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Geodesic complexity of a tetrahedron
Donald M. Davis

Abstract

The topological (resp. geodesic) complexity of a topological (resp. metric) space is roughly the smallest number of continuous
rules required to choose paths (resp. shortest paths) between any points of the space. We prove that the geodesic complexity
of a regular tetrahedron exceeds its topological complexity by 1 or 2. The proof involves a careful analysis of shortest paths
on the tetrahedron.
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1 Introduction

In [3], Farber introduced the concept of the topological complexity, TC(X), of a topological space X,
which is the minimal number k such that there is a partition

X ×X = E1 t · · · t Ek

with each Ei being locally compact and admitting a continuous function φi : Ei → P (X) such that
φi(x0, x1) is a path from x0 to x1. Here P (X) is the space of paths in X with the compact-open
topology, and each φi is called a motion-planning rule. If X is the space of configurations of one or
more robots, this models the number of continuous rules required to program the robots to move
between any two configurations.

In [4], Recio-Mitter suggested that if X is a metric space, then we require that the paths φi(x0, x1)
be minimal geodesics (shortest paths) from x0 to x1, and defined the geodesic complexity, GC(X), to
be the smallest number k such that there is a partition

X ×X = E1 t · · · t Ek

with each Ei being locally compact and admitting a continuous function φi : Ei → P (X) such that
φi(x0, x1) is a minimal geodesic from x0 to x1.1 Each function φi is called a geodesic motion-planning
rule (GMPR).

One example discussed by Recio-Mitter in [4] was when X is (the surface of) a cube. It is well-
known that here TC(X) = TC(S2) = 3, and he showed that GC(X) ≥ 4.

In this paper, we let X be the surface of a regular tetrahedron T , and prove
Theorem 1.1. GC(T ) = 4 or 5.

1 Recio-Mitter’s definition of GC(X) = k involved partitions into sets E0, . . . , Ek, which, for technical reasons, has become the
more common definition of concepts of this sort, but we prefer here to stick with Farber’s more intuitive formulation.
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Again, for comparison, TC(T ) = TC(S2) = 3.
In Section 2, we introduce what we call the expanded cut locus in order to study the geodesics on

T . In Section 3, we prove GC(T ) ≤ 5, and in Section 4, we prove GC(T ) ≥ 4. Despite considerable
effort, we have been unable to establish the precise value of GC(T ).

2 Expanded cut locus

The cut locus of a point P on a convex polyhedron is the set of points Q such that there is more
than one shortest path from P to Q.2 For the regular tetrahedron T , this is conveniently sketched
on a flat model, or unfolding, of T . For P ∈ T , we define the expanded cut locus of P to be the set
of terminal points of equal shortest paths3 from P to versions of cut-locus points Q in an unfolding
of T , expanded so that the same face may appear more than once.

In Figure 2.1 we illustrate the expanded cut locus of a point P . The open segments aU0 and
aU− correspond to the same set of points in the tetrahedron, and the segments from P to points on
each at equal distance from a depict equal shortest segments from P to a point Q in T . A similar
situation holds for open segments from d to U0 and U+, from c to L0 and L+, and from b to L0 and
L−. Also the small open segments U− L− and U+ L+ are part of the expanded cut locus of P , as they
represent the same points in T , and segments from P to points at equal height on the two lines are
equal minimal geodesics. The three points U+, U−, and U0 represent the same point in T ; the paths
from P to them are equal shortest paths in T . Similarly for the three L-points. Thus the expanded
cut locus of P is the entire red polygon U0U+L+L0L−U−U0 in Figure 2.1 minus the points a, b, c,
and d.

The actual cut locus for this point P is shown in Figure 2.2, which is a flat version of part of T ,
but does not contain multiple versions of points.

Figure 2.1. An expanded cut locus.
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2 The cut locus is often defined to be the closure of this set, but it is convenient here to define it as we have.
3 We will use the phrase “equal shortest path” or “equal minimal geodesic” to refer to distinct shortest paths of equal length.
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Figure 2.2. The corresponding cut locus.
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The expanded cut locus of any point P in the interior of triangle aCM in Figure 2.1, where C is
the centroid and M the midpoint of ac, has a form similar to the one depicted there. We make this
precise in Theorem 2.3.

Theorem 2.3. Suppose that in Figure 2.1 the coordinates of a, b, and c are, respectively, (0,
√

3),
(−1, 0), and (1, 0), and P = (x, α

√
3) with 0 < x < 1

2 and 1
3 + 1

3x < α < 1 − x. Then the expanded
cut locus of P is as depicted in Figure 2.1 and described above with

U± =
(
±2 + x,

√
3
(

1− x(2− x)
3(1− α)

))

U0 =
(

2− x,
√

3
(

1 + x(2− x)
3(1− α)

))

L± =
(
±2 + x,

√
3 1− x2

3α

)
(2.4)

L0 =
(
−x,
√

3 x2 − 1
3α

)
.

Proof. Since
〈x,
√

3(α− 1)〉 · 〈2− x,
√

3 x(2− x)
3(1− α)〉 = 0,

−→
aP ⊥

−−→
aU0. This implies that if Q0 and Q− are points on aU0 and aU−, respectively, at equal distances

from a, then the segments PQ0 and PQ− have equal length. Since Q0 and Q− represent the same
point in face abd of the tetrahedron, we deduce that this point is in the cut locus of P .

Similarly the red lines through b, c, and d are perpendicular to the segments from P to those
points. Another easy verification is that 1

2(U0 + U−) = a, and so Pa is the perpendicular bisector
of U0U−, and similarly for b, c, and d. That 1

2(U0 + U+) = d shows that U0 and U+ lie in the same
relative position in triangle bcd. One readily sees that the region inside the red polygon in Figure 2.1
exactly covers the four triangles that comprise the tetrahedron.

This slick verification hides the way in which the formulas (2.4) were obtained. We initially used
the method of star unfolding and Voronoi diagrams developed in [1], and applied to the cube in [2]
using perpendicular bisectors.

The triangle abc in Figure 2.1 is divided into six congruent subtriangles. The formulas (2.4) only
apply to points P in the interior of the upper right subtriangle aCM , but the expanded cut locus of
points in the other five subtriangles can be obtained by obvious rotations and reflections. We now
consider the form of the expanded cut locus for points on the boundary of triangle aCM .

As P approaches the edge aM , L± approaches U±. When P is on the edge, they coincide, and
the two multiplicity-3 points U and L in the cut locus become a single multiplicity-4 point, which we
will later call B, for “both.” In Figure 2.5, we depict the two extreme cases, P = a and P = M . The
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continuum between them should be clear. We label the left one P ≈ a, because when P = a, the line
passing through a is not part of the expanded cut locus, since the line connecting P with points on
the lines at equal distance from a in each direction are actually the same line in T . But for points P
arbitrarily close to a, the lines from P to points on the line are not the same line in T .

Figure 2.5. P on an edge.

P ≈ a P = M
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As P approaches the line x = 0, U+ and U0 approach d+ (the version of d on the positive side in
Figure 2.1), and U− approaches d−. The diagram when x = 0 is in Figure 2.6.

Figure 2.6. P on the line x = 0.
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As P moves from a to C along the line x = 0, the point L in Figure 2.6 moves from the centroid
of bcd to d. The limiting case P = a has already been discussed. However, if the L in Figure 2.6
is moved to the centroid of bcd, we obtain a picture which looks quite different from the left side of
Figure 2.5, which also depicts the case P = a. Even accounting for the fact that when P = a, the
line emanating from a is not part of the expanded cut locus, the diagrams still differ in that Figure
2.6 has a vertical line on the left side, whereas Figure 2.5 has a vertical line in the upper right. The
explanation is that paths from a to corresponding points on those lines are exactly the same path on
T .

In Figure 2.7 we show the expanded cut locus when P is at the centroid C of abc, which is the
case L = d in Figure 2.6.
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Figure 2.7. P at the centroid.
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Finally, if P is on the segment CM , U± = L±(= B), and they lie on edge bd. This is depicted in
Figure 2.8. As P moves from C to M , B moves from d to the midpoint of bd.

Figure 2.8. P on the segment CM .
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3 Upper bound

Theorem 3.1. There is a partition
T × T = E1 t E2 t E3 t E4 t E5

with Ei locally compact and a GMPR φi on Ei.

Proof. Let GP denote the polygon associated to the point P sketched in red in any of the figures of
Section 2. More precisely, one must, of course, use the formulas (2.4) to determine the vertices of the
polygon, and if P is reflected across the line x = 0 in Figure 2.1, then one must modify the formulas
to give the reflection of the polygon. If P is at a vertex, there are two choices for GP , either as in
Figure 2.5 or 2.6. It doesn’t matter, but let’s choose 2.6.

The set E1 is the complement of the total cut locus of T . It consists of pairs (P,Q) such that Q
is interior to the polygon GP , together with those for which Q is a vertex of T , except for cases such
as (P, d) in Figure 2.6. (The only cases when a vertex V is in the cut locus of a point P is when P
lies on a half-open segment [C, V ′) connecting the centroid C of the face opposite V with one of the
other vertices V ′.) Here φ1(P,Q) is the straight line from P to Q in our expanded cut locus diagram.

The set E2 consists of pairs (P,Q) where P is not a vertex and Q lies in the interior of a cut-locus
segment from a vertex V to a U or L point, excluding cases in which P lies on a segment from a
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vertex of face abc to the centroid C of abc, and V = d. We choose φ2(P,Q) to be the path from P
to the appropriate point on the right side of the vector from P to V . For example, in Figures 2.1
and 2.2, E2 contains (P,Q) for all Q in the open segments aU , bL, cL, and dU in 2.2, and in 2.1 we
choose the segments connecting P with points on aU0, bL−, cL0, and dU+. To maintain continuity
of φ2, we had to exclude points (P,Q) with P on the segment aC in Figure 2.1 and Q on dU because
shortest paths from the point P in Figure 2.1 to dU must pass through side ac, whereas for points P
on the left side of aC the diagram is reflected and the shortest paths from P to dU will pass through
side ab.

This requires some care because, for example, if P is in face abc, the cut-locus line out from vertex
d plays a different role than the others. Because we have excluded points with P on segments from a
vertex to a centroid, we can consider the domain of points P for which Q is on a cut-locus line from
vertex d as three topologically disjoint4 sets, the interiors of aCbd, adcC, and bCcd in Figure 3.2.

Figure 3.2. P -domains for lines through d.
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The continuity of φ2 on each of these domains should be fairly clear, but because of the different
roles played by points in face abc and the other points, Figure 3.3 should make it clearer. What is
pictured here is a breakdown of the region aCcd in Figure 3.2 into subregions together with, for each
subregion, the endpoints of the cut-locus segments out of vertex d corresponding to points P in the
subregion. For example, output region 2 is points U+ in Figure 2.1 corresponding to points in input
region 2, and output region 6 is points U0 in a rotated version of Figure 2.1 corresponding to points
in input region 6.5 The entire segment between input regions 5 and 6 maps to output point b. The
dashed boundary of output regions 5 and 6 are not in the image. We call the points Qmax in Figure
3.3 because they are the Q farthest from d for a point P .

Figure 3.3. Largest Q for varying P .
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The set E3 consists of points (P,Q) of two types. Type (1) has P in sets I defined as the interior
of the set of points in a face which are closer to a vertex V than to the other vertices. For example,
in Figure 2.1, one such region, with V = a, would be the interior of the quadrilateral in the upper

4 Sets are topologically disjoint if the closure of each is disjoint from the others; then continuous functions on each combine to a
continuous function on their union.

5 In this case, the segment ad in the right side of Figure 2.1 corresponds to segment db in Figure 3.3.
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third of triangle abc. The points Q associated to P are the closed interval UL. Type (2) has P all
points on segments connecting a vertex V of a face abc with its centroid C, including V but not C,
and Q in the closed segment connecting the other vertex d with the point L associated with P as in
Figure 2.6. Note that this can be considered as a UL segment, too.

For P ∈ I and Q in the closed interval UL, we can choose φ3(P,Q) to be the appropriate point
in U+L+ in Figure 2.1. Note that Figure 2.1 applies to any I by appropriate choice of a, b, and c.
For type (2), in Figure 2.6 we would choose as φ3(P,Q) the path that goes to the right from a point
P on aC to the appropriate Q on the segment dL.

The rest is easy. Let E4 consist of pairs (P,Q) such that P is a vertex and Q the centroid of the
opposite face, or P is a centroid and Q the opposite vertex. Since this is a discrete set, φ4 can be
chosen arbitrarily.

Let E5 be the set of (P,Q) such that P lies in one of six topologically disjoint sets X(M), each
of which is the union of lines from the midpoint M of an edge of T to the adjacent vertices and
centroids, including M but not the vertices or centroids. A unique point Q = B is associated to each
point P . Recall that when U = L, we call it B. These are points of multiplicity 4, as in Figures
2.5 and 2.8. See Figure 3.4, which varies continuously with P ∈ X(M). For P ∈ X(M), we define
φ5(P,B) to be the path from P to B1.

Figure 3.4. Typical set for E5.
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4 Lower bound

In this section we prove GC(T ) ≥ 4, by a method similar to that used by Recio-Mitter for the cube
in [4].
Theorem 4.1. The space T × T cannot be partitioned as E1 t E2 t E3 with a GMPR on each Ei.

Proof. Let M be the midpoint of ac in Figure 2.1, and P ′ a point on the segment connecting M and
P in that figure. The expanded cut locus for P ′ is of the same form as that in the figure, and as P ′
approaches M , L± approaches U±, and they and U0 and L0 approach the midpoint of bd, which we
call B.

Suppose (M,B) ∈ E1, and φ1(M,B) is the path which goes down (toward the midpoint of bd close
to L0 in Figure 2.1). (Going up is handled similarly, reversing the roles of U and L. We will consider
later how to handle it when φ1(M,B) goes left or right.) We cannot have a sequence of P ′ as in the
figure with P ′ →M and (P ′, UP ′) ∈ E1 because that would imply φ1(P ′, UP ′)→ φ1(M,B), which is
impossible since φ(P ′, UP ′) must go either left, right, or up. There is a sequence of such P ′n all in the
same Ei, which we call E2, and, restricting more, all φ2(P ′n, UP ′

n
) going in the same direction, which
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we will suppose is left; i.e., toward U−. We will consider later the minor modifications required if
φ2(P ′n, UP ′

n
) goes right or up.

For each such P ′n, there is an interval of Q’s in the cut locus of P ′n abutting UP ′
n
along the segment

from d to UP ′
n
. (The corresponding points in Figure 2.1 are close to U0 and U+.) There cannot

be a sequence of these converging to U with (P ′n, Q) ∈ E2 since φ(P ′n, Q) must go right or up, but
φ2(P ′n, UP ′

n
) goes left. If there were, for infinitely many n, a sequence Qn,m approaching UP ′

n
with

(Pn, Qn,m) ∈ E1, then the sequence (Pn, Qn,n) would approach (M,B), but φ1(Pn, Qn,n) cannot
approach φ1(M,B), since the possible directions differ. Thus there exist sequences Qn,m → UP ′

n
with

(P ′n, Qn,m) in a new set E3, and we may assume that φ3(P ′n, Qn,m) all have the same direction, which
we may assume to be “up,” i.e., toward the vicinity of U0.

For each (n,m), there exists a sequence Qn,m,` → Qn,m such that the unique minimal geodesic from
P ′n to Qn,m,` goes to the right, i.e., in the vicinity of U+. These points Qn,m,` are not in the cut locus
of P ′n. For each (n,m), there cannot be infinitely many ` with (P ′n, Qn,m,`) ∈ E3, since φ3(P ′n, Qn,m)
and φ(P ′n, Qn,m,`) have different directions. We restrict now to, for each (n,m), an infinite sequence
of ` such that (P ′n, Qn,m,`) 6∈ E3. Taking a diagonal limit on m and `, (P ′n, Qn,m,`)→ (P ′n, UP ′

n
); since

φ2(P ′n, UP ′
n
) and φ(P ′n, Qn,m,`) have opposite directions, (P ′n, Qn,m,`) 6∈ E2 for an infinite sequence of

m’s and all ` ≥ Lm for an increasing sequence of integers Lm. Now taking a diagonal limit over n,
m, and `, we approach (M,B). Since the directions of φ1(M,B) and φ(P ′n, Qn,m,`) differ, there must
be an infinite sequence of (P ′n, Qn,m,`) not in E1. So it requires a fourth set E4.

Now we discuss the minor changes for other cases to which we alluded above. If φ2(P ′n, UP ′
n
) went

right, instead of left, then the Q’s will be chosen on the segment from vertex a to UP ′
n
, close to U ,

with corresponding points in Figure 2.1 close to U0 and U−, and the rest of the argument proceeds
similarly. If φ2(P ′n, UP ′

n
) went up, then the Q’s will be chosen on the segment connecting U and L,

converging to U , and the argument proceeds as before.
If instead of going down or up, φ1(M,B) goes left, then we consider P ′ on a little segment going

sharply down and left from M in Figure 2.1. The expanded cut locus will be similar to that in
Figure 2.1, but with U+L+ and U0 interchanged (and moved slightly to the other side of line bdb),
and similarly for U−L− and L0. These P ′ have φ(P ′, UP ′) going up, down, or right, and an argument
like the one above works.
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