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12. (a) If b is a 99 digit number how many bits are needed to represent it? That is, if b is
a 99 digit number, how many digits are needed when it is represented base 2? Your answer
will be a range of several numbers. Consider how log (common logarithm, base 10) and lg
(logarithm base 2) relate to the number of digits. Use this and basic facts about logarithms.
We have not discussed basic rules for logarithm manipulation in class. If you do not recall
these use any inanimate source that you like.
(b) Answer as in part (a) except for a t− 1 digit number. Your answer should be a range of
numbers specified by two values written in terms of t and some logarithms.

13. What is the smallest k such that the Fibonacci number Fk has at least 99 digits? What
does this tell you about the number of steps in the Euclidean algorithm in the worst case if
the smaller of the two numbers for which you determine the gcd has 99 digits? Recall that
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. As in the previous problem, think about how the

number of digits relates to the common logarithm and find and use some basic facts about
logarithms.

14. Prove that for positive integers a1, a2, . . . , ak, c we have that a1x1 +a2x2 + · · ·+akxk = c
has a an integer solution only if c is a multiple of the greatest common divisor gcd(a1, . . . , ak)
of the ai.

15. Prove that for positive integers a1, a2, . . . , ak, c we have that a1x1 +a2x2 + · · ·+akxk = c
has a an integer solution if c is a multiple of the greatest common divisor gcd(a1, . . . , ak) of
the ai. Note that it is enough to show that there is a a solution when c = gcd(a1, . . . , ak)
and then use induction on k. You may use the k = 2 case proved in class as a basis. You
may also use the fact that gcd(gcd(a1, . . . , ak−1), ak) = gcd(a1, . . . , ak).

16. Consider the statement that exactly one of the following holds for given integers:
a1, a2, . . . , ak, c: (I) a1x1 + · · · + akxk = c has an integer solution x1, x2, . . . , xk; (II) yai

integral for i = 1, 2, . . . , k and yc non-integral has a solution y.
Prove directly that at most one of (I) or (II) holds.

17. Consider the statement that exactly one of the following holds for given integers:
a1, a2, . . . , ak, c: (I) a1x1 + · · · + akxk = c has an integer solution x1, x2, . . . , xk; (II) yai

integral for i = 1, 2, . . . , k and yc non-integral has a solution y.
This is really just a restatement of 14 and 15 above. Show this statement using those results.
By 16 it is enough to show that at least one holds. Consider two cases, whether or not c is
a multiple of gcd(a1, . . . , ak) and explain why (using 14 or 15) this gives a solution in (I) or
(II).


