Choose Multichoose

Garth Isaak Lehigh University

47th SEICCGTC at FAU, March 2016

Acknowledgements to: Math 90 Class, Daniel Conus

Notation

$$\binom{n}{k}$$
 = number of k element sets from $[n]$ $\binom{[n]}{k}$ = collection of k element sets from $[n]$

$$\binom{n}{k}$$
 = number of k element multisets from $[n]$ $\binom{[n]}{k}$ = collection of k element sets from $[n]$

Will avoid using
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 $\binom{n}{k} = \binom{n+k-1}{k}$ (later)

Choose Triangle Recall 'Pascal's Triangle' 1650

Kayyam's Triangle 1000; Yang Hui's Triangle 1350,

Display: left justified (left) rather than the typical way (right)

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
```

```
1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 3 6 10 15 21

1 4 10 20 35

1 5 15 35

1 6 21

1 7 1
```

```
1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 3 6 10 15 21

1 4 10 20 35

1 5 15 35

1 6 21
```

	k	0	1	2	3	4	5	6
n 0 1 2 3 4	<u>к</u>	1 1 1 1	0 1 2 3 4	0 1 3 6 10	0 1 4 10 20	0 1 5 15 35	0 1 6 21 56	0 1 7 28 84
5 6		$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	5 6	15 21	35 56	70 126	126 252	210 462

Choose Triangle

Hockey Stick Formula

```
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
[Left] \binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \cdots + \binom{n+r}{r} = \binom{n+r+1}{r}
[Right]\binom{n}{n} + \binom{n+1}{n} + \binom{n+2}{n} + \cdots + \binom{n+r}{n} = \binom{n+r+1}{n+1}
```

Mulitchoose Array Hockey Stick Formula

[Left]

$$\sum_{i=0}^{k} {m \choose i} = {m \choose 0} + {m \choose 1} + {m \choose 2} + \dots + {m \choose k} = {m+1 \choose k}$$

Condition on number of (m+1)'s

[Right]
$$\sum_{j=1}^{m} \binom{j}{k} = \binom{1}{k} + \binom{2}{k} + \binom{3}{k} + \dots + \binom{m}{k} = \binom{m}{k+1}$$
Condition on largest element

Choose Triangle

Anti-diagonal sums are Fibonacci numbers

```
34 = 18285670562881
F_n = \binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \cdots + \binom{n-k}{k-1} + \cdots
F_n = number of 1,2 strings with sum n-1
Condition on # 2's
```

Choose Triangle

Shallow diagonal sums are Fibonacci numbers

$$F_n = \binom{n-1}{n-1} + \binom{n-2}{n-3} + \binom{n-3}{n-5} + \dots + \binom{n-k}{n-2k+1} + \dots$$

 $F_n =$ number of 1,2 strings with sum n-1

Condition on # 1's

Recall:

The Fibonacci numbers F_n (for $n \ge 2$) count each of the following: (Also Pingali 200 BCE)

A: The number of strings of 1's and 2's with sum n-1.

B: The number of strings of odd positive integers with sum n.

C: The number of strings of integers greater than 1 with sum n+1.

Illustrate with n = 6, where $F_6 = 8$.

A	<u>B</u>	<u>C</u>
11111	111111	7
2111	3111	25
1211	1311	34
1121	1131	43
1112	1113	52
221	51	223
212	33	232
122	15	322

Steep anti-diagonal sums are Fibonacci numbers

$$F_n = \binom{n}{0} + \binom{n-2}{1} + \binom{n-4}{2} + \cdots + \binom{n}{\frac{n}{2}} [n \text{ even}]$$

 F_n = number of strings of odd positive integers with sum n

Condition on string length

13 =
$$F_7 = \binom{7}{0} + \binom{5}{1} + \binom{3}{2} + \binom{1}{3}$$

e.g., String length 3, Sum 7:

3 bins, 7 *'s - odd number of *'s/bin 331, 313, 133, 511, 151, 115

Shallow anti-diagonal sums are Fibonacci numbers

$$\left(\left(\begin{array}{c}1\\n-1\end{array}\right)\right)+\left(\left(\begin{array}{c}2\\n-3\end{array}\right)\right)+\left(\left(\begin{array}{c}3\\n-5\end{array}\right)\right)+\cdots+\left(\left(\begin{array}{c}\frac{n+1}{2}\\0\end{array}\right)\right)\,\left[n\text{ odd}\right]$$

 $F_n =$ number of strings of integers greater than 1 with sum n+1

Condition on string length

$$13 = F_7 = {\binom{1}{6}} + {\binom{2}{4}} + {\binom{3}{2}} + {\binom{4}{0}}$$

e.g., String length 3, Sum 8:

3 bins, 8 *'s - fill with at least 2 *'s/bin 224, 242, 422, 233, 323, 332

Catalan Numbers

$$\frac{1}{n+1}\binom{2n}{n} = \frac{1}{n+1} \left(\binom{n+1}{n} \right)$$

Catalan counts we will refer to:

Ballot Lists: n - 0 's; n - 1's, # 0's $\geq \# 1$'s in initial segments Parentheses: n - (n, n), well formed pairs (n)-Multisets from $\{0, 1, \ldots, n\}$: $0 \leq a_1 \leq a_2 \leq \cdots \leq a_n \leq n$ with $a_i \leq i-1$

Proof versions:

- Reflection: count bad lists and substract
- Recursion and generating functions
- Partitions (*n*-multijections?)

Choose not multichoose Catalan sequence: (()())(())

Map between each Catalan string and n 'bad' strings

$$\Rightarrow \frac{1}{n+1} \binom{2n}{n}$$

$$\frac{1}{n+1}\binom{2n}{n} = \frac{1}{n+1} \binom{n+1}{n}$$

$$= \frac{1}{2n+1} \binom{2n+1}{n} = \frac{1}{2n+1} \binom{n+1}{n+1}$$

Ballot Lists: n+1 0 's; n 1's, # 0's > # 1's in initial segments

(n+1)-Multisets from
$$\{0,1,\ldots,n\}$$
: $0 \le a_0 \le a_1 \le \cdots \le a_n \le n$ with $a_0=0$ and $a_i \le i-1$ for $i \ge 1$

i.e., Add a leading 0

Cycle Lemma (Dvoretzky and Motzkin 1947): Write Ballot List cyclically and cut 2n + 1 places

Translate Cycle Lemma to multiset version

122255 Good lists dominated by 001234

```
If smallest is 0 \Rightarrow n If not -1 from all
122255
                        n = 5, size 6 multisets from \{0, 1, 2, 3, 4, 5\}
                        rules partition \binom{6}{6} multisets
                        into classes of size 2 \cdot 5 + 1 = 11
                        with exactly one good multiset
                        partition \binom{n+1}{n+1} into size 2n+1 classes
012223
122255
```

$$\frac{1}{n+1} \binom{2n}{n} = \frac{1}{n+1} \left(\binom{n+1}{n} \right) = \frac{1}{2n+1} \binom{2n+1}{n} = \frac{1}{2n+1} \left(\binom{n+1}{n+1} \right)$$

$$\binom{\binom{[n]}{k}}{\text{with } \# i \leq c_i$$
= number of solutions to $x_1 + x_2 + \cdots + x_n = k$ such that $x_i < c_i$
Via generating functions or inclusion-exclusion

Choose version:

$$\sum_{S\subseteq[n]} (-1)^{|S|} \binom{k-c(S)+n-1}{n-1}$$

Multichoose version:

$$\sum_{S\subseteq[n]} (-1)^{|S|} \left(\binom{n}{k-c(S)} \right)$$

$$c(S) = \sum_{i \in S} c_i$$

Vandermonde's Identity (1789) (Chu Shih-Chieh 1303)

$$\binom{n+m}{r} = \binom{n}{0} \binom{m}{r} + \binom{n}{1} \binom{m}{r-1} + \dots + \binom{n}{r-1} \binom{m}{1} + \binom{n}{r} \binom{m}{0}$$

Multiset version:

$$\binom{n}{k} = \binom{n}{1} \binom{1}{k-1} + \binom{n}{2} \binom{2}{k-2} + \cdots + \binom{n}{t} \binom{t}{k-t} + \cdots$$

Condition on size of underlying set

Implied bijection

Poker Deck

$$2\clubsuit, 2\diamondsuit, 2\heartsuit, 2\spadesuit, 2\clubsuit, 2\diamondsuit, \cdots, J\diamondsuit, \cdots, A\spadesuit$$

4 Suits ♣, ♦, ♥, ♠

13 Ranks: 2, 3, 4, 5, 6, 7, 8, 9, 10, *J*, *Q*, *K*, *A*

Poker Hand: 5 card subset of 52 cards

Full house - 5 card hand with 3 of one rank 2 of another

What is the probability of a full house poker hand?

Full house - 5 card hand with 3 of one rank 2 of another

e.g.,
$$7\clubsuit$$
, $7\diamondsuit$, $7\heartsuit$, $J\clubsuit$, $J\diamondsuit$

What is the probability of a full house poker hand?

$$\frac{13 \cdot {4 \choose 3} \cdot 12 \cdot {4 \choose 2}}{{52 \choose 5}}$$

What is ______?

$$\frac{13 \cdot \binom{4}{3} \cdot 12 \cdot \binom{4}{2}}{\binom{52}{5}}$$

What is the probability of a full house in multiset poker? (Every 5 card multiset hand is equally likely)

$$\frac{13 \cdot \left(\!\left(\begin{smallmatrix}4\\3\end{smallmatrix}\right)\!\right) \cdot 12 \cdot \left(\!\left(\begin{smallmatrix}4\\2\end{smallmatrix}\right)\!\right)}{\left(\!\left(\begin{smallmatrix}52\\5\end{smallmatrix}\right)\!\right)}$$

What is the probability of a full house If we use 5 decks?

$$\frac{13 \cdot \left(\binom{4}{3}\right) \cdot 12 \cdot \left(\binom{4}{2}\right)}{\left(\binom{52}{5}\right)}$$

What is the probability of a full house If we use 5 decks?

NO! hands are not equally likely

```
\frac{13 \cdot \left(\binom{4}{3}\right) \cdot 12 \cdot \left(\binom{4}{2}\right)}{\left(\binom{52}{5}\right)}
```

What is the probability of a full house

If we deal with replacement?

$$\frac{13 \cdot \left(\!\left(\begin{smallmatrix}4\\3\end{smallmatrix}\right)\!\right) \cdot 12 \cdot \left(\!\left(\begin{smallmatrix}4\\2\end{smallmatrix}\right)\!\right)}{\left(\!\left(\begin{smallmatrix}52\\5\end{smallmatrix}\right)\!\right)}$$

What is the probability of a full house

If we deal with replacement?

NO! hands are not equally likely

$$\frac{13 \cdot \left(\binom{4}{3}\right) \cdot 12 \cdot \left(\binom{4}{2}\right)}{\left(\binom{52}{5}\right)}$$

Question

How can we play multiset poker with a 56 = 52 + 5 - 1 card deck?

Question

How can we play multiset poker with a 56 = 52 + 5 - 1 card deck?

Add 4 cards (knights) to deck:

$$C\clubsuit$$
, $C\diamondsuit$, $C\heartsuit$, $C\spadesuit$

And apply a bijection between $\binom{[56]}{5}$ and $\binom{[52]}{5}$

The standard bijection:

$$\left(\!\!\left(\begin{smallmatrix} [6] \\ 5 \end{smallmatrix}\right)\!\!\right) \Leftrightarrow \left(\begin{smallmatrix} [6+5-1] \\ 5 \end{smallmatrix}\right)$$

```
multiset
                      set
1, 2, 3, 4, 5 \mid 1, 3, 5, 7, 9 \mid * \mid * \mid * \mid * \mid * \mid * \mid
[2, 3, 4, 4, 4 \mid 2, 4, 6, 7, 8 \mid |*| * |*| * * * |*|
1, 1, 2, 3, 6 \mid 1, 2, 4, 6, 10 \mid
                                     * * | * | * | || *
3, 3, 3, 3, 3 \mid 3, 4, 5, 6, 7 \mid ||******|||
2, 3, 4, 5, 6 | 2, 4, 6, 8, 10 | | * | * | * | * | *
1, 1, 3, 3, 6 | 1, 2, 5, 6, 10 |
                                     * * || * * || || *
```

stars and bars

The standard bijection

 ≈ 2.6 million of ≈ 3.8 million multiset hands are regular poker hands None map to themselves!

The Knight's bijection

$$3 \stackrel{\bullet}{\bullet} 3 \stackrel{\Diamond}{\circ} 3 \stackrel{\Diamond}{\circ} 4 \stackrel{\bullet}{\bullet} \iff 3 \stackrel{\bullet}{\bullet} 3 \stackrel{\Diamond}{\circ} 3 \stackrel{\Diamond}{\circ} 4 \stackrel{\bullet}{\bullet}$$

$$3 \stackrel{\bullet}{\bullet} 3 \stackrel{\Diamond}{\circ} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor} J \stackrel{\Diamond}{\lor} \iff 3 \stackrel{\Diamond}{\circ} 3 \stackrel{\Diamond}{\circ} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor} J \stackrel{\Diamond}{\lor}$$

$$3 \stackrel{\Diamond}{\lor} C \stackrel{\Diamond}{\circ} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor} \iff 3 \stackrel{\Diamond}{\circ} 5 \stackrel{\bullet}{\bullet} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor} J \stackrel{\Diamond}{\lor}$$

$$3 \stackrel{\Diamond}{\lor} C \stackrel{\Diamond}{\lor} C \stackrel{\Diamond}{\lor} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor} \iff 3 \stackrel{\Diamond}{\lor} 5 \stackrel{\bullet}{\bullet} 5 \stackrel{\bullet}{\bullet} J \stackrel{\Diamond}{\lor}$$

- A hand with no knight maps to itself
- Place knights in their location C♣, C♦, C♥, C♠
 = 1,2,3,4 left to right
- Place remaining cards in open spaces in order
- Knights take value of first regular card to their right

Knight's bijection $C: \binom{[n+k-1]}{k} \Leftrightarrow \binom{[n]}{k}$

- For $S \in {[n+k-1] \choose k}$, let $T = S \cap \{n+1, n+2, \dots, n+k-1\}$
- |T| = t and $R = S \cap [n] = S T$ with |R| = k t
- Write $R = a_1 < a_2 < \cdots < a_{k-t}$ and $T = n + b_1 < n + b_2 < \cdots < n + b_t$
- $T'=\{b_1,b_2,\ldots,b_t\}\subset {[k-1]\choose t}$ is a t element set from [k-1]
- Use the standard bijection B to map $T' = \{b_1, b_2, \dots, b_t\}$ to a t element multiset from [(k-1)-t+1]=[k-t]
- Use these as indices of repeated elements from R.
- In particular $B(T') = \{b_i i + 1 | i = 1, 2, ..., t\}.$
- Then let $R' = \{a_{b_i-i+1} | i = 1, 2, \dots, t\}$
- The image of S under the knight's bijection is then
 C(S) = R ∪ R'.

Knight's bijection
$$C: \binom{[n+k-1]}{k} \Leftrightarrow \binom{[n]}{k}$$

- Any set avoiding knights maps to itself
- Place knights in their location
- Place regular elements in order in open spots
- Knights take value of first regular element to their right

Knight's bijection
$$C: \binom{[n+k-1]}{k} \Leftrightarrow \binom{[n]}{k}$$

 Stars and bars bijection with 'extra' elements as stars and 'regular' elements as bars

Knight's Bijection
$$\binom{5}{7} = \binom{11}{7}$$

$$\{1,3,4\} \cup \{C_1,C_2,C_4,C_6\} \subseteq \{1,2,3,4,5\} \cup \{C_1,C_2,\ldots,C_6\}$$

Knight's Bijection
$$\binom{5}{7} = \binom{11}{7}$$

Playing poker with Knight's bijection

- No 'numerical' computations needed
- 'Normal' hands are themselves
- No 2 players can get the same card
- At most 4 instances of duplicated cards
- · High card 'beats' one pair

General Poker Games

3 'Deals'

- Multiple Decks (t decks)
- Multiset bijection
- Dealing with replacement
- r ranks
- s suits
- hand size h

limit as $t \to \infty$ multideck is dealing with replacement

Notation for general poker

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$

13 ranks, 4 suits, hand size 5: one 3 of a kind, one pair $\langle 0^{11}, 1^0, 2^1, 3^1 \rangle$

5 ranks, 7 suits, hand size 9: two 3 of a kind, one pair $\langle 0^1, 1^1, 2^1, 3^2 \rangle$

$$r = \sum p_i$$
 and $h = \sum i \cdot p_i$

Notation for general poker

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$

Regular 13 rank poker: $\langle 0^{11}, 1^1, 2^0, 3^0, 4^1 \rangle$ is 4 of a kind $\langle 0^{11}, 1^0, 2^1, 3^1 \rangle$ is full house $\langle 0^{10}, 1^2, 2^0, 3^1 \rangle$ is 3 of a kind $\langle 0^{10}, 1^1, 2^2 \rangle$ is 2 pair $\langle 0^9, 1^5 \rangle$ is high card

With r=17 ranks and hand size h=9 $\langle 0^{14}, 1^0, 2^0, 3^3 \rangle$ is three 3 of a kinds $\langle 0^{14}, 1^1, 2^0, 3^0, 4^2 \rangle$ is two 4 of a kinds

Observe that full house and 4 of a kind have same exponents as do 2 pair and 3 of a kind $r = \sum p_i$ and $h = \sum i \cdot p_i$

Rank Selection: Independent of suits and deal type

Fact

For a poker hand of type $\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$, the number of ways to pick the ranks is the multinomial coefficient

$$N_{ra} = \begin{pmatrix} r \\ p_0, p_1, p_2, \ldots \end{pmatrix} = \frac{r!}{p_0! p_1! \cdots p_h!}$$

4 of a kind and full house: $N_{ra}(\langle 0^{11}, 1^1, 2^0, 3^0, 4^1 \rangle) = N_{ra}(\langle 0^{11}, 1^0, 2^1, 3^1 \rangle)$

$$=\begin{pmatrix} 13 \\ 11 & 1 \end{pmatrix} = \frac{13!}{11!11!} = 13 \cdot 12$$

3 of a kind and 2 pair:

$$N_{ra}(\langle 0^{10}, 1^2, 2^0, 3^1) = N_{ra}(\langle 0^{10}, 1^1, 2^2 \rangle)$$

$$= \binom{13}{10, 2, 1} = \frac{13!}{10!2!1!} = \frac{13 \cdot 12 \cdot 11}{2}$$

two four of a kind with r = 17 ranks and hand size h = 9:

$$N_{ra}(\langle 0^{14}, 1^1, 2^0, 3^0, 4^2 \rangle) = {17 \choose 14, 2, 1} = {17! \over 14!2!1!}$$

Definition

The number of poker hands of type λ is

$$N(\lambda) = N_{ra}(\lambda) \cdot N_{su}(\lambda)$$

ways to pick the ranks \cdot # ways to pick the suits Suit selection $N_{ra}(\lambda)$ does depend on deal type

Definition

The number of poker hands of type λ is

$$N(\lambda) = N_{ra}(\lambda) \cdot N_{su}(\lambda)$$

ways to pick the ranks \cdot # ways to pick the suits Suit selection $N_{ra}(\lambda)$ does depend on deal type

Fact

For a poker hand of type $\lambda=\langle 0^{p_0},1^{p_1},2^{p_2},\dots,\rangle$, the number of ways to pick the suits is

- (t decks): $N_{su}^{md}(\lambda) = \prod_{i=1}^{st} {st \choose i}^{p_i}$
- (multiset): $N_{su}^{ms}(\lambda) = \prod_{i=1}^{n} {s \choose i}^{p_i}$
- (dealing with replacement): $N_s^r(\lambda) = {h \choose \lambda} \cdot s^h$

Regular poker full house probabilities (including full house flush) $\langle 0^{11}, 1^0, 2^1, 3^1 \rangle$

5 decks:

$$\frac{\binom{13}{11,1,1} \cdot \binom{20}{3} \binom{20}{2}}{\binom{260}{5}}$$

multiset:

$$\frac{\binom{13}{11,1,1} \cdot \binom{4}{3} \binom{4}{2}}{\binom{52}{5}}$$

Dealing with replacement:

$$\frac{\binom{13}{11,1,1} \cdot \binom{5}{3,2} \cdot 4^5}{52^5}$$

17 ranks, 3 suits, 9 card hands two 4 of a kind (including flushes), $\langle 0^{14},1^1,2^0,3^0,4^2\rangle$

2 decks:

$$\frac{\binom{17}{14,2,1} \cdot \binom{6}{4}^2 \binom{6}{1}}{\binom{102}{9}}$$

multiset:

$$\frac{\binom{17}{14,2,1} \cdot \binom{3}{4}^2 \binom{3}{1}}{\binom{51}{9}}$$

Dealing with replacement:

$$\frac{\binom{17}{14,2,1} \cdot \binom{9}{4,4,1} \cdot 3^9}{51^9}$$

$$\lambda = \langle 0^{p_0}, 1^{p_1}, 2^{p_2}, \dots, \rangle$$

$$\frac{\binom{r}{p_0,p_1,p_2,\dots}\cdot\prod\binom{st}{i}^{p_i}}{\binom{rst}{h}}$$

Multiset

$$\frac{\binom{r}{\rho_0,\rho_1,\rho_2,\dots}\cdot\prod\binom{s}{i}^{p_i}}{\binom{rs}{h}}$$

Dealing with replacement

$$\frac{\binom{r}{p_0,p_1,p_2,...}) \cdot \binom{r}{(0!)^{p_0} (1!)^{p_1} (2!)^{p_2} (3!)^{p_3}...) \cdot s^h}{(rs)^h}$$

Multiset vs. regular probabilities (as percents %)

	multiset	regular
Straight flush 5 kind flush 4 kind flush 5 kind 3 kind flush 2 pair flush flush 5 traight pair flush 4 kind full house 3 kind 2 pair High card	.001 .001 .016 .016 .02 .09 .09 .13 .27 .30 .56 .80 7.10 8.90 34.10	.001 0 0 0 0 .0 .20 .39 0 .02 .14 2.87 4.75 49.68
1 pair	47.62	42.3

regular poker hands
$${52 \choose 5}=2,598,960$$
 multiset poker hands $\left(\!\left(52\atop 5\right)\!\right)=\left(56\atop 5\right)=3,819,816$

- A hand with no knight maps to itself
- Place knights in their location C♣, C♦, C♥, C♠
 = 1,2,3,4 left to right
- Place remaining cards in open spaces in order
- Knights take value of first regular card to their right

The Knight's bijection

$$3 \stackrel{?}{\Rightarrow} 3 \stackrel{$$