(S
′) − k = 0, which is impossible. So

CG(S) = CG′(S
′) + |R|.

Since |S ′| < kCG′(S
′)− k we have CG′(S

′)− 1−
⌊ |S′|

k

⌋
> 0. Now,

γ ≥ CG(S ′)−
⌊ |S ′|

k

⌋

= CG′(S
′) + |R| −

⌊ |S ′|
k

⌋

= CG′(S
′) + γ − 1−

⌊ |S ′|
k

⌋

> γ

a contradiction. So G′ contains the kth power of a Hamiltonian path and Q1, Q2, . . . , Qγ

with Q1 = V − R and Qi = vi−1 for i = 2, . . . , γ is a path power partition with all
parts except Q1 consisting of a single vertex. 2

The partition contains one long path power and isolated vertices. It is not hard
to see that the path power in the ‘big’ part is also a longest path power in a threshold

8



graph. This follows by observing the ‘nested’ property of the neighborhoods. If P is
a longest path power in a threshold graph G and vi ∈ P , vj 6∈ P with i ≤ j, i.e., the
degree of vj is at least the degree of vi, then replacing vi in P with vj yields a path
power of the same length. This follows since in this case xvi ∈ E implies xvj ∈ E.
Hence the maximum size of a longest path power in a threshold graph is the size of
the ‘big’ part,

maximum size of a path k-power = |V | − (PPk(G)− 1)

= |V |+ 1−max
S⊆V

{
C(S)−

⌊ |S|
k

⌋}

= min
S⊆V

{
|V |+ 1 +

⌊ |S|
k

⌋
− C(S)

}
.

In a similar manner we can look for the longest cycle power by deleting vertices
in an order from lowest degree to highest until the remaining graph contains a cycle
power. The longest cycle in a threshold graph is discussed in [14], [15]. Our perspec-
tive here is slightly different. We seek another sort of minimax type formula. The
proof of the following theorem is omitted since it is nearly identical to the proof of
Theorem 2 and the remarks in the paragraph following that proof.

Theorem 3 Let G be a threshold graph which does not contain the kth power of a
Hamiltonian cycle, then

maximum size of a cycle k power = min
S⊆V

{
|V |+

⌊ |S|
k

⌋
− C(S)

}
.

Observe that except when the graph contains a kth power of a Hamiltonian path
the maximum size of a k path power is exactly one more than the maximum size of
a k cycle power.

Theorem 1.6.10 in [15] states that if L is the length of a longest cycle in a thresh-
old graph G (or even an arborescent comparability graph) then G contains cycles
of lengths 3, . . . , L. So a Hamiltonian threshold graph is pancyclic. Their (short)
proof uses forbidden induced C4 and P4. We give an alternative proof, which is also
elementary, that applies to cycle powers in the larger class of triangulated graphs.
Recall that when k = 1 our definition includes a single vertex or edge as a cycle. This
is probably well known for the case k = 1.

Remark 1 If G is a triangulated graph with longest k cycle power of size L, then G
contains k cycle powers with sizes 1, 2, . . . , L
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Proof: Observe that if a cycle power contains a vertex whose open neighborhood is a
clique then deleting that vertex from the cycle power leaves a new cycle power with
one less vertex. It is well known that triangulated graphs have such a simplicial vertex.
The graph induced by a longest cycle power in a triangulated graph is triangulated
and hence has a simplicial vertex. Delete such a vertex and repeat with the shorter
cycle power. 2

Note that this says that triangulated graphs with the kth power of a Hamiltonian
cycle are k cycle power ‘pancyclic’.

Conditions for Hamiltonian cycles in threshold graphs in terms of degree sequences
and degree partitions are reported in [3] and [11] among others (see also [15]). Here
we give the k power analogues.

By noting from Corollary 2 the special form of sets violating the condition of (2)
and translating this into degree partitions and degrees we easily get the following
(proofs are omitted).

Corollary 4 If G is a threshold graph with degree partition D0, D1, . . . , Dm, then G
contains the kth power of a Hamiltonian cycle if and only if

1. DO = ∅;

2. k


1 +

j∑

i=1

|Di|

 ≤

j∑

i=1

|Dm−i+1| for j = 1, 2, . . . ,
⌊
m− 1

2

⌋
;

3. if m is even, then k
m/2∑

i=1

|Di| ≤
m/2∑

i=1

|Dm−i+1|.

Corollary 5 If d1 ≤ d2 ≤ · · · ≤ dn are the degrees of a threshold graph G then G
contains the kth power of a Hamiltonian cycle if and only if there is no j < n

k+1
with

dj < (j + 1)k.

Results such as Theorems 2 and 3 could also be easily translated into the language
of degree partitions or degrees using the structure result of Corollary 2 but we will
not do so here.

5 Examples

In this section we give examples showing where the theorems of the previous sections
can not be extended to larger families. We also examine some other (non toughness)
conditions related to Hamiltonian powers.

We first observe another obvious necessary condition for Hamiltonian powers.
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Lemma 1 If G contains the kth power of a Hamiltonian cycle then the open neigh-
borhood N(v) of every vertex v must contain at least two vertex disjoint k−cliques.

Lemma 2 If G contains the kth power of a Hamiltonian path then at least |V | − 2
vertices v must have open neighborhood N(v) containing at least two vertex disjoint
k−cliques.

Next we give very simple examples of cographs where toughness conditions are not
sufficient. Remark 4 will also provide such examples but those are more complicated.

Remark 2 For all t there exist t-path tough cographs which do not contain the tth

power of a Hamiltonian Path and t-tough cographs which do not contain the tth power
of a Hamiltonian cycle.

Proof: For arbitrary t and m ≥ 2t− 1, consider (K1 ∪K2t−1) ∨ (K1 ∪Km). This is a
4-cycle a, b, c, d with vertex b replaced by a (2t−1)−clique and vertex c replaced with
an m−clique. By construction or by observing that the graph contains no induced
P4 we see that this is a cograph. It is easy to check that this graph is t-tough. By
Lemma 1 applied to either of the K1 vertices we see that the graph does not contain
the tth power of a Hamiltonian cycle.

Similar considerations show that for arbitrary t and m ≥ t − 1, the cograph
(K1 ∪ Kt−1) ∨ (K1 ∪ Km) is t-path tough but does not contain the tth power of a
Hamiltonian path. 2

Recall that for threshold graphs PPk(G) = maxS⊆V

{
C(S)−

⌊ |S|
k

⌋}
. This is not

so for arborescent comparability graphs.

Remark 3 There exist arborescent comparability graphs for which
PPk(G)−maxS⊆V

{
C(S)−

⌊ |S|
k

⌋}
is arbitrarily large.

Proof: For arbitrary r, s ≥ 2 consider the graph G(r, s) = r(K1 ∨ sK1), the disjoint
union of r stars each with s leaves. This is the comparability graph of an order
whose diagram is a forest of r stars, each with s leaves and hence an arborescent
comparability graph. It is not difficult to check that

max
S⊆V

{
C(S)−

⌊ |S|
k

⌋}
= rs−

⌊
r

k

⌋

attained by picking the centers of the stars. Since two leaves can not be in the same
part in a path partition (for k ≥ 2), we can easily check that PPk(G(r, s)) = rs if
k ≥ 2. 2

The previous examples had vertices with low degree or vertices with only one
‘large’ clique in their neighborhood. This suggests adding conditions derived from
Lemmas 1 and 2. Even for cographs this is not enough. The next example is motivated
by an example from [9].
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Remark 4 There exist t-path tough cographs such that every vertex neighborhood
contains at least two cliques of size at least t which do not contain the tth power of a
Hamiltonian path.

Proof: Assume r ≥ s ≥ 6. Let P be an order with diagram consisting of r complete
binary trees of height s. Let H(r, s) be the cocomparability graph of this order. The
comparability graph is P4 and C4 free, hence the cocomparability graph is P4 and
2K2 free and H(r, s) is a cograph. H(r, s) has n = r(2s − 1) vertices.

Let t = bn/sc. We will show that H(r, s) is t-path tough, every vertex contains
at least two cliques of size at least t and H(r, s) does not contain the tth power of a
Hamiltonian path.

We will refer to vertices in a subtree as those corresponding to the elements of a
subtree in the order. Observe that if vertices from two different trees remain after
removing a set S, then G − S is connected (i.e., C(S) = 1). So we need only look
at the case that S contains all vertices except some from one of the trees. That is,
we must have |S| ≥ (r − 1)(2s − 1). Observe that two components of G − S can
not have vertices at the same level in the tree since H is a cocomparability graph.
Thus C(S) ≤ s. If C(S) ≤ s − 1 it is easy to check that |S| ≥ t(C(S) − 1) (using
|S| ≥ (r − 1)(2s − 1) and r ≥ s/2). In order for C(S) = s, S must consist of all
vertices except those of a chain from a root to a vertex covering leaves (in the order)
and the two leaves it covers. That is, |S| ≥ n − (s + 1). Using r ≥ s it is easy to
check that |S| ≥ t(C(S)− 1) in this case.

In order to show that every vertex has a neighborhood containing two cliques of
size at least t, note that the leaves of the trees form a clique. There are 2s−1 leaves
in each tree. Each vertex has in its neighborhood the vertices of r− 1 other trees. So
taking the leaves of b(r − 1)/2c trees as one clique and the leaves of the remaining
trees (not containing the vertex) as another clique we get two cliques with size at
least 2s−1(r − 2)/2. This is at least t if s ≥ 5. (Since other vertices could be in the
clique, with some more care we could reduce the s ≥ 5 condition.)

Finally, to show that H(r, s) does not contain the tth power of a Hamiltonian path,
assume that there is one, and the vertices are ordered 1, 2, 3, . . . , n with vertices at
distance t or less adjacent. Note that every vertex is in an independent set of size s,
in particular the vertex labeled t + 1. Pick some independent set of size s containing
vertex t + 1 and assume the labels are x1 < x2 < · · · < xs. Since t + 1 is adjacent to
1, 2, . . . , t, we have x1 = t + 1 . Similarly, x2 ≥ 2(t + 1), then x3 ≥ 3(t + 1), ... and
xs ≥ s(t + 1). With xs ≤ n and t = bn/sc this is a contradiction. 2
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6 Conclusion

We have examined various Hamiltonian power problems in certain structured graph
classes. One variation that we have not looked at is a power analogue of edge com-
pletion. This seems to be tricky even for threshold graphs. Since toughness and the
vertex neighborhood conditions are not sufficient conditions in cographs, it remains
to examine this class, for efficient algorithms and necessary and sufficient conditions
(or for NP-completeness). Perhaps something can even be said for larger classes, such
as cocomparability graphs.
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[2] V. Chvátal, Tough Graphs and Hamiltonian Circuits, Disc. Math. 5 (1973)
215–228.
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