FOR WHICH 2-ADIC INTEGERS # CAN Y (7)”' BE DEFINED?
k

DONALD M. DAVIS

ABSTRACT. Let f(n) =3, (}) ! Ina previous paper, we defined
for a p-adic integer = that f(z) is p-definable if lim f(z;) exists in
Qyp, where z; denotes the mod p? reduction of 2. We proved that
if p is odd, then —1 is the only element of Z, — N for which f(z)
is p-definable. For p = 2, we proved that if the 1’s in the binary
expansion of x are eventually extraordinarily sparse, then f(x)
is 2-definable. Here we present some conjectures that f(x) is 2-
definable for many more 2-adic integers. We discuss the extent to
which we can prove these conjectures.

1. STATEMENT OF CONJECTURES AND THEIR CONSEQUENCES

Let N C Z, C Q, denote the natural numbers (including 0), p-adic integers, and
p-adic numbers, respectively, with metric dy(z,y) = p~*»(@=%) Here and throughout,

vp(—) denotes the exponent of p in a rational number. Let f : N — Q, be defined by

n

F) =3 ("

k=0
In [1], we made the following definition.

Definition 1.1. Let x € Z,, and let z; denote the mod p’ reduction of z. Then f(x)
is p-definable if (f(z;)) is a Cauchy sequence in Q,.

Then f(z) could be defined to be the limit in Q, of this Cauchy sequence.

We proved in [1] that if p is an odd prime, then f(z) is p-definable if and only if
x = —1or x € N. (Actually, p was required to satisfy a technical condition which
is satisfied by all primes less than 108, and for which there are no primes which are
known not to satisfy it.) We also proved that if x = > 2% with e; < e;41, then f(z)
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is 2-definable if, roughly, ¢ + 1 > 2¢ for all sufficiently large . The 1’s in the binary
expansion of such an x are eventually extraordinarily sparse. Here we discuss our
attempts to prove that f(z) is 2-definable for many more 2-adic integers.

Let a(n) denote the number of 1’s in the binary expansion of n, 1g(—) = [log,(—)],

and v(—) = vo(—). Our strongest conjecture is

Conjecture 1.2. If0 < k < 2°, then
V(F(2°+ k) = F(R)) = e — 2a(k) — 2.

Conjecture 1.2 has been verified for e < 15. In this range, equality holds iff £ =
2¢ — 4 or 2° — 2. The following result describes the consequence of this conjecture for
2-definability.

Proposition 1.3. Assume Conjecture 1.2. If the number of 0’s minus the number of

1’s in x; approaches 0o as j goes to 0o, then f(x) is 2-definable.

We include leading 0’s in x; here, since they will eventually be seen. An alternative
statement is that f(z) would be 2-definable if the fraction of 0’s in x is greater than
1/2.

Proof of Proposition 1.3. Let x = 22” with e; < e;11. The ¢th distinct point in
i=1
the sequence of f(x;)’s is f(2% + x,), and the (i — 1)st distinct point is f(z.,). The

distance between these points is 277, where

v = V(f(Qei + xei) - f(xez)) > € — 2a(x€i) -2,
according to Conjecture 1.2. The number of 0’s in z., equals e; — a(x,,). Our hypoth-
esis says that e; — 2a(x,,) becomes arbitrarily large, and hence the distance between

the ith and (i — 1)st distinct points in the sequence is 27% where v becomes arbitrarily

large. Thus our sequence is Cauchy. 0

Although we have very strong evidence for Conjecture 1.2, we feel that we are more

likely to be able to prove the following conjecture.

Conjecture 1.4. If0 < k < 2°71, then
v(f(2°+2k+1) = f(2k+1)) 2 e —21g(k +3) + 2v(k + 1).
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Conjecture 1.4 has been verified for e < 15. In this range, equality holds iff £ =
2¢=1 — 2. The following result describes the consequence of this conjecture for 2-
definability.

Proposition 1.5. Assume Conjecture 1.4. Suppose x = > 2% has e; = 0 and

e; < eir1 and satisfies lim (e;11 — 2e;) = oo. Then f(x) is 2-definable.
1—00
Note that this would be exponentially stronger than the result proved in [1] and
referenced above, but still much weaker than the conclusion of Proposition 1.3.

Proof of Proposition 1.5. Arguing similarly to the previous proof, the distance be-

tween consecutive points in the sequence is 27V with
v=v(f(2% + x,,) — f(ze,)) > i —21g(xe,) —2=¢; —2€;_1 — 2
according to Conjecture 1.4. Since our assumption is that v becomes arbitrarily large,

the sequence is Cauchy. O

2. STEPS TOWARD A PROOF OF CONJECTURE 1.4

In this section, we outline a program which we hope might lead to a proof of Conjec-

ture 1.4. Using symmetry of binomial coefficients, the following result is immediate.

Proposition 2.1. Let 0 < k < 2¢71. If the following two statements are true, then

so 1s Congecture 1.4.
k

Lo (3D (() T - () TY) 2 e - 21g(k +2) + 20k + 1),
225:—01+k

iov( S0 ()T > e - 21g(k +3) + 2wk + 1) - 1.
i=k+1

Our main result is

Theorem 2.2. Let 0 < k < 271, Then statement i. of Proposition 2.1 is true.

Indeed, with
T — (2€+2k+1)*1 _ (2@+1)*1

(2 1

we have
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a. if 0 <i <[(k—1)/2], then
v(To; + Toip1) > e—21g(k+ 1) +2v(k+ 1), and
b. if k is even, then

v(Ty) > e —21g(k + 2).

Our proof will use the standard results that v("'") = a(m) + a(n) — a(m + n),
and that l/(mnt") equals the number of carries when m and n are added in binary

arithmetic. It follows from this that
(2.3) v(¥) <lgk+1) —v(k+1),
since, if v(k + 1) = t, then there cannot be any carries in the last ¢ positions in the

binary addition of ¢ and k — 1.

Proof of part b of Theorem 2.2. We first note that
2¢4q\ 1 a\— 2€+a e
(2.4) ( b ) _(b) Z2J a""’a b+1)
j>1
where 0;(—) denotes an elementary symmetric function.
Let k = 2¢. Including only the (j = 1)-term, which we will justify, (2.4) yields that

T5, has the same 2-exponent as

(2.5) 2 (e ),

Note that 20 +2 < 2" <40+ 1iff 2072 <0 <21 — 1, and so v(55 + - + 747) =
—1g(¢) — 2. Thus the 2-exponent of (2.5) equals e — a(f) —1g(¢) —2 > e —21g(20+2),
as claimed. Here we use that 21g(¢+1) > a(¢)+1g(¢), which is proved by considering
separately 2f </ < 21 — 1 and ¢ = 2!+ — 1.

Now we justify including only the term with j = 1 in the above sum. Let

v; = V(Qjeaj(ﬁ,...,ﬁ)).
If v(o1(—)) = —t, then vy = e —t > 0, and if j > 1 then v; > j(e —t) > vy, since

0;(—) is a sum of products of j factors, each with 2-exponent > —t, and at most one

equal to —t. ([l
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Proof of part a of Theorem 2.2. Including only the k(j = 1)-term of (2.4), which again
will be justified, we obtain that T5; + T5; 11 equals
(2.6)
—2° (2e+2k+1) 1 ((21<;+1+ o 2z+2) (1+26+§Zt12i+1)+(26+2k—2z’2fl_)1(2k—2i+1))‘
Thus, using (2.3)
v(Toi +Thip1) > e— 1/( ) + min(—1g(2k) 4+ v(2° + 2k + 2),0)
> min(e +2v(k+1) —lg(k+1) —lg(k),e —lg(k + 1) + v(k + 1)),

at the second step,

which is as claimed.
We complete the proof by showing that if 7 > 1, then using the j-term of the sum
in (2.4) in Ty; + T5;41 would give an expression with 2-exponent at least as large as

was obtained with j = 1. Analogous to part of (2.6), the j-term would be, up to odd

multiples,
(2.7) 2°((2° 4 2k + 2)oj(—) + 0j-1(—)).
If v(o1(—)) = —t, then v(o;(—)) > —jt. When k < 2¢7! — 1, since e > ¢ and

e > v(2k + 2), the claim follows from
je+v(2k+2)—jt>e+v(2k+2)—t
and
je—(—-t>e+v(2k+2) -t
If k=2"1—1,thent=e—1and (2.7) has 2-exponent e if j =1 (from oo(—)) and

a larger value if 57 > 1. U

Despite much effort, we have been unable to prove statement ii. of Proposition 2.1.
Note that the application to 2-definability given in Proposition 1.5 would be true even
if Conjecture 1.4 or Proposition 2.1 did not contain the “+2v(k 4 1).”
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