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Abstract. We prove that, if n is a 2-power, the unordered con-
figuration space C(RPn, 2) cannot be immersed in R4n−2 nor em-
bedded as a closed subspace of R4n−1, optimal results, while if n
is not a 2-power, C(RPn, 2) can be immersed in R4n−3. We also
obtain cohomological lower bounds for the topological complexity
of C(RPn, 2), which are nearly optimal when n is a 2-power. We
also give a new description of the mod-2 cohomology algebra of the
Grassmann manifold Gn+1,2.

1. Nonimmersions, nonembeddings, and immersions of C(RP n, 2)

If M is an n-manifold, the unordered configuration space of two points in M ,

C(M, 2) = (M×M−∆)/Z2, is a noncompact 2n-manifold, and hence can be immersed

in R4n−1 ([17]) and embedded as a closed subspace of R4n.([7]) We prove the following

optimal nonimmersion and nonembedding theorem for C(RP n, 2) when n is a 2-power.

Here RP n denotes n-dimensional real projective space.

Theorem 1.1. If n is a 2-power, C(RP n, 2) cannot be immersed in R4n−2 nor em-

bedded as a closed subspace of R4n−1.

This will be accomplished by showing that the Stiefel-Whitney class w2n−1 of its

stable normal bundle is nonzero. The implication for embeddings of noncompact

manifolds, which is not so well-known as that for immersions, is proved in [12, Cor

11.4].

For contrast, we prove the following immersion theorem.

Theorem 1.2. If n is not a 2-power, then C(RP n, 2) can be immersed in R4n−3.

Date: June 27, 2019.
Key words and phrases. configuration space, immersions, topological complexity,

Grassmann manifold.
2000 Mathematics Subject Classification: 55R80, 57R42, 55M30, 55S15.

1



2 DONALD M. DAVIS

This work was motivated by a question of Mike Harrison. In [10], he defines a

totally nonparallel immersion of a manifold in Euclidean space to be one in which

tangent vectors at distinct points are never parallel. He proves that if a manifold M

admits a totally nonparallel immersion in Rk, then C(M, 2) immerses in Rk. Thus

we deduce that if n is a 2-power, then RP n does not admit a totally nonparallel

immersion in R4n−2.

Proof of Theorem 1.1. We denote Cn = C(RP n, 2), which we think of as the space

of unordered pairs of distinct lines through the origin in Rn+1. Also, Wn denotes the

subspace consisting of unordered pairs of orthogonal lines through the origin in Rn+1,

and Gn the Grassmann manifold, usually denoted Gn+1,2, of 2-planes in Rn+1. There

is a deformation retraction Cn
p1−→ Wn described in [6, p.324], which we will discuss

thoroughly in our proof of Lemma 1.8, and also an obvious map Wn
p2−→ Gn, which

is an RP 1-bundle.

We will work only with Z2-cohomology. In Section 2, we give a new description of

the algebra H∗(Gn). Here we describe just the part needed in this proof, which was

first obtained by Feder in [6, Cor 4.1]. The algebra H∗(Gn) is generated by classes

x = w1 and y = w2 modulo two relations which cause the top two groups to be

H2n−2(Gn) = Z2 (resp. H2n−3(Gn) = Z2) with x2iyn−1−i 6= 0 (resp. x2i−1yn−1−i 6= 0)

iff i = 2t − 1 for t ≥ 0 (resp. t ≥ 1) and 2t ≤ n. By [6, Thm 4.3], p∗2 is injective and

H∗(Wn) ≈ H∗(Gn)[u]/(u2 = xu), (1.3)

with |u| = 1. Also, Sq1 y = xy.

Let τ denote the tangent bundle, η a stable normal bundle, and w the total Stiefel-

Whitney class of a bundle. In [15, (3)], it is shown that

w(τ(Gn)) = (1 + x)−2(1 + x+ y)n+1. (1.4)

The map p2 induces a surjective vector bundle homomorphism τ(Wn)→ τ(Gn), and

hence a surjective homomorphism

p̃2 : τ(Wn)→ p∗2τ(Gn)

of vector bundles over Wn. Then ker(p̃2) is a line-bundle over Wn, and there is a

vector bundle isomorphism

ker(p̃2)⊕ p∗2τ(Gn) ≈ τ(Wn).
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Thus

w(τ(Wn)) = (1 + w1(ker(p̃2)))(1 + x)−2(1 + x+ y)n+1. (1.5)

By the Wu formula, w1(τ(Wn)) equals the element v1 of H1(Wn) for which

Sq1 = ·v1 : H2n−2(Wn)→ H2n−1(Wn).

Since, for j > 0, Sq1(x2j+1−2yn−2j) = 0 and

Sq1(x2j+1−3yn−2ju) = x2j+1−2yn−2ju+nx2j+1−2yn−2ju+x2j+1−3yn−2j ·xu = nx2j+1−2yn−2ju,

we deduce w1(τ(Wn)) = nx. From (1.5), we obtain

nx = w1(ker(p̃2)) + (n+ 1)x,

so w1(ker(p̃2)) = x and (1.5) becomes

w(τ(Wn)) = (1 + x)−1(1 + x+ y)n+1,

and hence

w(η(Wn)) = (1 + x)(1 + x+ y)−n−1.

By Lemma 1.8, we obtain

w(η(Cn)) = (1 + x)(1 + x+ y)−n−1(1 + x+ u)−1.

Since xiuj = ui+j for j > 0, (1+x+u)−1 = 1+
∑

i≥1(xi+ui) = (1+x)−1 +u(1+u)−1

and

w(η(Cn)) = (1 + x+ y)−n−1 + u(1 + u+ y)−n−1. (1.6)

By (1.3), H∗(Cn) ≈ H∗(Wn) ≈ H∗(Gn)⊕ uH∗(Gn), and the nonzero term in (1.6)

of maximal degree must occur in the u-part. Thus the relevant part of w(η(Cn)) is∑
j,k

(−n−1
j

)(−n−1−j
k

)
uk+1yj. (1.7)

The top dimension H2n−1(Cn) = Z2 has as its only nonzero monomials u2t−1yn−2t−1

(all equal), and so

w2n−1(η(Cn)) =
∑
t

( −n−1
n−2t−1

)(−2n−1+2t−1

2t−2

)
=

∑
t

(
2n−2t−1

n−2t−1

)(
2n+2t−1−2

2t−2

)
.
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Using Lucas’s Theorem, it is easy to see that
(

2n−2t−1

n−2t−1

)
is odd iff n is a 2-power, and

when n is a 2-power and 2t−1 ≤ n,
(

2n+2t−1−2
2t−2

)
is odd iff t = 1, proving the theorem.

The following lemma was used above.

Lemma 1.8. With notation as above, w(τ(Cn)) = (1 + x+ u)w(τ(Wn)).

Proof. The map p1 : Cn → Wn is defined as follows. For distinct lines ` and `′,

working in their plane, let m and m′ be the pair of orthogonal lines bisecting the two

angles between ` and `′, and then let k and k′ be 45o rotations of m and m′. Then

p1({`, `′}) = {k, k′}, and the homotopy from the identity map of Cn to i ◦ p1 moves

` and `′ uniformly toward the closer of k and k′. Here i is the inclusion of Wn in Cn.

Two scenarios for this are illustrated in Figure 1.9.

Figure 1.9. The map Cn → Wn

m m

m′ m′

k′k k′k
` `′

`′`

Let Zn be the space of ordered pairs of orthogonal lines in Rn+1, and Z+
n the

space of ordered pairs of orthogonal lines in Rn+1 together with an orientation on

the plane which they span. Let Z+
n

p−→ Wn forget the order and the orientation.

This p is a 4-sheeted covering space. Suppose p has a section sα on an open set Uα

of Wn. If p1({`, `′}) = {k, k′} ∈ Uα, then sα specifies an order (k1, k2) on {k, k′}
and an orientation on the plane containing these vectors. A local trivialization of p1

is defined by maps hα : p−1
1 (Uα) → Uα × R with hα({`, `′}) = (p1({`, `′}), tan(2θ)),

where θ ∈ (−π
4
, π

4
) is the angle, with respect to the orientation, through which ` or `′

was rotated to end at k1. Thus p1 is a line bundle θ over Wn.

Reversing the order of (k1, k2) in sα negates hα, as does reversing the orientation

selected by sα. Thus our line bundle θ is LR⊗LO, where LR is the line bundle (named
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for Reversing) over Wn associated to the double cover Zn → Wn, and LO is the line

bundle (named for Orientation) over Wn associated to the pullback over Wn of the

double cover G+
n → Gn from the oriented Grassmannian to the unoriented one. Thus

w1(θ) = w1(LR) + w1(LO).

Clearly w1(LO) equals p∗2 of the universal w1 of the Grassmannian, and this is our

class x. That w1(LR) = u is proved in [9, Lemma 3.3 and Prop 3.5]. Our map

Zn → Wn is Handel’s map Zn+1,2 → SZn+1,2. Thus w1(θ) = u + x, establishing the

lemma, since w(τ(Cn)) = p∗1(w(τ(Wn))) · p∗1(w(θ)).

The proof of Theorem 1.1 showed that w2n−1(η(Cn)) is nonzero iff n is a 2-power.

We believe that Theorem 1.1 gives all nonimmersion and nonembedding results for

spaces C(RP n, 2) implied by Stiefel-Whitney classes of the normal bundle. Using our

description of H∗(Gn) in Section 2 and its implications for H∗(Cn) along with (1.7),

we have performed an extensive computer search for other results. Those which

we found said that if n = 2r + 1 (resp. 2r + 2 or 2r + 4), then w2n−5(η(Cn)) 6= 0

(resp. w2n−9(η(Cn)) 6= 0 or w2n−17(η(Cn)) 6= 0), but the nonimmersion and nonem-

bedding results for C(RP n, 2) implied by these are in the same dimension as the

result for C(RP 2r , 2), and so are implied by Theorem 1.1.

Now we prove the existence of immersions in R4n−3 when n is not a 2-power. We

continue to denote C(RP n, 2) as Cn.

Proof of Theorem 1.2. We use obstruction theory to show that the map Cn → BO

which classifies the stable normal bundle η(Cn) factors through BO(2n − 3), which

implies the immersion by the well-known theorem of Hirsch.([11]) The theory of mod-

ified Postnikov towers developed in [8] applies to the fibration Vk → BO(k) → BO

when k is odd by [14]. The fiber Vk is a union of Stiefel manifolds, and in our case,

all we need is

πi(V2n−3) =


0 i < 2n− 3

Z2 i = 2n− 3

0 i = 2n− 2, n odd

Z2 i = 2n− 2, n even.

Since H2n(Cn) = 0, the only possible obstructions are in H2n−2(Cn; π2n−3(V2n−3)) and

H2n−1(Cn; π2n−2(V2n−3)). The first obstruction is w2n−2(η(Cn)), which is 0 when n is
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not a 2-power by a calculation very similar to that in our proof of Theorem 1.1. This

already implies the immersion when n is odd. When n is even, we argue similarly to

[13, Thm 2.3]. The second and final obstruction has indeterminacy

H2n−3(Cn)
Sq2 +w2−−−−→ H2n−1(Cn).

This follows, similarly to the proof in [13, Thm 2.3], from the relation (Sq2 +w2)w2n−2 =

0 in H∗(BO). By (1.6), we have, for n even, w2(η(Cn)) = y + u2 +
(
n+2

2

)
x2. The

nonzero element in H2n−1(Cn) is x2t−2yn−2t−1
u for an appropriate t. In H2n−3(Cn)

there is a class x2t−3yn−2t−1
on which Sq2 is 0, multiplication by y and x2 are 0, but

multiplication by u2 is nonzero. Therefore the final obstruction can be canceled if it

is nonzero.

2. Cohomology of Gn+1,2

Descriptions of the cohomology ring (mod 2) of the Grassmann manifold Gn+1,2 of

2-planes in Rn+1 were given initially by Chern ([3]) and Borel ([2]). Here we present

what we think is a new description that has been useful in our analysis. It is based

on the description given by Feder in [6]. As in the proof of Theorem 1.1, we denote

Gn+1,2 by Gn. In our proof of Theorem 1.1, we used [6, Cor 4.1] which stated that,

with x = w1 and y = w2 the generators, in the top dimension, H2n−2(Gn) = Z2,

the nonzero monomials are those x2iyn−1−i for which i + 1 is a 2-power. Working

backwards from this, we can prove the following result.

Theorem 2.1. In the ring H∗(Gn), monomials xiyj are independent if i + 2j < n.

For ε ∈ {0, 1}, if 2n − 2k − ε ≥ n, then H2n−2k−ε(Gn) has basis β1, . . . , βk, and

x2i−εyn−k−i equals the sum of those βj for which i+ j is a 2-power.

Proof. That the first relation occurs in grading n is well-known (e.g., [6, Prop 4.1]).

The case k = 1, ε = 0 is the result of [6, Cor 4.1] cited above. Multiplication by x

is an isomorphism H2n−3(Gn)→ H2n−2(Gn) of groups of order 2, implying the result

when k = 1 and ε = 1. We will prove the result by induction on k when ε = 0. The

induction when ε = 1 is identical.
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Let Vk = H2n−2k(Gn), a vector space of dimension k by Poincaré duality. Assume

the result for k. Define

φ = (·y, ·x2) : Vk+1 → Vk × Vk.

In Vk × Vk, let

γ1 = (β1, 0), γ2 = (β2, β1), . . . , γk = (βk, βk−1), γk+1 = (0, βk).

By the induction hypothesis,

φ(x2iyn−k−i−1) =
∑
i+j∈P

γj,

where P = {1, 2, 4, . . .} denotes the set of 2-powers.

Let W be the subspace of Vk × Vk spanned by the linearly independent elements

γ1, . . . , γk+1. We will show that φ maps onto W . Then since dim(Vk+1) = dim(W ), φ

is injective. Let βj = φ−1(γj). Then {β1, . . . , βk+1} is a basis for Vk+1, and

x2iyn−k−i−1 =
∑
i+j∈P

βj,

extending the induction and completing the proof, once we establish the surjectivity

of φ onto W .

Let n = 2m + δ with δ ∈ {0, 1}. We first consider the case k + 1 = m. Letting

bi = x2iym+δ−i ∈ Vk+1 for 1 ≤ i ≤ m (ignoring 1 or 2 monomials not required for the

surjectivity), the matrix of φ with respect to the bases {b1, . . . , bm} and {γ1, . . . , γm}
is that of Lemma 2.2, and so φ is surjective. The cases of smaller values of k have

larger domain and smaller codomain, with φ being an extension of a quotient of the

case k + 1 = m, and hence is surjective since the case k + 1 = m was.

Lemma 2.2. Let Am denote the m-by-m matrix over Z2 with

ai,j =

{
1 if i+ j is a 2-power

0 if not.

Then det(Am) = 1.

Proof. The proof is by induction on m. Let m = 2e + ∆ with 0 ≤ ∆ < 2e. For

0 ≤ i ≤ ∆, row 2e + i contains a single 1, in column 2e − i. Subtract this row from

other rows which have a 1 in column 2e − i. Then do a similar thing with columns
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2e+ j, 0 ≤ j ≤ ∆. The result has A2e−∆−1 in the top left, and a (2∆ + 1)-by-(2∆ + 1)

matrix with 1’s along the antidiagonal in the bottom right. All other elements are 0.

By the induction hypothesis, this matrix has determinant 1.

In moderately large gradings, there is, for each j, a monomial xiy` equal to βj. For

example, in H24(G20), the following monomials equal β1, . . . , β8, respectively:

x14y5, x12y6, x10y7, x24, x22y, x20y2, x18y3, x16y4,

and a similar pattern holds in H i(G20) for 23 ≤ i ≤ 38. However, in H22(G20),

x14y4 = β1 + β9, and there is no monomial which equals either β1 or β9. We can

obtain β1 as x22 + x6y8, since x22 = β5 and x6y8 = β1 + β5.

3. Topological complexity of C(RP n, 2)

The topological complexity TC(X) of a topological space X is a homotopy invariant

introduced by Farber in [4] which is one less than the number of nice subsets Ui into

which X × X can be partitioned such that there is a continuous map si : Ui → XI

such that si(x0, x1) is a path from x0 to x1. This is of interest ([5]) for ordered

(resp. unordered) configuration spaces F (X,n) (resp. C(X,n)) as it measures how

efficiently n distinguishable (resp. indistinguishable) robots can be moved from one set

of points in X to another. The determination of TC(C(X,n)) has been particularly

difficult.([16],[1])

Farber showed ([4]) that zcl(X) ≤ TC(X) ≤ 2 dim(X) if X is a CW complex.

Here zcl(X), the zero-divisor-cup-length, is the largest number of elements of ker(∆∗ :

H̃∗(X × X) → H̃∗(X)) with nonzero product, where ∆ is the diagonal map. The

main theorem of this section determines zcl(C(RP n, 2)).

Theorem 3.1. If 0 ≤ d < 2e and r = max{s ∈ Z : 2s ≤ d+ 1
2
}, then

zcl(C(RP 2e+d, 2)) = 2e+2 + 2r+1 − 4

and TC(C(RP 2e+d, 2)) ≥ 2e+2 + 2r+1 − 4.

Since C(RP n, 2) has the homotopy type of the compact (2n − 1)-manifold Wn

described in the proof of Theorem 1.1, TC(C(RP 2e+d, 2)) ≤ 2e+2 + 4d − 2. For

d = 0, 1, 2, 3, 4, the gap between our upper and lower bounds for TC(C(RP 2e+d, 2))

is 1, 4, 6, 10, 10, respectively.
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Proof. Let n = 2e + d and let Cn, Wn, and Gn be as in the proof of Theorem 1.1. We

identify H∗(Cn) with H∗(Wn) and note that the impact of (1.3) is that xiuj = xi+j−1u

if j > 0.

Let x = x ⊗ 1 + 1 ⊗ x, and define y and u similarly. We claim that zcl(Cn) ≥
2e+2 + 2r+1 − 4 since

x2e+1−1 u2e+1−2 y2r+1−1 6= 0. (3.2)

To see this, we first note that the indicated product is, in bigrading (2e+1 + 2d −
1, 2e+1 + 2r+2 − 2d− 4), equal to∑

k,j

x2k−1u2e+1+2(d−j−k)yj ⊗ x2e+1−2ku2(j+k−d−1)y2r+1−1−j.

Since the terms divisible by u are independent from those not divisible by u, we

restrict to terms whose right factor is not divisible by u, and obtain∑
j

x2e+1+2(d−j)−2uyj ⊗ x2e+1−2(d−j+1)y2r+1−1−j. (3.3)

Terms with j < d (resp. j > d) have left (resp. right) factor equal to 0 since x2e+1
=

0. Thus (3.3) equals x2e+1−2uyd ⊗ x2e+1−2y2r+1−1−d, which is nonzero by (1.3) and

Theorem 2.1.

To see that this bound for zcl cannot be improved, first note that the exponents of

x and u in (3.2) cannot be increased since x2e+1−1 = 0 by [6, Cor 4.2]. If the exponent

of u is increased by 1, the top term x2e+1−2u ⊗ x2e+1−2u occurs with even coefficient

by symmetry. The only hope of getting a larger nonzero product would be to increase

the exponent of y. We will use our analysis of H∗(Cn) to see that this will fail to

improve the zcl.

The key observation is that, with n = 2e + d and δ ∈ {0, 1}, a nonzero monomial

xsuδyt in H∗(Cn) with t > d must have s ≤ 2e−2. This will follow from Theorem 2.1

once we show that if xsyt = x2i−εyn−k−i has s ≥ 2e−1 and t ≥ d+1, and 2 ≤ 2j ≤ 2k,

then 2i + 2j is not a 2-power. We have 2i + 2j ≥ 2e − 1 + ε + 2 > 2e. On the other

hand, 2i+ 2j ≤ (2n− 2k − 2d− 2) + 2k = 2e+1 − 2, implying the claim.

If xi1uε1yj1 ⊗ xi2uε2yj2 appears in the expansion of xa ub yc with maximal exponent

sum, it should have i1 = 2e+1−2, ε1 = 1, and j1 = d, as we do not want to sacrifice 2e

x-exponents on both sides of the ⊗. To have a monomial x2e+1−2uyd⊗xi2uε2yj2 whose
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exponent sum exceeds our zcl bound would require i2 + j2 + ε2 > 2e+1− 3 + 2r+1− d.

If j2 > d, then i2 ≤ 2e − 2, so we would need j2 + ε2 ≥ 2e + 2r+1 − d with strict

inequality unless i2 = 2e − 2. We also have j2 ≤ 2e + d − 1, half the dimension of

Wn. We would also need
(
d+j2
d

)
≡ 1 mod 2. But this is impossible by Lemma 3.4

applied to j = j2 − 2e unless i2 = 2e − 2 and j2 = 2e + 2r+1 − d − 1. But then

|x2e+1−2uyd ⊗ xi2uε2yj2 | > 2 dim(Wn). The alternative is j2 ≤ d. But, since we need(
d+j2
d

)
≡ 1 mod 2, the largest such j2 was what was used in obtaining our lower bound.

Lemma 3.4. If 2r ≤ d < 2r+1 and 2r+1 − d− 1 < j ≤ d− 1, then
(
d+j
d

)
≡ 0 (2).

Proof. For
(
d+j
d

)
to be odd, the binary expansions of j and d must be disjoint. Since

j ≤ 2r+1 − 1, the 1’s in the binary expansion of j would have to be a subset of those

of 2r+1 − 1− d, contradicting j > 2r+1 − d− 1.
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