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THE COEQMOLOGY OF THE SPECTRUM bJ
By Dowanp M, Davis*

The spectrum bJ has been very useful in solving several classical questions
in homotopy theory [5], [7]. Its homotopy groups follow munedmtely from [1]
and [3]; in this paper we compute the®-module H*(bJ) and Exte (H*(6J), Z2).
(All cohomology groups have Z, coeficients.)

Let Eﬂ,, denote the subalgebra of the Steenrod algebra & generated by
Sq', -+, Sq" . Exta, {Z2, Z2) has been cornputed in [6] to be a bigraded algebra
over Zg With 13 generstors and 54 relations. Ameng the generators are elements
ho, b1, w of bidegree (s, ) = (1, 1), (1, 2) and (4, 12), respectively. If M is a
graded Gz;-module, we picture Exta,” * (M, Z:) on a graph with horizontal co-
ordinate ¢ — s and vertical coordins,te s, letting vertical lines denote Yoneda
multiplication by ko and diagonal lines denote multiplication by f1, and simi-
larly for @-modules. A “tower” is a subset of Ext™ ‘(M, Z,) consisting of cle-
ments z, ko, Aoz, - - - for some z.

Then Exta,” © (Z2, Z;) begins as in Table 1.

Our main result is

Tumormm 1. 1) H*(bJ) is the @-module with geﬂemtors go ond g (of degree (-
and 7, respectively) and relations Sq'go , Sq'g0 , S¢'go, Sa’ge + Sq'ge . S , and

(Sg"Sg" + 8487 )g: .

i) Exta” (H*0J, Zx) ~2 4% & B*M, where A™ = Bxta,"(Zs, Zy) withou
the towers hg w2’+1, 1, j = 0, and B® 3 =z Exbg,”™ (Zg, Zo) without o'z for all
o such that t — s < 3 tmd with mﬁmte towers built upon o™ hy' and towers of
height four budlt upon o hq,

Thus Ext. (H*(bJ), Z;) begins as in Table 2. Note that there will be many
nonzero differentials in the Adams spectral sequence for m«(bJ). Part {i) im-
plies that A*(bJ) is a free @/ /Gs-module, and hence Exto(H *bJ, Zy) = Bixte,
(M, Z.), where M has the generators and relations as in part {i).

Ag in [8] bo and bsp denote the cornected Q-spectra whose (8%)th spaces are
BO(8k, « ) and BSp(8k, ») = Q'BO(8k + 4, =), respectively. All spaces are
localized at 2. (bsp was denoted by bo' in [5] and [7]). The Adams operation

¢’ — 1 induces a map bo —9> 2*bsgp. bJ is defined to be the fibre of 6. From [1;
5.2, 8.1], the homotopy sequence of 8, and [3; 1.3] we easily see

Prorosrrion 2.
0 iz 4 5 6(8)
Zg = 0,2 (8) (exeept t = 0)

(b ) = Zo & Zy 1 (exeept 1 = 1)
Zoi 1ok 1= 27 odd (j > 3).

.
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Table 1: Extgg®* (Z2, Z2)

E 1 14l

A
Ty

8 16

I — 3

Table 2: Extest H*(@J), Z2)

? 1

7

_qV_ﬁ_:#_/i_aLrw_{;,/
5 Py 24

Proof of Theorem 1. H*(bo) and H*(bsp) are well-known 0] to be &//G1
and &/G (3¢, 8¢*), respectively. Exte(H*(bo), Z:) and Extq(H (bsp), Ze) are
easily computed as in [8; Seetion 11

Temma 3. The map bo —i 'Hsp safisfies g (1) = Sq' (), where u and w gen-
erate H'(Z*bsp) and H *(bo), respectively.

Proof. This is proved as [8; Lemma 3.4]. We give a more elementary proof,
If Lemma 3 were not true, then #%(.s) = 0, and so there would exist a short
esact sequence of @-modules

0= @ /fa — H*bJ) — da/6{Sd, 8¢") — 0,

(where s° denotes the increase of degrees by 1), and hence & long exact sequence
in Bxte( , Z»). This would imply Bxte N H (B, o) = Zators =0,1,2,3,
and the Adams spectral sequence converging to me(bJ) would imply that 16
divides the order of ms(bJ), contradieting Proposition 2. B

Let Ry denote right multiplication by Sq* and let K = k:en"(s"(%/(ih(Sgl7 8-

R . : . .. .
et @//@,). Since the colernel of this homomorphism is @//Gs, We obtain
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a short exach sequence
0 =@/ /Ga — H*(bJ) — 7K —0 (1)
Since Sq'Sq*, 8¢'Sq’, and (Sq'S¢ + 8¢ 8¢") 8¢ e in@( Sq', 8¢°), and 8q4'8q* €
a{Sq", 8¢°), there is a homomeorphism
Rsg: Sa/a(Sq, Sq, 8¢'S8¢" + 8484 — K. (2)
To show this is an isomorphism, let

I = image (Bge: s'a/a(Sq, 8¢') —@//@1). There are short exact sequences of

@-modutles
0— I —@//G—8//G—0
0--»K— sa/a(Sq, 8¢y —1—0
and applying Exta( , Z2) yields long exact sequences

L Bt (G B) — 2 Bxta, (B, ) — Bxba”' (1, Z2)

- Eﬁa;ﬂ't(zﬂ ) Zz) ~r
and .

— BExto(I, Z2) ¥ Exti(s'a/a(8q, 8¢, Za) Ext:*‘(K, Za) — .

The image of ¢ consists of the elements of Exta, (%2, Z) for whicht — s #Z4(8).
Thus Exte(I, Z») is easily described in terms of Exta,(Zz, Zy); it begins as in
Table 3. By low-level minimal resolution computations together with the com-
patibility of ¥ with Yoneda multiplication by the periodicity element w {see
i2]), one shows that the image of y consists of the elements for which { — s &
0(8). Thus Exta" (K, Z;) is Extba, ™ (% , Zo) without w'z! for all "¢ such

that t — & < 3, without «'co and w'heo , where co is the nonzero element with bi-

t— 8
Table 3; Bxtest {I, Z3)

A A

b b
i




THE COHOMOLOGY OF THE SPECTRUM by 9

degree (3, 11), and with infinite towers built upon w'he’. In particular

{zz ¢t =19, 15, 18

t= 8 1,4 ~
and Bixte (K, Z2) =~ 0 otherwise.

(=8
Thus K is an @-module on one generator and three relations; it is easily verified
that Rsgs in {2) sends generator to generator and relation to relation and hence
is an isomorphism.

Thus (1) becomes

0 @/ /e — H*(bJ) — s‘a/a(Sd, Sq, Sq'8q" + 8q'Sq") —0 (3)

Txt™ (K, Za) =~ {0“

and its long exact Bxte( , Z2)-sequence shows that

N (Zz H 3. 0, 7
Exte(H'bJ, Z2) = and
0 otherwise

. , t=1,24,8, 14,17
Bxte (H*DJ, Z:) = Using this together
0  otherwise.

with (3) shows that H *(bJ) has generators go and g7 with the only relations
being Sa'gs , S0, S¢'%0 » St + tugo , Sq'g7 + bugo , and (S'S¢’ + 8q8¢Vg +. -
6o where fz {&'//az)s = {0: ng}‘l by € (@'//&2)14 = {03 SQM}, and 67 €7
(G//Gs)w = {0}. b = O because S¢'8¢ = 0but S¢'Sq™* # 0 €6//@: . i b = 0,
then there would be an isomorphism Exte’(H'0J, Z) # Exte(Zs, %) ©
Exto ' (s'a/@(Sq, 8¢, 8484 + 8q'Sq")) and then the Adams spectral sequence
would imply that 32 divides the order of w(bJ), contradicting Proposition 2;
hence 5 = S¢°, proving part (i).

To prove part (i) it remains fo compute the boundary homomorphisms

Bxbe ™ (7, ) & Bxte™(5e/a(S¢', S¢', S¢'SE° + S¢'S¢")). By iospection
the only possible elements not in the kernel of d are hi'w' (¢ > 0). We shall
show below that d(ke'w’*") is nongero if and only if ¢ is even, proving part (22).

Sq' acts as a differential on an@-module M, so that we can define Hy{H; Sq').

Tava 4. There is a 1 — 1 correspondence befween infinite towers 4n Exbe ™"
(M, Z2) and a basis for H(M; S¢').
¢

Proof. We define an epimorphism of @-modules N — M inducing an iso-

morphism 74 (N ; 8¢') LLN B*(M; S¢') by letting N = & @ & © G//G, where
the first sum corresponds to (and the generators map fo) a set of G-generators
of M, and the second sum corresponds o (and the generators map to) a hasis
for He(M; 8q"). Let L = ker(¢); then Hu«(L, 8¢") = 0, so by [2; Theorem 2.1]
Exto (L, Z2) = 01if 3s > ¢ + 6. Thus Ext." (M, Z2) — Fixte (N, Z,) is an
isomorphism for 3s > ¢ - 6.
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Zy s=5t=10 and

1, —
But Exto’' (2, Z2) = {0 otherwise

. Zy t= the L follows.
Exto "(@//&g,Zg) = \8 OchIWise 80 the Lemma follows. B

Let Sq(4, -} denote elements mn the Milnor basis [9] and x dencte the
eanonical antiautomorphism [9]. By computing in x{(&//G:)*) as in [4; Section
6], we find that a basis for H«(G//Gs; Sq¢') consists of all x(Sg{8%, 4/)) and a
basis for Hu(@/2{S¢", S¢, S¢'S¢" + Sq'Sq¢’); S¢') consists of x(S¢(8) +
Sq(8 — 6, 2)) and x(8¢(8 -+ 6, 47) - Sqg(8, 47 + 2)). For example,

Sq'(x(Sq(8) + Sg(8 — 6, 2)))
= x(Sq(8 — 6))8¢" + (x(Sq(81) + Sq(8 — 6,2))) 8¢

because Sg(87)Sq" + Sqg(8 — 6, 2)8¢" = x(Sq')S¢(& — 6) + S¢'(Sq(8) +
Sq(82 — 6, 2)).

Under the correspondence of Lemma 4, the tower ho'w™™ corresponds to
x(S8q¢(8 + 8)). Hence d{h'w’™) is nonzero if and only if the tower is not

present in Exto(H*bJ, Zy) if and only if x(Sq(8& + 8))ge € #m(Sq") if and

only if x(Sg(8¢ + 8))gs = Sq'(x(Sq(8) + Sq(8 — 6, 2)))gr.

The above example shows that S¢'(x(Sg(8) + Sq(8 — 6, 2)N¢ =
x{(Sq(8&) + Sq(8i — 6, 2))8¢'%r = x(8g(8) + Sq(8 — 6, 2))S¢’p. Thus to
show d is as claimed it is equivalent to show x(Sq(8¢) + Sq(& — 6, 2))S¢ =
S¢(82 + 8) + other Milnor basis elements if and oniy if 7 is even. But this
follows easily since

<E, X(Sq(8i) + Sa(8i — 6,2))5¢">
= (57" <&, x(Sq(8%) + Se(8i ~ 6,2))> |
(%) <x(®)", Sa80) + Sa(si — 6,2> = (¥ FF)

I}

which is a nonzero element of Z, if and only if 718 even.

Let bJ denote the cofibre of the map 8° — bJ. m«{bJ) is the subgroup of the
2-primary stable homotepy of spheres complementary to the image of the
J-homomorphism (plus the Adams elements u. [3; 1.3]). By techniques similar
to those used in proving Theorem 1 we ean prove.

TrEoREM 5. H*(bJ) has minimal generating set gy and g,.(n > 4) and minimal
set of relations Sq'Sq'gr, Sd'gr, SqSd'gr, (S¢'S¢ + Sq¢'Sq')gr and R(4, 7)
(0<i<j~lors=jj=4), where R(, J) corresponds to the Adem relation
forSq™ 8q", with the fina] Sg* in each term replaced by

0 £F=10,1,2
Sq'gr k=3
g k2> 4

Luaiee UNIVERSITY
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