THE COHOMOLOGY OF THE SPECTRUM bJ

By Donald M. Davis

THE COHOMOLOGY OF THE SPECTRUM bJ

By Donald M. Davis*

The spectrum bJ has been very useful in solving several classical questions in homotopy theory [5], [7]. Its homotopy groups follow immediately from [1] and [3]; in this paper we compute the \mathfrak{A} -module $H^*(bJ)$ and $\operatorname{Ext}_{\alpha}(H^*(bJ), Z_2)$. (All cohomology groups have Z_2 coefficients.)

Then $\operatorname{Ext}_{a_2}{}^{s,\ t}(Z_2,Z_2)$ begins as in Table 1.

Our main result is

THEOREM 1. i) $H^*(bJ)$ is the G-module with generators g_0 and g_7 (of degree 0 and 7, respectively) and relations Sq^1g_0 , Sq^2g_0 , Sq^4g_0 , $Sq^8g_0 + Sq^1g_7$, $S^{7s}g_7$, and $(Sq^4Sq^6 + Sq^7Sq^3)g_7$.

ii) $\operatorname{Ext}_{a}^{s,t}(H^*bJ, Z_2) \approx A^{s,t} \oplus B^{s+2}$, t+1, where $A^{s,t} \approx \operatorname{Ext}_{a_2}^{s,t}(Z_2, Z_2)$ without the towers $h_0^i \omega^{2j+1}$, $i, j \geq 0$, and $B^{s,t} \approx \operatorname{Ext}_{a_2}^{s,t}(Z_2, Z_2)$ without $\omega^i x^{s,t}$ for all $x^{s,t}$ such that $t-s \leq 3$, and with infinite towers built upon $\omega^{2i+1}h_2^2$ and towers of height four built upon $\omega^{2i}h_2^2$.

Thus $\operatorname{Ext}_{\alpha}^{s,l}(H^*(bJ), Z_2)$ begins as in Table 2. Note that there will be many nonzero differentials in the Adams spectral sequence for $\pi_*(bJ)$. Part (i) implies that $H^*(bJ)$ is a free $\mathbb{C}//\mathbb{C}_3$ -module, and hence $\operatorname{Ext}_{\alpha}(H^*bJ, Z_2) \approx \operatorname{Ext}_{\alpha_3} \cdot (M, Z_2)$, where M has the generators and relations as in part (i).

As in [8] bo and bsp denote the connected Ω -spectra whose (8k)th spaces are $BO(8k, \infty)$ and $BSp(8k, \infty) = \Omega^4BO(8k + 4, \infty)$, respectively. All spaces are localized at 2. (bsp was denoted by bo^4 in [5] and [7]). The Adams operation $\psi^3 - 1$ induces a map $bo \xrightarrow{\theta} \Sigma^4 bsp$. bJ is defined to be the fibre of θ . From [1;

5.2, 8.1], the homotopy sequence of θ , and [3; 1.3] we easily see

Proposition 2.

$$\pi_{i}(bJ) = \begin{cases} 0 & i \equiv 4, 5, 6 \ (8) \\ Z_{2} & i \equiv 0, 2 \ (8) \ (except \ i = 0) \\ Z_{2} \oplus Z_{2} & i \equiv 1 \ (except \ i = 1) \\ Z_{2}j & i + 1 = 2^{i-1} \ . \ odd \ (j \geq 3). \end{cases}$$

^{*} This research supported in part by NSF Grant GP25335 and by the Centro de Investigación del IPN.

t-sTable 2: $\operatorname{Ext}_{\boldsymbol{a}^{s,t}}(H^*(bJ), Z_2)$

Proof of Theorem 1. $H^*(bo)$ and $H^*(bsp)$ are well-known [10] to be $\mathfrak{C}//\mathfrak{C}_1$ and $\mathfrak{C}/\mathfrak{C}(Sq^1, Sq^5)$, respectively. $\operatorname{Ext}_{\mathfrak{a}}(H^*(bo), Z_2)$ and $\operatorname{Ext}_{\mathfrak{a}}(H^*(bsp), Z_2)$ are easily computed as in [8; Section 1].

LEMMA 3. The map bo $\stackrel{\theta}{\to} \Sigma^4 bsp$ satisfies $\theta^*(\iota_4) = Sq^4(\iota_0)$, where ι_4 and ι_0 generate $H^4(\Sigma^4 bsp)$ and $H^0(bo)$, respectively.

Proof. This is proved as [8; Lemma 3.4]. We give a more elementary proof. If Lemma 3 were not true, then $\theta^*(4) = 0$, and so there would exist a short exact sequence of G-modules

$$0 \to \operatorname{\mathfrak{C}} / / \operatorname{\mathfrak{C}}_1 \to \operatorname{H}^*(bJ) \to \operatorname{\mathfrak{s}}^3 \operatorname{\mathfrak{C}} / \operatorname{\mathfrak{C}}(\operatorname{Sq}^1, \operatorname{Sq}^5) \to 0,$$

(where s^i denotes the increase of degrees by i), and hence a long exact sequence in $\operatorname{Ext}_{\alpha}(\ ,Z_2)$. This would imply $\operatorname{Ext}_{\alpha}^{\ s,s+3}(H^*(bJ),Z_2)=Z_2$ for s=0,1,2,3, and the Adams spectral sequence converging to $\pi_*(bJ)$ would imply that 16 divides the order of $\pi_3(bJ)$, contradicting Proposition 2.

Let R_{Sq^4} denote right multiplication by Sq^4 and let $K = \overline{\ker}(s^4 \mathbb{C}/\mathbb{C}(Sq^1, Sq^5))$. $R_{Sq^4} \to \mathbb{C}//\mathbb{C}_1$. Since the cokernel of this homomorphism is $\mathbb{C}//\mathbb{C}_2$, we obtain

a short exact sequence

$$0 \to 0//0_2 \to H^*(bJ) \to s^{-1}K \to 0 \tag{1}$$

Since Sq^1Sq^4 , Sq^7Sq^4 , and $(Sq^4Sq^6 + Sq^7Sq^3)Sq^4$ lie in $\mathfrak{C}(Sq^1, Sq^5)$, and $Sq^4Sq^4 \in \mathfrak{C}(Sq^1, Sq^2)$, there is a homomorphism

$$R_{Sq^4}: s^8 \alpha/\alpha(Sq^1, Sq^7, Sq^4 Sq^8 + Sq^7 Sq^3) \to K.$$
 (2)

To show this is an isomorphism, let $I = \text{image } (R_{Sq^4} \colon s^4 \mathbb{G}/\mathbb{G}(Sq^1, Sq^5) \to \mathbb{G}//\mathbb{G}_1)$. There are short exact sequences of \mathbb{G} -modules

$$0 \to I \to \alpha//\alpha_1 \to \alpha//\alpha_2 \to 0$$

$$0 \to K \to s^4\alpha/\alpha(Sq^1, Sq^5) \to I \to 0$$

and applying $\operatorname{Ext}_{\mathfrak{a}}(, \mathcal{Z}_{\mathfrak{d}})$ yields long exact sequences

$$\rightarrow \operatorname{Ext}_{a_2}{}^{s,t}(Z_2,Z_2) \xrightarrow{\dot{\phi}} \operatorname{Ext}_{a_1}{}^{s,t}(Z_2,Z_2) \rightarrow \operatorname{Ext}_{a_2}{}^{s,t}(I,Z_2)$$
$$\rightarrow \operatorname{Ext}_{a_2}{}^{s+1,t}(Z_2,Z_2) \rightarrow$$

and

$$\to \operatorname{Ext}_{\boldsymbol{a}}^{s,t}(I,Z_2) \xrightarrow{\quad \boldsymbol{\psi} \quad} \operatorname{Ext}_{\boldsymbol{a}}^{s,t}(s^{t} \alpha/\alpha(Sq^{1},Sq^{5}),Z_2) \to \operatorname{Ext}_{\boldsymbol{a}}^{s,t}(K,Z_2) \to .$$

The image of ϕ consists of the elements of $\operatorname{Ext}_{a_1}^{s,t}(Z_2,Z_2)$ for which $t-s\not\equiv 4(8)$. Thus $\operatorname{Ext}_{\alpha}(I,Z_2)$ is easily described in terms of $\operatorname{Ext}_{a_2}(Z_2,Z_2)$; it begins as in Table 3. By low-level minimal resolution computations together with the compatibility of ψ with Yoneda multiplication by the periodicity element ω (see [2]), one shows that the image of ψ consists of the elements for which $t-s\not\equiv 0(8)$. Thus $\operatorname{Ext}_a^{s,t}(K,Z_2)$ is $\operatorname{Ext}_{a_2}^{s+2,t}(Z_2,Z_2)$ without $\omega^i x^{s,t}$ for all $x^{s,t}$ such that $t-s\leq 3$, without $\omega^i c_0$ and $\omega^i h_1 c_0$, where c_0 is the nonzero element with bi-

degree (3, 11), and with infinite towers built upon $\omega^i h_2^2$. In particular

Ext_{\alpha}^{0,t}
$$(K, Z_2) \approx \begin{cases} Z_2 & t = 8 \\ 0 & t \neq 8 \end{cases}$$
 and Ext_{\alpha}^{1,t} $(K, Z_2) \approx \begin{cases} Z_2 & t = 9, 15, 18 \\ 0 & \text{otherwise.} \end{cases}$

Thus K is an α -module on one generator and three relations; it is easily verified that R_{sq^4} in (2) sends generator to generator and relation to relation and hence is an isomorphism.

Thus (1) becomes

$$0 \to C//C_2 \to H^*(bJ) \to s^7 C/C(Sq^1, Sq^7, Sq^4 Sq^6 + Sq^7 Sq^3) \to 0$$
 (3)

and its long exact $\operatorname{Ext}_{\mathfrak{a}}(\ , Z_2)$ -sequence shows that

$$\operatorname{Ext}_{\pmb{\alpha}}^{0,t}(H^*bJ,\,Z_2) \ = \begin{cases} Z_2 & t=0,\,7\\ 0 & \text{otherwise} \end{cases}$$
 and

$$\operatorname{Ext}_{\alpha}^{1,t}(H^*bJ, Z_2) = \begin{cases} Z_2 & t = 1, 2, 4, 8, 14, 17 \\ 0 & \text{otherwise.} \end{cases}$$
 Using this together

with (3) shows that $H^*(bJ)$ has generators g_0 and g_7 with the only relations being Sq^1g_0 , Sq^2g_0 , Sq^4g_0 , $Sq^1g_7 + \theta_8g_0$, $Sq^7g_7 + \theta_{14}g_0$, and $(Sq^4Sq^6 + Sq^7Sq^3)g_7 + \theta_{17}g_0$, where $\theta_8 \in (\mathbb{G}//\mathbb{G}_2)_8 = \{0, Sq^8\}$, $\theta_{14} \in (\mathbb{G}//\mathbb{G}_2)_{14} = \{0, Sq^{14}\}$, and $\theta_{17} \in (\mathbb{G}//\mathbb{G}_2)_{17} = \{0\}$. $\theta_{14} = 0$ because $Sq^1Sq^7 = 0$ but $Sq^1Sq^{14} \neq 0 \in \mathbb{G}//\mathbb{G}_2$. If $\theta_8 = 0$, then there would be an isomorphism $\operatorname{Ext}_a^{s,t}(H^*bJ, Z_2) \cong \operatorname{Ext}_a^{s,t}(Z_2, Z_2) \oplus \operatorname{Ext}_a^{s,t}(s^7\mathbb{G}/\mathbb{G}(Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3))$ and then the Adams spectral sequence would imply that 32 divides the order of $\pi_7(bJ)$, contradicting Proposition 2; hence $\theta_8 = Sq^3$, proving part (i).

To prove part (ii) it remains to compute the boundary homomorphisms $\operatorname{Ext}_{a_2}^{s-1,i}(Z_2,Z_2) \xrightarrow{d} \operatorname{Ext}_a^{s,i}(s^7 G/G(Sq^1,Sq^7,Sq^4Sq^6+Sq^7Sq^3))$. By inspection the only possible elements not in the kernel of d are $h_0^{k}\omega^{i+1}(i\geq 0)$. We shall show below that $d(h_0^{k}\omega^{i+1})$ is nonzero if and only if i is even, proving part (ii). Sq^1 acts as a differential on an G-module M, so that we can define $H_*(M;Sq^1)$.

Lemma 4. There is a 1-1 correspondence between infinite towers in $\operatorname{Ext}_a^{*,\iota}$. (M, Z_2) and a basis for $H_{\iota}(M; Sq^1)$.

Proof. We define an epimorphism of \mathfrak{A} -modules $N \xrightarrow{\phi} M$ inducing an isomorphism $L^{\mathsf{T}}_*(N; Sq^1) \xrightarrow{\phi*} H^*(M; Sq^1)$ by letting $N = \oplus \mathfrak{A} \oplus \mathfrak{A}//\mathfrak{A}_0$, where the first sum corresponds to (and the generators map to) a set of \mathfrak{A} -generators of M, and the second sum corresponds to (and the generators map to) a basis for $H_*(M; Sq^1)$. Let $L = \ker(\phi)$; then $H_*(L, Sq^1) = 0$, so by [2; Theorem 2.1] $\operatorname{Ext}_{\alpha}^{s,t}(L, Z_2) = 0$ if $3s \geq t + 6$. Thus $\operatorname{Ext}_{\alpha}^{s,t}(M, Z_2) \to \operatorname{Ext}_{\alpha}^{s,t}(N, Z_2)$ is an isomorphism for $3s \geq t + 6$.

But
$$\operatorname{Ext}_{\mathbf{z}}^{s,t}(\mathfrak{F}, Z_2) = \begin{cases} Z_2 & s = t = 0 \\ 0 & \text{otherwise} \end{cases}$$
 and

$$\operatorname{Ext}_{\alpha}^{s,t}(\mathfrak{A}//\mathfrak{A}_0,Z_2) = egin{array}{ll} Z_2 & t=s & \text{so the Lemma follows.} \\ 0 & \text{otherwise,} \end{array}$$

Let $Sq(i_1, \cdots)$ denote elements in the Milnor basis [9] and χ denote the canonical antiautomorphism [9]. By computing in $\chi((G//G_2)^*)$ as in [4; Section 6], we find that a basis for $H_*(G//G_2; Sq^1)$ consists of all $\chi(Sq(8i, 4j))$ and a basis for $H_*(G/G(Sq^1, Sq^7, Sq^4Sq^6 + Sq^7Sq^3); Sq^1)$ consists of $\chi(Sq(8i) + Sq(8i - 6, 2))$ and $\chi(Sq(8i + 6, 4j) + Sq(8i, 4j + 2))$. For example,

$$Sq^{1}(\chi(Sq(8i) + Sq(8i - 6, 2)))$$

$$= \chi(Sq(8i-6))Sq^{7} + (\chi(Sq(8i) + Sq(8i-6,2)))Sq^{1}$$

because $Sq(8i)Sq^1 + Sq(8i - 6, 2)Sq^1 = \chi(Sq^7)Sq(8i - 6) + Sq^1(Sq(8i) + Sq(8i - 6, 2)).$

Under the correspondence of Lemma 4, the tower $h_0^k \omega^{i+1}$ corresponds to $\chi(Sq(8i+8))$. Hence $d(h_0^k \omega^{i+1})$ is nonzero if and only if the tower is not present in $\operatorname{Ext}_a(H^*bJ, Z_2)$ if and only if $\chi(Sq(8i+8))g_0 \in \operatorname{im}(Sq^1)$ if and only if $\chi(Sq(8i+8))g_0 = Sq^1(\chi(Sq(8i)+Sq(8i-6,2)))g_7$.

The above example shows that $Sq^1(\chi(Sq(8i) + Sq(8i - 6, 2)))g_7 = \chi(Sq(8i) + Sq(8i - 6, 2))Sq^3g_0$. Thus to show d is as claimed it is equivalent to show $\chi(Sq(8i) + Sq(8i - 6, 2))Sq^3 = Sq(8i + 8) +$ other Milnor basis elements if and only if i is even. But this follows easily since

$$\langle \xi_{1}^{8i+8}, \chi(Sq(8i) + Sq(8i - 6, 2))Sq^{8} \rangle$$

$$= \binom{8^{i+8}}{8} \langle \xi_{1}^{8i}, \chi(Sq(8i) + Sq(8i - 6, 2)) \rangle$$

$$= \binom{8^{i+8}}{8} \langle \chi(\xi_{1})^{8i}, Sq(8i) + Sq(8i - 6, 2) \rangle = \binom{8i + 8}{8}$$

which is a nonzero element of \mathbb{Z}_2 if and only if i is even.

Let \overline{bJ} denote the cofibre of the map $S^{\circ} \to bJ$. $\pi_*(\overline{bJ})$ is the subgroup of the 2-primary stable homotopy of spheres complementary to the image of the J-homomorphism (plus the Adams elements μ_r [3; 1.3]). By techniques similar to those used in proving Theorem 1 we can prove.

THEOREM 5. $H^*(bJ)$ has minimal generating set g_7 and $g_{2n} (n \ge 4)$ and minimal set of relations $Sq^2Sq^1g_7$, Sq^7g_7 , $Sq^8Sq^1g_7$, $(Sq^4Sq^6 + Sq^7Sq^3)g_7$ and R(i, j) $(0 \le i < j - 1 \text{ or } i = j, j \ge 4)$, where R(i, j) corresponds to the Adem relation for $Sq^{2i}Sq^{2i}$, with the final Sq^{2i} in each term replaced by

$$\begin{cases} 0 & k = 0, 1, 2 \\ Sq^{1}g_{7} & k = 3 \\ g_{2^{k}} & k \ge 4. \end{cases}$$

LEHIGH UNIVERSITY

REFERENCES

- [1] J. F. Adams, Vector fields on spheres, Ann. Math. 75 (1962), 603-32.
- [2] J. F. Adams, A periodicity theorem in homological algegra, Proc. Cambr. Phil. Soc. 62 (1966), 365-77.
- [3] J. F. Adams, On the groups J(X)-IV, Topology 5 (1966), 21-71.
- [4] D. Anderson, E. Brown and F. P. Peterson, The structure of the spin cobordism ring, Ann. Math. 86 (1967), 271-98.
- [5] D. M. DAVIS AND M. MAROWALD, A strong non-immersion theorem for RP81+7, Bull. Amer. Math. Soc. 81 (1975), 155-56.
- [6] A. IWAI AND N. SHIMADA, On the cohomology of some Hopf algebras, Nagoya Math. J. 30 (1967), 103-11.
- [7] M. E. MAHOWALD, The order of the image of the J-homomorphism. Bull. Amer. Math. Soc. 76 (1970), 1310-13.
- [8] R. J. Milgram, The Steenrod algebra and its dual for connective K-theory. Proc Homotopy Conf., Evanston, Ill. 1974, Monograph of the Mexican Mathematical Society.
- [9] J. Milnor, The Steenrod algebra and its dual, Ann. of Math 67 (1958), 150-71.
- [10] R STONG, Determination of $H^*(BO(k, \infty); \mathbb{Z}_2)$, Trans. Amer Math. Soc. 107 (1963), 526-44.