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1. Introduction

In [5] and [4], the classification of irreducible p-compact groups was completed. This family of spaces extends the family
of (p-completions of) compact simple Lie groups. The v1-periodic homotopy groups of any space X , denoted v−1

1 π∗(X)(p) ,
are a localization of the portion of the homotopy groups detected by K -theory; they were defined in [20]. In [17] and [16],
the author completed the determination of the v1-periodic homotopy groups of all compact simple Lie groups. Here we do
the same for all the remaining irreducible p-compact groups.1

Recall that a p-compact group [22] is a pair (B X, X) such that B X is p-complete and X = Ω B X with H∗(X;Fp) finite.
Thus B X determines X and contains more structure than does X . The homotopy type and homotopy groups of X do not
take into account this extra structure nor the multiplication on X . We show that, if p is odd, every irreducible p-compact
group has X of the homotopy type of a product of explicit spaces related to p-completed Lie groups.

According to [5, 1.1, 11.1] and [4], the irreducible p-compact groups correspond to compact simple Lie groups2 and the
p-adic reflection groups listed in [2, Table 1] for which the character field is strictly larger than Q. See [13, pp. 430–431] and
[27, p. 165] for other listings of reflection groups. We use the usual notation ((B Xn)p, (Xn)p), where n is the Shephard–Todd
numbering ([36] or any of the previously-mentioned tables) and p is the prime associated to the completion.

We will divide our discussion into four families of cases:

(1) The compact simple Lie groups—infinite family 1, part of infinite family 2, and cases 28, 35–37 in the Shephard–Todd
list.

(2) The rest of the infinite families numbered 2a, 2b, and 3.

E-mail address: dmd1@lehigh.edu.
1 If the groups v−1

1 πi(X) are finite, then p-completion induces an isomorphism v−1
1 π∗(X) → v−1

1 π∗(X p) [9, p. 1252].
2 Cases in which distinct compact Lie groups give rise to equivalent p-compact groups are discussed in [5, 11.4].
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(3) The nonmodular special cases, in which p does not divide the order of the reflection group. This is cases 4–27 and
29–34.

(4) The modular cases, in which p divides the order of the reflection group. These are cases (X12)3, (X24)2, (X29)5, (X31)5,
and (X34)7. (Actually, we include (X12)3 in case (3) along with the nonmodular cases, and the Dwyer–Wilkerson
space (X24)2 was handled in [6].)

Here is a brief summary of what we accomplish in each case. The author feels that his contributions here are nil in
case (1),3 minuscule in case (2), modest in case (3), and significant in case (4).

(1) Spaces X1, X28, X35, X36, and X37 are, respectively, SU(n), F4, E6, E7, and E8. These are p-compact groups for all
primes p, although for small primes they were excluded by Clark and Ewing [13] because H∗(B X;Fp) is not a polyno-
mial algebra. The exceptional Lie group G2 is the case m = 6 in infinite family 2b. The spaces SO(n), Spin(n), and Sp(n)

appear in the infinite family 2a with m = 2. Simplification of the homotopy types of many of these, when p is odd, to
products of spheres and spherically-resolved spaces was obtained in [31, (8.1), 8.1]. The v1-periodic homotopy groups
of these spaces were computed in [18,7,17,16,8], and other papers. We will say no more about these cases.

(2) In Section 2, we use work of Castellana and Broto and Møller to show that the spaces in the infinite families can be
decomposed, up to homotopy, as products of factors of p-completions of unitary groups, spheres, and sphere bundles
over spheres. See Corollary 2.3, Remark 2.6, and Theorem 2.8 for the specific results.

(3) In Table 3.2, we list the homotopy types of all cases (Xn)p which are not products of spheres. There are 31 such cases.
In each case, we give the homotopy type as a product of spheres and spaces which are spherically resolved with α1
attaching maps. In Remark 3.3, we discuss the easily-computed v1-periodic homotopy groups of these spaces.

(4) The most novel part of the paper is the determination of the v1-periodic homotopy groups of (X29)5, (X31)5, and (X34)7.
We introduce a direct, but nontrivial, path from the invariant polynomials to the v1-periodic homotopy groups. En
route, we determine the Adams operations in K ∗(B X; Ẑp) and K ∗(X; Ẑp). In the case of (X34)7, we give new explicit
formulas for the invariant polynomials. We prove in Theorem 4.15 (resp. Theorem 5.17) that the homotopy type of (X29)5
(resp. (X34)7) is directly related to SU(20) (resp. SU(42)). We prove in Theorem 4.20 that (X31)5 has the homotopy
type of the 5-completion of a factor of E8. These latter homotopy-type results and their proofs were pointed out and
explained to the author by John Harper.

Recall that the universal cover of a connected p-compact group splits as a product of a torus and a number of simply-
connected irreducible p-compact groups. Thus our results yield the v1-periodic homotopy groups of any connected p-
compact group.

2. Infinite families 2 and 3

Family 3 consists of p-completed4 spheres S2m−1 with p ≡ 1 mod m, which is a loop space due to work of Sullivan [37].
The groups v−1

1 π∗(S2m−1)(p) , originally due to Mahowald (p = 2) and Thompson (p odd), are given in [19, 4.2].
Family 2 consists of spaces X(m, r,n) where m > 1, r|m, and n > 1. The “degrees” of X(m, r,n) are m,2m, . . . , (n−1)m, m

r n.
These are the degrees of invariant polynomials under a group action used in defining the space. The Clark–Ewing table
doubles the degrees to form the “type”, as these doubled degrees are the degrees of generators of H∗(B X;Fp) in the cases
which they consider. For most5 of the irreducible p-compact groups X , H∗(X;Fp) is an exterior algebra on classes of grading
2d − 1, where d ranges over the degrees. Family 2b consists of spaces X(m, r,n) in which n = 2 and r = m, while family 2a
is all other cases. The reason that these are separated is that 2b has more applicable primes. Indeed, for family 2a, there are
p-compact groups when p ≡ 1 mod m, while for family 2b, these exist when p ≡ ±1 mod m, and also p = 2 if m = 4 or 6,
and p = 3 if m = 3 or 6. The case m = 6 in family 2b is the exceptional Lie group G2. Note that all primes work when m = 6.
The case (p = 2,m = 4) has X = Sp(2) or PSp(2), while (p = 3,m = 3) has X = SU(3) or PSU(3), the projective unitary group.
In these cases, there are two inequivalent p-compact groups corresponding to the same Q̂p-reflection group; however, since
Sp(2) → PSp(2) and SU(3) → PSU(3) are covering spaces, they induce isomorphisms of v1-periodic homotopy groups.

The following results of Broto and Møller [11] and Castellana [12] will be useful. They deal with the homotopy fixed-point
space XhG when G acts on a space of the same homotopy type as a space X . Here and throughout, Cm denotes a cyclic
group of order m, and U (N) is the p-completion of a unitary group.

Theorem 2.1. (See [11, 5.2, A.9].) Let m|(p − 1), 0 � s, max(s,1) < m, and n > 0. Then Cm acts on U (mn + s) via unstable Adams
operations, and

U (mn + s)hCm � X(m,1,n)

and is a factor in a product decomposition of U (mn + s).

3 But he accomplished much in these cases in earlier papers such as [16–18].
4 All of our spaces are completed at an appropriate prime p. This will not always be present in our notation. For example, we will often write SU(n)

when we really mean its p-completion.
5 According to [34], the only exclusions are certain compact Lie groups when p is very small.
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Theorem 2.2. (See [11, 5.2, A.11].) Let m|(p − 1), m � 2, r > 1, and n � 2. Then there is an exotic action of Cm on X(m, r,n) defined
just before [11, A.11], and

X(m, r,n)hCm � X(m,1,n − 1)

is a factor in a product decomposition of X(m, r,n).

Corollary 2.3. If m|(p − 1) and r > 1, then

X(m, r,n) � X(m,1,n − 1) × S2n m
r −1

and X(m,1,n − 1) is a factor in a product decomposition of U (m(n − 1)).

Here X(m,1,1) is interpreted as S2m−1.

Proof. We use Theorem 2.2 to get the first factor. By the Kunneth theorem, the other factor must have the same Fp-

cohomology as S2n m
r −1, and hence must have the same homotopy type as this sphere. Now we apply Theorem 2.1 to

complete the proof. �
Remark 2.4. Our Corollary 2.3 appears as [12, 1.4], except that she has an apparent typo regarding the dimension of the
sphere. Also, neither she nor [11] have the restriction r > 1, but it seems that the result is false for r = 1, since by induction
it would imply that X(m,1,n) is a product of spheres, which is not usually true.

Remark 2.5. The referee points out that Theorem 2.2 holds for the four cases ((m, r,n) = (2,1,2), (4,2,2), (3,3,3),
or (2,2,4)) which were omitted from [11, A.11] because the only thing that matters is that A(m,1,n) ⊆ NGL(L)(G(m, r,n)).

Remark 2.6. Let p be odd. By [31], for any N , p-completed SU(N) splits as a product of (p − 1) spaces, each of which has
H∗(−;Fp) an exterior algebra on odd dimensional classes of dimensions b, b + q, . . . ,b + tq, for some integers b and t . Here
and throughout q = 2(p − 1). Our space X(m,1,n − 1) will be a product of (p − 1)/m of these spaces for SU(m(n − 1)). The
v1-periodic homotopy groups of these spaces can be read off from those of SU(m(n − 1)), since the (p − 1) factors have
v1-periodic homotopy groups in nonoverlapping dimensions. Thus, to the extent that [18] is viewed as being a satisfactory
description of v−1

1 π∗(SU(n))(p) ,6 Corollary 2.3 gives v−1
1 π∗(X(m, r,n))(p) provided m|(p − 1).

Example 2.7. Let p = 7. Then X(2,2,6) � X(2,1,5) × S11. There is a product decomposition(
SU(10)

)
7 � B(3,15) × B(5,17) × B(7,19) × S9 × S11 × S13,

where B(2n + 1,2n + 13) denotes a 7-completed S2n+1-bundle over S2n+13 with attaching map α1. Then

X(2,1,5) � B(3,15) × B(7,19) × S11.

What remains for family 2 is the cases 2b when m|(p + 1). These are the spaces X(m,m,2) with m|(p + 1). Let
B(3,2p + 1) denote the p-completion of an S3-bundle over S2p+1 with attaching map α1.

Theorem 2.8. If m|(p + 1), then

X(m,m,2) �
{

B(3,2p + 1), m = p + 1,

S3 × S2m−1, m < p + 1.

Proof. Let X = X(m,m,2) with m|(p +1). Then H∗(X;Fp) = Λ[x3, x2m−1]. If m < p +1, then by the unstable Adams spectral
sequence [10], both classes x3 and x2m−1 are spherical. Indeed, the E2-term begins with towers in dimensions 3 and 2m − 1
emanating from filtration 0, and no possible differentials. See Diagram 3.4. Because X is an H-space, the maps S3 → X and
S2m−1 → X yield a map S3 × S2m−1 → X , and it is a p-equivalence by Whitehead’s theorem.

On the other hand, suppose m = p + 1. We will show that P1(x3) = x2p+1. It then follows from [31, 7.1] that there is a
p-equivalence B(3,2p + 1) → X .

To see that P1(x3) = x2p+1, we use the classifying space B X , which satisfies H∗(B X;Fp) = Fp[y4, y2p+2]. We will prove

that P1(y4) = y2p+2 + Ay(p+1)/2
4 , for some generator y2p+2 and some A ∈ Fp , from which the desired result about the x’s

follows immediately from the map Σ X → B X , which in H∗(−;Fp) sends y j+1 to x j and sends products to 0.

6 [18, 1.4] states that v−1
1 π2k(SU(n))(p) is a cyclic p-group with exponent min(νp( j!S(k, j)): j � n), where S(−,−) denotes the Stirling number of the

second kind. In [21], more tractable formulas were obtained if n � p2 − p + 1. Here and throughout, νp(−) is the exponent of p.
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First note that

P1(y4) = Ay(p+1)/2
4 + B y2p+2,

P1(y2p+2) = C yp
4 + D y(p−1)/2

4 y2p+2,

for some A, B , C , D in Fp . By the unstable property of the Steenrod algebra,

P p+1(y2p+2) = yp
2p+2. (2.9)

We must have

P p(y2p+2) =
p−1∑
j=0

c j y1+ j(p+1)/2
4 yp−1− j

2p+2 ,

for some c j ∈ Fp . Since P p+1 =P1P p and

P1(yi
4 y j

2p+2

) = iP1(y4)yi−1
4 y j

2p+2 + jyi
4P1(y2p+2)y j−1

2p+2, (2.10)

the only way to obtain (2.9) is if c0 B = 1 in Fp . Thus B must be a unit, and the generator y2p+2 can be chosen so that
B = 1. �
3. Nonmodular individual cases

In this section, we consider all cases 4–34, excluding case 28 (which is F4), in the Shephard–Todd numbering in which
p does not divide the order of the reflection group. We obtain a very attractive result. One modular case, (X12, p = 3) is
also included here. There is some overlap of our methods and results here with those in [29].

Theorem 3.1. Let X = (Xn)p with 4 � n � 34 and n �= 28, excluding the modular cases (X29)5 , (X31)5 , and (X34)7 , which will be
considered in the next two sections, and the modular case (X24)2 , which was analyzed in [6]. Then X � ∏

S2d−1 , where 2d ranges
over the integers listed as the “type” in [13], except for the 31 cases listed in Table 3.2. In these, each B(−, . . . ,−) is built by fibrations
from spheres of the indicated dimensions, with α1 as each attaching map, and occurs as a factor in a product decomposition of the
p-completion of some SU(N).

We will call the integers d, which are 1/2 times the “type” numbers of Clark–Ewing, the “degrees”.

Remark 3.3. The v1-periodic homotopy groups of B(2n + 1,2n + 2p − 1) were obtained in [8, 1.3]. Those of B(11,23,35)7
and B(23,35,47,59)7 were obtained in [8, 1.4]. Using [21, 1.5, 1.9], we find that for ε = 0,1,

v−1
1 π2t−ε

(
B(11,35,59,83)

)
(13)

≈
{

0, t �≡ 5 (12),

Z/13max( f5(t), f17(t), f29(t), f41(t)), t ≡ 5 (12),

where fγ (t) = min(γ ,4 + ν13(t − γ )), while

v−1
1 π2t−ε

(
B(11,47,83)

)
(19)

≈
{

0, t �≡ 5 (18),

Z/19max( f ′
5(t), f ′

23(t), f ′
41(t)), t ≡ 5 (18),

where f ′
γ (t) = min(γ ,3 + ν19(t − γ )).

Proof of Theorem 3.1. It is straightforward to check that the pairs (case, prime) listed in Table 3.2 are the only nonmodular
cases in [2, Table 1] in which an admissible prime p satisfies that (p − 1) divides the difference of distinct degrees. Indeed
all other admissible primes have (p − 1) greater than the maximum difference of degrees. For example, case 30 requires
p ≡ 1,4 mod 5, and the degrees are 2, 12, 20, 30. The first few primes of the required congruence are 11, 19, and 29. Clearly
10, 18, and 28 divide differences of these degrees, but no larger (p − 1) can. Thus the unstable Adams spectral sequence
argument used in proving Theorem 2.8 works the same way here to show that X is a product of S2d−1 in all cases not
appearing in Table 3.2. In the relevant range, the E2-term will consist only of infinite towers, one for each generator. The
first deviation from that is a Z/p in filtration 1 in homotopy dimension (2d − 1) + (2p − 3), where d is the smallest degree.
This will always be greater than the dimension of the largest S2d−1. A different proof that X is a product of spheres if and
only if p � max{d} is given in [3, 2.1].

The next step is to show that the Steenrod operation P1 in H∗(X;Fp) must connect all the classes listed as adjacent
generators in one of the B-spaces in Table 3.2. This was achieved independently of, and slightly earlier than, the author
in [33] and [25]. We include several of our proofs, omitting the most complicated cases, to illustrate our methods and for
the benefit of the reader without access to [33] and [25]. We accomplish this by considering the A-module H∗(B X;Fp).
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Table 3.2
Cases in Theorem 3.1 which are not products of spheres

Case Prime Space

5 7 B(11,23)

8 5 B(15,23)

9 17 B(15,47)

10 13 B(23,47)

12 3 B(11,15)

14 19 B(11,47)

16 11 B(39,59)

17 41 B(39,119)

18 31 B(59,119)

20 19 B(23,59)

24 11 B(7,27) × S11

25 7 B(11,23) × S17

26 7 B(11,23,35)

26 13 B(11,35) × S23

27 19 B(23,59) × S13

29 13 B(15,39) × S7 × S23

29 17 B(7,39) × S15 × S23

30 11 B(3,23) × B(39,59)

30 19 B(3,39) × S27 × S59

30 29 B(3,59) × S23 × S39

31 13 B(15,39) × B(23,47)

31 17 B(15,47) × S23 × S39

32 7 B(23,35,47,59)

32 13 B(23,47) × B(35,59)

32 19 B(23,59) × S35 × S47

33 7 B(7,19) × B(11,23,35)

33 13 B(11,35) × S7 × S19 × S23

34 13 B(11,35,59,83) × B(23,47)

34 19 B(11,47,83) × B(23,59) × S35

34 31 B(23,83) × S11 × S35 × S47 × S59

34 37 B(11,83) × S23 × S35 × S47 × S59

With one exception7, all cases involving factors of B(2m −1,2m +2p −3) are implied by Lemma 3.9 by applying H∗(B X) →
H∗−1(X), which sends products to 0. Similarly, Lemma 3.11 covers the two cases with a factor B(11,23,35).

Now we must show that the spaces X have the homotopy type claimed. The first 10 cases are immediate from [31, 7.1],
and the two other nonproduct cases, i.e. (X26)7 and (X32)7, follow from [31, 7.2, 7.6]. Note that these results of [31] did not
deal with p-completed spaces, but the obstruction theory arguments used there apply in the p-complete context. There are
15 additional types which we claim to be quasi p-regular. As defined in [32], a space is quasi p-regular if it is p-equivalent
to a product of spheres and spaces of the form B(2n + 1,2n + 2p − 1). In [32] (see especially [32, pp. 330–334]), many
exceptional Lie groups are shown to be quasi p-regular (for appropriate p) using a skeletal approach. We could use that
approach here, but we prefer to use the unstable Adams spectral sequence (UASS). The two methods are really equivalent.

Let q = 2p − 2. In Diagrams 3.4 and 3.5, we illustrate the UASS for S2n+1 in dimension less than 2n + pq − 1 and for
B(2n + 1,2n + q + 1) in dimension less than 2n + 3q − 3. Diagram 3.4 gives a nice interpretation of the statement of the
homotopy groups in [38, 13.4]. If n � p, the paired dots in Diagram 3.4 will not occur in the pictured range. The nice thing
about these charts is that the Fp-cohomology groups of our spaces X are known to agree with that of their putative product
decomposition as unstable algebras over the Steenrod algebra, and are of the required universal form for the UASS to apply;
hence their UASS has E2-term the sum of the relevant charts of spheres and B-spaces. In all cases, there will be no possible
differentials.

One can check that in all 15 cases in which X is claimed to be quasi p-regular, the towers in UASS(X) corresponding
to the spheres and the bottom cell of each B(2n + 1,2n + q + 1) cannot support a differential, and hence yield maps from
the sphere or S2n+1 into X . Next one checks that π2n+q(X) = 0 and π4n+q+1(X) = 0. As these are the groups in which the
obstruction to extending the map S2n+1 → X over B(2n + 1,2n + q + 1) lie, we obtain the desired extension. Finally, we
take the product of maps B → X and S2di−1 → X , using the group structure of X , to obtain the desired p-equivalence from
a product of spheres and B-spaces into X .

The remaining cases, (X33)7, (X34)13, and (X34)19, are handled similarly. The E2-term of the UASS converging to π∗(X)

is isomorphic to that of its putative product decomposition. For example, E2(X34)13 is the sum of Diagram 3.5 with n = 11
and q = 24 plus Diagram 3.6. We can map S23 → X and S11 → X corresponding to generators of homotopy groups. Then
we can extend the first map over the 47- and 70-cells because π46(X) = 0 and π69(X) = 0. This gives a map B(23,47) → X .
Similarly we can extend the second map over cells of B(11,35,59,83) of dimension 46, 70, 94, 118, 142, 105, 129, 153,

7 The exception is (X34)19, which is handled in [33]. We thank Nishinobu for pointing out a gap in the argument for this case which appeared in an
earlier version of this paper.



Author's personal copy

D.M. Davis / Topology and its Applications 156 (2008) 300–321 305

and 188. Taking the product of these two maps, using the multiplication of X , yields the desired 13-equivalence B(23,47)×
B(11,35,59,83) → X . The other two cases are handled similarly. �
Diagram 3.4. UASS(S2n+1) in dim < 2n + pq − 1. Here n < p.

Where there is a pair of dots, the grading at the bottom refers to the one on right, and the other is in grading 1 less.

Diagram 3.5. UASS(B(2n + 1,2n + q + 1)) in dim < 2n + 3q − 3.
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Diagram 3.6. UASS(B(11,35,59,83)13) in dim < 200.
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An alternate proof of Theorem 3.1 can be obtained using [15, 1.3, 1.4], which can be interpreted as the following theorem.
In Section 6, we will provide a proof of a strengthened version of this result.

Theorem 3.7. (See [15, 1.3, 1.4].) If X is an H-space of rank r < p − 1 with torsion-free homology, then there are H-spaces X1, . . . , Xr

with X1 = Sn1 and Xr = X, and there are fibrations Xi−1 → Xi → Sni for 2 � i � r as in the diagram

X1 X2 · · · Xr

Sn2 Snr .

(3.8)

The homotopy type of the p-localization of X is determined by the elements of πni−1(Xi−1) associated to these fibrations.

In order to apply this, one would still need to determine the P1-action and to check that the relevant homotopy groups
πni−1(Xi−1) are cyclic.

In the following lemmas, which were used above, gi denotes a generator in grading i.

Lemma 3.9.

(a) If m �≡ 1 mod p and Fp[g2m, g2m+2p−2] is an unstable A-algebra, then P1 g2m ≡ ug2m+2p−2 mod decomposables, with u �= 0.
(b) The same conclusion holds if the unstable A-algebra contains additional generators in dimensions d �≡ 2m mod (2p −2), provided

also that d + 2p − 2 �≡ 0 mod (2m + 2p − 2).

Proof. (a) For dimensional reasons, we must have P1 g2m = αg2m+2p−2 plus possibly a power of g2m , for some α ∈ Fp , and
P1 g2m+2p−2 = g2mY , for some polynomial Y . The unstable condition requires that Pm+p−1 g2m+2p−2 = g p

2m+2p−2, and, since

m �≡ 1 mod p, this equals, up to a unit, P1Pm+p−2 g2m+2p−2. For dimensional reasons,

Pm+p−2 g2m+2p−2 = βg2m g p−1
2m+2p−2 + g3

2m Z (3.10)

for some β ∈ Fp and some polynomial Z . By the Cartan formula (similar to (2.10)), the only way that P1 applied to (3.10)
can yield g p

2m+2p−2 is if both α and β are units.
(b) There are two ways that the additional generators could affect the argument for part (a). One is if several of them

(possibly the same one) were multiplied together to get into the congruence of part (a). By the Cartan formula, P1 of such
a product will still involve some of these additional generators as factors, and so cannot yield the g p

2m+2p−2 term on which
the argument focuses. The other way, pointed out to the author by Nishinobu, would be if there were a generator gd such
that P1 gd = ugi

2m+2p−2 for some u �= 0 and i > 0, an eventuality excluded by our second hypothesis. If there were such

a gd and also Pm+p−2 g2m+2p−2 included a term gd g p−i
2m+2p−2, this would provide an alternative way to achieve g p

2m+2p−2 in

Pm+p−1 g2m+2p−2. �
Lemma 3.11. If F7[g12, g24, g36] is an unstable A-algebra, then, mod decomposables, P1 g12 = u1 g24 and P1 g24 = u2 g36 with
ui �= 0. The same conclusion holds for F7[g12, g24, g36, g8, g20].

Proof. We work modulo the ideal (g12), resp. (g12, g8, g20). Then P1 g12 ≡ αg24, P1 g24 ≡ βg36, and P1 g36 ≡ γ g2
24, for

some α, β , γ in F7. This latter term complicates things somewhat. We also have P1 g8 ≡ 0 and P1 g20 ≡ 0, in the second
case.

The unstable condition implies P1P17 g36 = ug7
36 with u �= 0. We use the Cartan formula as in the previous proof. The

only way to get to g7
36 by P1 is if β �= 0, implying the result for P1 g24.

However, there are two ways that P1P11 g24 might yield g7
24, one via P1(g12 g6

24) and the other via P1(g5
24 g36). Instead,

we consider (P1)5P7 g24. We must have

P7 g24 ≡ δ1 g3
36 + δ2 g3

24 g36

for some δi ∈ F7.
Assume α = 0, so that the ideal (g12) or (g12, g8, g20) is closed under the action of P1. Then we can compute(

P1)5
g3

36 ≡ βγ 4 g7
24 − β3γ 2 g24 g4

36,(
P1)5(

g3
24 g36

) ≡ β2γ 3 g7
24 + 5β3γ 2 g4

24 g2
36,

and then
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ug7
24 ≡ (

P1)5P7(g24)

≡ (
P1)5(

δ1 g3
36 + δ2 g3

24 g36
)

≡ δ1
(
βγ 4 g7

24 − β3γ 2 g24 g4
36

) + δ2
(
β2γ 3 g7

24 + 5β3γ 2 g4
24 g2

36

)
.

Coefficients of g7
24 imply β �= 0, γ �= 0, and some δi �= 0, but this then gives a contradiction regarding g24 g4

36 or g4
24 g2

36. Thus
the assumption that α = 0 must have been false. �
4. 5-primary modular cases

In this section, we determine the v1-periodic homotopy groups of the modular 5-compact groups X29 and X31. We pass
directly from invariant polynomials to Adams operations in K ∗(X) and thence to v−1

1 π∗(X). In Theorems 4.15 and 4.20, we
relate the homotopy type of (X29)5 and (X31)5 to that of SU(20) and E8. Theorem 4.15 was conjectured by the author in an
earlier version of this paper. It and Theorem 4.20 and their proofs were provided to the author by John Harper.

The input to determining the Adams module K ∗(X29; Ẑ5) is the following result due to Aguadé [1] and Maschke [30].
Throughout the rest of the paper, we will denote by m(e1,...,ek) the smallest symmetric polynomial on variables x1, . . . , x�

(the value of � will be implicit) containing the term xe1
1 · · · xek

k .

Theorem 4.1. There is a reflection group G29 acting on (Ẑ5)
4 , and there is a space B X29 and map BT → B X29 with BT = K ((Ẑ5)

4,2)

such that

H∗(B X29; Ẑ5) ≈ H∗(BT ; Ẑ5)
G29 ,

the invariants under the natural action of G29 on H∗(BT ; Ẑ5) = Ẑ5[x1, x2, x3, x4] with |xi | = 2. Moreover, H∗(BT ; Ẑ5)
G29 is a poly-

nomial algebra on the following four invariant polynomials:

f4 = m(4) − 12m(1,1,1,1),

f8 = m(8) + 14m(4,4) + 168m(2,2,2,2),

f12 = m(12) − 33m(8,4) + 330m(4,4,4) + 792m(6,2,2,2),

f20 = m(20) − 19m(16,4) − 494m(12,8) − 336m(14,2,2,2) + 716m(12,4,4)

+ 1038m(8,8,4) + 7632m(10,6,2,2) + 129 012m(8,4,4,4) + 106 848m(6,6,6,2).

Proof. The group G29 is the subgroup of GL(4,C) generated by the following four matrices. These can be seen explicitly
in [1].

1

2

⎛⎜⎝
1 −1 −1 −1

−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1

⎞⎟⎠ ,

⎛⎜⎝
0 i 0 0
−i 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ ,

⎛⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎠ ,

⎛⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠ .

Since i ∈ Ẑ5, these act on (Ẑ5)
4, and this induces an action on

H∗(K
(
(Ẑ5)

4,2
)) ≈ Ẑ5[x1, x2, x3, x4].

The invariants of this action were determined by Maschke [30] to be the polynomials stated in the theorem. Although he
did not state them all explicitly, they can be easily generated by: (a) define φ, ψi , and χ as on his p. 501, then (b) define
Φ1, . . . ,Φ6 as on his p. 504, and finally (c) let f4 = − 1

2 Φ6 and f8 = F8, f12 = F12, and f20 = F20 as on his p. 505. See also
[36, p. 287] for a reference to this work.

Actually, Maschke’s work and that of [36] involved finding generators for the complex invariant ring. To see that these
integral polynomials generate the invariant ring over Ẑ5, one must show that they cannot be decomposed over Z/5. For
example, one must verify that f20 cannot be decomposed mod 5 as a linear combination of f8 f12, f 2

4 f12, f4 f 2
8 , f 3

4 f8,
and f 5

4 . The need to do this was pointed out to the author by Kasper Andersen in a dramatic way, as will be described prior
to Theorem 5.6. The verification here was performed by Andersen using a Magma program.

Aguadé [1] constructed the 5-compact group (B X, X) corresponding to this modular reflection group. �
The approach based on the following proposition benefits from a suggestion of Clarence Wilkerson. Here we employ

notation, standard in the p-compact group literature, that H∗(−; Q̂p) is short for H∗(−; Ẑp) ⊗
Ẑp

Q̂p .
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Proposition 4.2. Let (B X, X) be a p-compact group with Weyl group G acting on BT = K ((Ẑp)n,2). Suppose H∗(BT ; Q̂p)G =
Q̂p[ f1, . . . , fk], where fi is a polynomial in y1, . . . , yn with y j ∈ H2(BT ; Q̂p) corresponding to the jth factor. Let K ∗(BT ; Q̂p) =
Q̂p �x1, . . . , xn � with xi the class of H − 1 in the ith factor, where H is the complex Hopf bundle. Let �0(x) = log(1 + x). Then

K ∗(B X; Ẑp) ≈ Q̂p
�

f1
(
�0(x1), . . . , �0(xn)

)
, . . . , fk

(
�0(x1), . . . , �0(xn)

)� ∩ Ẑp �x1, . . . , xn �.

Proof. The Chern character K ∗(BT ; Q̂p)
ch−−→ H∗(BT ; Q̂p) satisfies ch(�0(xi)) = yi and hence, since ch is a ring homo-

morphism, ch( f j(�0(x1), . . . , �0(xn))) = f j(y1, . . . , yn). It commutes with the action of G , and hence sends invariants to
invariants. Indeed

K ∗(BT ; Q̂p)G = Q̂p
�

f1
(
�0(x1), . . . , �0(xn)

)
, . . . , fk

(
�0(x1), . . . , �0(xn)

)�
. (4.3)

The invariant ring in K ∗(BT ; Ẑp) is just the intersection of (4.3) with Ẑp �x1, . . . , xn �. Finally we use a result of [26] that
K ∗(B X; Ẑp) ≈ K ∗(BT ; Ẑp)G .

As pointed out by the referee, a standard Galois theory argument implies that k = n in this proposition. �
Thus with f4, f8, f12, f20 as in Theorem 4.1, we wish to find algebraic combinations of

f4
(
�0(x1), . . . , �0(x4)

)
, . . . , f20

(
�0(x1), . . . , �0(x4)

)
which have coefficients in Ẑ5. A theorem of [26] which states that for a p-compact group B X there is an isomorphism
K ∗(B X; Ẑp) ≈ Ẑp � g1, . . . , gk �, and the collapsing, for dimensional reasons, of the Atiyah–Hirzebruch spectral sequence

H∗(B X; K ∗(pt; Ẑp)
) ⇒ K ∗(B X; Ẑp) (4.4)

implies that the generators g j can be chosen to be of the form f j(x1, . . . , xn) mod higher degree polynomials.
Finding these algebraic combinations can be facilitated by using the p-typical log series

�p(x) =
∑
n�0

xpn
/pn.

By [24], there is a series h(x) ∈ Z(p)�x� such that �0(h(x)) = �p(x) and h(x) ≡ x mod (x2). Let x′
i = h(xi). For any ce ∈ Q̂p

with e = (e4, e8, e12, e20), we have∑
ce f4

(
�p(x1), . . . , �p(x4)

)e4 · · · f20
(
�p(x1), . . . , �p(x4)

)e20 (4.5)

=
∑

ce f4
(
�0

(
x′

1

)
, . . . , �0

(
x′

4

))e4 · · · f20
(
�0

(
x′

1

)
, . . . , �0

(
x′

4

))e20
, (4.6)

where the sums are taken over various e. We will find ce so that (4.5) is in Ẑp �x1, . . . , x4 �. Thus so is (4.6), and hence also∑
ce f4(�0(x1), . . . , �0(x4))

e4 · · · f20(�0(x1), . . . , �0(x4))
e20 , since h(x) ∈ Z(p)�x�.

A Maple program, which implements an algorithm described in the proof, was used to prove the following result.

Theorem 4.7. Let f4, f8, f12, f20 be as in Theorem 4.1, and let

F j = F j(x1, . . . , x4) = f j
(
�0(x1), . . . , �0(x4)

)
.

Then the following series are 5-integral through grading 20; i.e., their coefficients of all monomials xe1
1 · · · xe4

4 with
∑

ei � 20 are
5-integral.

F4 − 1

10
F 2

4 − 1

5
F8 − 16

25
F12 − 7

25
F4 F8 + 4

25
F 3

4 − 13

125
F4 F12 − 57

125
F 2

4 F8

− 102

125
F 4

4 − 62

125
F 2

8 − 64

125
F20 − 4

625
F 5

4 − 42

125
F 2

4 F12 − 11

25
F4 F 2

8 − 72

125
F8 F12;

F8 − 8

5
F12 − 7

25
F 2

8 − 4

25
F20 − 21

125
F8 F12;

F12 − 2

5
F 2

8 − 1

5
F20 − 4

25
F8 F12.

Proof. As observed in the paragraph preceding the theorem, it suffices to show that the same is true for F̃ j = f j(x1 + 1
5 x5

1,

. . . , x4 + 1
5 x5

4). The advantage of this is to decrease the number of terms which must be kept track of and looked at. We
work one grading at a time, expanding relevant products of F j ’s as combinations of monomial symmetric polynomials in
the fixed grading, and then solving a system of linear equations to find the combinations that work. We illustrate with the
calculation for modifications of F4 in gradings 8 and then 12.
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In grading 8, we have

F̃4 = 4

5
m(8) − 12

5
m(5,1,1,1),

F̃8 = m(8) + 14m(4,4) + 168m(2,2,2,2),

F̃ 2
4 = m(8) − 24m(5,1,1,1) + 2m(4,4) + 144m(2,2,2,2).

We wish to choose a and b so that, in grading 8, a
5 F̃8 + b

5 F̃ 2
4 ≡ F̃4 mod integers. Thus we must solve a system of mod 5

equations for a and b with augmented matrix⎛⎜⎜⎝
1 1 4
0 −24 −12

14 2 0
168 144 0

⎞⎟⎟⎠ .

The solution is a = 1, b = 1/2. We could also have used b = 3 since we are working mod 5.
Let F̃ ′

4 = F̃4 − 1
10 F̃ 2

4 − 1
5 F̃8. In grading 12, we have

F̃ ′
4 = − 6

25
m(12) − 12

5
m(8,4) − 96

5
m(6,2,2,2) + 12

5
m(9,1,1,1) + 12

25
m(5,5,1,1),

F̃12 = m(12) − 33m(8,4) + 330m(4,4,4) + 792m(6,2,2,2),

F̃8 F̃4 = m(12) + 15m(8,4) + 42m(4,4,4) + 168m(6,2,2,2) − 12m(9,1,1,1) − 168m(5,5,1,1) − 2016m(3,3,3,3),

F̃ 3
4 = m(12) + 3m(8,4) + 6m(4,4,4) + 432m(6,2,2,2) − 36m(9,1,1,1) − 72m(5,5,1,1) − 1728m(3,3,3,3).

We wish to choose a, b, and c so that, in grading 12, a
25 F̃12 + b

25 F̃8 F̃4 + c
25 F̃ 3

4 ≡ F̃ ′
4 mod integers. Thus we must solve a

system of equations mod 25 whose augmented matrix is⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 −6
−33 15 3 −60
330 42 6 0
792 168 432 −480

0 −12 −36 60
0 −168 −72 12
0 −2016 −1728 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The solution is a = 16, b = 7, and c = −4.
We perform similar calculations for F̃8 in grading 12, then for F̃ ′′

4 , F̃ ′
8, and F̃12 in gradings 16 and then 20. �

By the observation in the paragraph involving (4.4), the modified versions of F4, F8, and F12 given in Theorem 4.7, and
also F20, can be modified similarly in all subsequent gradings, yielding generators of the power series algebra K ∗(B X29; Ẑ5)

which we will call G4, G8, G12, and G20. By [26], K ∗(X29; Ẑ5) is an exterior algebra on classes z3, z7, z11, and z19 in K 1(−)

obtained using the map e :Σ X = ΣΩ B X → B X and Bott periodicity B : K 1(X) → K −1(X) by zi = B−1e∗(Gi+1). The follow-
ing determination of the Adams operations is essential for our work on v1-periodic homotopy groups. Here and elsewhere
Q K 1(−) denotes the indecomposable quotient.

Theorem 4.8. The Adams operation ψk in Q K 1(X29; Ẑ5) on the generators z3 , z7 , z11 , and z19 is given by the matrix⎛⎜⎜⎝
k3 0 0 0

1
5 k3 − 1

5 k7 k7 0 0
24
25 k3 − 8

25 k7 − 16
25 k11 8

5 k7 − 8
5 k11 k11 0

92
125 k3 − 12

125 k7 − 16
125 k11 − 64

125 k19 12
25 k7 − 8

25 k11 − 4
25 k19 1

5 k11 − 1
5 k19 k19

⎞⎟⎟⎠ .

Proof. We first note that

ψk(�0(x)
) = �0

(
ψkx

) = �0
(
(x + 1)k − 1

) = log
(
(x + 1)k) = k log(x + 1) = k�0(x).

Since F4 j is homogeneous of degree 4 j in �0(xi), ψk(F4 j) = k4 j F4 j . We can use this to determine ψk on the generators Gi

which are defined as algebraic combinations of F4 j ’s. We then apply e∗ to this formula to obtain ψk in K −1(X29; Ẑ5).
Since e∗ annihilates decomposables, we need consider only the linear terms in the expressions which express Gi in terms
of F4 j ’s. On the basis (over Q̂5) 〈e∗(F4), e∗(F8), e∗(F12), e∗(F20)〉, the matrix of ψk is D = diag(k4,k8,k12,k20). On the basis

(over Ẑ5)〈
e∗(G4), e∗(G8), e∗(G12), e∗(G20)

〉
,
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it is P−1 D P , where

P =

⎛⎜⎜⎝
1 0 0 0

− 1
5 1 0 0

− 16
25 − 8

5 1 0

− 64
125 − 4

25 − 1
5 1

⎞⎟⎟⎠
is the change-of-basis matrix, obtained using the linear terms in Theorem 4.7. The matrix in the statement of the theorem
is obtained by dividing P−1 D P by k, since ψk in K 1(−) corresponds to ψk/k in K −1(−). �

We can use Theorem 4.8 to obtain the v1-periodic homotopy groups of (X29)5 as follows.

Theorem 4.9. The groups v−1
1 π∗(X29)(5) are given by

v−1
1 π2t−1(X29) ≈ v−1

1 π2t(X29) ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, t �≡ 3 (4),

Z/53, t ≡ 3,15 (20),

Z/5min(8,3+ν5(t−7−4·54)), t ≡ 7 (20),

Z/5min(12,3+ν5(t−11−4·58)), t ≡ 11 (20),

Z/5min(20,3+ν5(t−19−12·516)), t ≡ 19 (20).

Proof. We use the result of [9] that v−1
1 π2t(X)(5) is presented by the matrix

( (Ψ 5)T

(Ψ 2)T −2t I

)
. We form this matrix by letting

k = 5 and 2 in the matrix of Theorem 4.8 and letting x = 2t , obtaining⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

125 −15 600 −31 274 880 −9 765 631 257 408
0 78 125 −78 000 000 −3 051 773 400 000
0 0 48 828 125 −3 814 687 500 000
0 0 0 19 073 486 328 125

8 − x −24 −1344 −268 704
0 128 − x −3072 −84 480
0 0 2048 − x −104 448
0 0 0 524 288 − x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.10)

If x �≡ 3 mod 5, which is equivalent to t �≡ 3 mod 4, then the units along the diagonal of the bottom half of (4.10) imply
that the group presented is 0. Henceforth, we assume x ≡ 3 mod 5.

Pivoting on the units (over Z(5)) in positions (5,2) and (7,4) and removing their rows and columns does not change
the group presented. We now have a 6-by-2 matrix, whose nonzero entries are polynomials in x of degree 1 or 2. The
polynomial in new position (5,2) is nonzero mod 5 for such x, and so we pivot on it, and remove its row and column. The
five remaining entries are ratios of polynomials with denominator nonzero mod 5. Let p1, . . . , p5 denote the polynomials
in the numerators. The group v−1

1 π2t(X29)(5) is Z/5e , where e = min(ν(p1(x)), . . . , ν(p5(x))), where x = 2t . We abbreviate
ν5(−) to ν(−) throughout the remainder of this section. We have

p1 = −71 122 941 747 658 752 + 9 480 741 773 824 512x − 74 067 383 851 199x2 + 33 908 441 866x3,

p2 = −66 750 692 556 800 000 + 8 897 903 174 800 000x − 69 512 640 100 000x2 + 31 789 306 250x3,

p3 = −8 327 872 · 1010 + 11 101 145 · 109x − 86 731 015 625 000x2 + 39 736 328 125x3,

p4 = 4 · 1019 − 533 203 125 · 1010x + 41 656 494 140 625 000x2 − 19 073 486 328 125x3,

p5 = 1 099 511 627 776 − 146 567 856 128x + 1 145 324 544x2 − 526 472x3 + x4.

For values of m listed in the table, we compute and present in Table 4.12 the tuples (e0, e1, e2, e3) so that, up to units,

pi
(
2m + y

) = 5e0 + 5e1 y + 5e2 y2 + 5e3 y3 (4.11)

(plus y4 if i = 5). Considerable preliminary calculation underlies the choice of these values of m.

Table 4.12
Exponents of polynomials

m i

1 2 3 4 5

3 3,2,1,0 ∞,7,6,5 ∞,12,12,10 ∞,21,20,19 ∞,3,2,1
15 3,2,1,0 8,7,6,5 13,12,11,10 22,21,20,19 4,4,3,2
7 + 4 · 54 8,2,1,0 8,7,6,5 17,12,11,10 26,21,21,19 8,3,2,1
11 + 4 · 58 12,2,1,0 12,7,7,5 13,12,11,10 30,21,20,19 12,3,2,1
19 + 12 · 516 23,2,2,0 20,7,6,5 21,12,11,10 22,21,20,19 20,3,2,1
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Recall that ν(24·5i − 1) = i + 1, as is easily proved by induction. Thus

p
(
2m+20 j) = p

(
2m + 2m(

220 j − 1
)) = p

(
2m + 25 j · u

)
, (4.13)

with u a unit. Hence

min
{
ν
(

pi
(
23+20 j)): 1 � i � 5

} = 3

since

p1
(
23+20 j) = p1

(
23 + 52 ju

) = 53 + 52 · 52 ju + 5
(
52 ju

)2 + (
52 ju

)3
,

omitting some unit coefficients. Here we have set y = 52 ju in (4.11). Replacing 3 by 15 yields an identical argument. This
yields the second line of Theorem 4.9.

We use Table 4.12 to show

min
{
ν
(

pi
(
219+12·516+20 j)): 1 � i � 5

} = min
(
20,4 + ν( j)

) = min
(
20,3 + ν(20 j)

)
. (4.14)

Indeed, for ν( j) � 16, the minimum is achieved when i = 1, with the 4 coming as 2 + 2 with one 2 being from the 25
in (4.13) and the other 2 being the first 2 in the last row of Table 4.12. If ν( j) > 16, the minimum is achieved when i = 2,
using the first 20 in the last row of Table 4.12. The last case of Theorem 4.9 follows easily from (4.14), and the other two
parts of Theorem 4.9 are obtained similarly.

To see that v−1
1 π2t−1(X29) ≈ v−1

1 π2t(X29), we argue in three steps. First, the two groups have the same order us-
ing [9, 8.5] and the fact that the kernel and cokernel of an endomorphism of a finite group have equal orders. Second,

by [16, 4.4], a presentation of v−1
1 π2t−1(X29) is given by

(
Ψ 5

Ψ 2−2t

)
, i.e. like that for v−1

1 π2t(X29) except that the two subma-

trices are not transposed. Third, we pivot on this matrix, which is (4.10) with the top and bottom transposed, and find that
we can pivot on units three times, so that the group presented is cyclic. �

One of the factors in the product decomposition of SU(20)5 given in [31] is an H-space B5
3(5) whose F5-cohomology

is an exterior algebra on classes of grading 7, 15, 23, 31, and 39, and which is built from spheres of these dimensions by
fibrations. By [40], there is a product decomposition(

SU(20)/SU(15)
)

5 � S31 × S33 × S35 × S37 × S39.

Let B(7,15,23,39) denote the fiber of the composite

B5
3(5) → SU(20)5 → (

SU(20)/SU(15)
)

5
ρ−→ (

S31)
5.

Theorem 4.15 (Harper). There is a homotopy equivalence

(X29)5 � B(7,15,23,39).

Note that this result requires more than Theorem 3.7 because the ranks of these H-spaces are not less than p − 1. We
will provide Harper’s proof of this result in Section 6. Here we just remark that our work above is required in the proof, for
the entry in position (4,3) of the matrix of Theorem 4.8 implies that the 39-cell of (X29)5 is attached to the 23-cell by α2,
which is not detected by primary Steenrod operations. This information is required in order to compare the two spaces in
Theorem 4.15.

We can determine the Adams operations and v1-periodic homotopy groups of (X31)5 by an argument very similar to
that used above for (X29)5. We shall merely sketch. The analogue of Theorem 4.1 is

Theorem 4.16. There is an isomorphism H∗(B X31; Ẑ5) ≈ H∗(BT ; Ẑ5)
G31 , where G31 has the four generators given for G29 in the proof

of Theorem 4.1 and also

( 1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

)
. Then H∗(BT ; Ẑ5)

G31 is a polynomial ring on the generators f8 , f12 , and f20 given in Theorem 4.1

together with

f24 = m(24) − 66m(20,4) + 1023m(16,8) + 2180m(12,12) + 1 293 156m(8,8,4,4)

+ 267 096m(12,4,4,4) + 2 121 984m(6,6,6,6) + 620 352m(10,6,6,2) − 4032m(14,6,2,2)

− 190 080m(10,10,2,2) − 11 892m(12,8,4) − 4938m(16,4,4) − 24 534m(8,8,8) − 2304m(18,2,2,2).

The analogue of Theorem 4.7 is
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Theorem 4.17. Let f8 , f12 , f20 , f24 be as in Theorem 4.16, and let

F j = f j
(
�0(x1), . . . , �0(x4)

)
.

Then the following series are 5-integral through grading 24.

F8 − 8

5
F12 − 7

25
F 2

8 − 4

25
F20 − 21

125
F8 F12 − 99

125
F24 − 597

625
F 3

8 − 558

625
F 2

12,

F12 − 2

5
F 2

8 − 1

5
F20 − 4

25
F8 F12 − 18

25
F24 − 74

125
F 3

8 − 11

125
F 2

12,

F20 − 3

5
F24 − 2

5
F 3

8 .

The analogue of Theorem 4.8 is

Theorem 4.18. The Adams operation ψk in K 1(X31; Ẑ5) on the generators z7 , z11 , z19 , and z23 is given by the matrix⎛⎜⎜⎝
k7 0 0 0

8
5 k7 − 8

5 k11 k11 0 0
12
25 k7 − 8

25 k11 − 4
25 k19 1

5 k11 − 1
5 k19 k19 0

279
125 k7 − 168

125 k11 − 12
125 k19 − 99

125 k23 21
25 k11 − 3

25 k19 − 18
25 k23 3

5 k19 − 3
5 k23 k23

⎞⎟⎟⎠ .

The analogue of Theorem 4.9 is

Theorem 4.19. The groups v−1
1 π∗(X31)(5) are given by

v−1
1 π2t−1(X31) ≈ v−1

1 π2t(X31) ≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, t �≡ 3 (4),

Z/54, t ≡ 15 (20),

Z/5min(7,4+ν5(t−7)), t ≡ 7 (20),

Z/5min(11,4+ν5(t−11)), t ≡ 11 (20),

Z/5min(19,4+ν5(t−19)), t ≡ 19 (20),

Z/5min(23,4+ν5(t−23)), t ≡ 23 (20).

The author thanks the referee for astutely noticing a mistake in an earlier version of Theorem 4.19.
In [39, Proposition 2.3], it is proved that the exceptional Lie group E8, localized at 5, admits a product decomposition

as X0(E8) × X2(E8) with H∗(X0(E8);F5) ≈ Λ(x15, x23, x39, x47). In Section 6, we will prove the following result, which was
pointed out by John Harper.

Theorem 4.20 (Harper). There is a homotopy equivalence

(X31)5 � X0(E8).

Note that Theorem 4.19 agrees with the calculation of v−1
1 π∗(E8)(5) in [17, 1.1].

5. The 7-primary modular case

In this section, we first give in Theorem 5.1 new explicit formulas for the six polynomials which generate as a polynomial
algebra the invariant ring of the complex reflection group G34 of [36], called the Mitchell group in [14]. Over Ẑ7, the
invariant ring of G34 is also a polynomial algebra, but the generators must be altered slightly from the complex case, as
we show prior to Theorem 5.6. Next we use this information to find explicit generators for K ∗(B X34; Ẑ7) in Theorem 5.6,
and from this the Adams operations in Q K 1(X34; Ẑ7) in Theorem 5.15. These in turn enable us to compute the v1-periodic
homotopy groups v−1

1 π∗(X34)(7) . Finally, we prove in Theorem 5.17 that (X34)7 has the homotopy type of a space formed
from SU(42). This result was conjectured by the author and proved by John Harper.

Theorem 5.1. The complex invariants of the reflection group G34 (defined in the proof ) form a polynomial algebra

C[x1, . . . , x6]G34 ≈ C[ f6, f12, f18, f24, f30, f42]
with generators given by

f6k = (
1 + (−1)k27k−1 · 5

)
m(6k) +

k∑
s=1

(
6k

3s

)(
1 + (−1)k+s27k−1)m(6k−3s,3s) +

∑
e

(e)me,

where e ranges over all partitions e = (e1, . . . , er) of 6k with 3 � r � 6 satisfying ei ≡ e j mod 3 for all i, j, and ei ≡ 0 mod 3 if r < 6.
Here also (e) denotes the multinomial coefficient (e1 + · · · + er)!/(e1! · · · er !), and me the monomial symmetric polynomial, which is
the shortest symmetric polynomial in x1, . . . , x6 containing xe1

1 · · · xer
r .
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For example, we have

• f6 = −4m(6) + 40m(3,3) + 720m(1,1,1,1,1,1);
• f12 = 136m(12) − 26

(12
3

)
m(9,3) + 28

(12
6

)
m(6,6) + ∑

(e)me , where e ranges over{
(6,3,3), (3,3,3,3), (2,2,2,2,2,2), (7,1,1,1,1,1), (4,4,1,1,1,1)

};
• f18 = (1 − 5 · 272)m(18) + (18

3

)
(1 + 272)m(15,3) + (18

6

)
(1 − 272)m(12,6) + (18

9

)
(1 + 272)m(9,9) +∑

(e)me , where e ranges over{
(12,3,3), (9,6,3), (9,3,3,3), (6,6,6), (6,6,3,3), (6,3,3,3,3), (3,3,3,3,3,3),

(13,1,1,1,1,1), (10,4,1,1,1,1), (7,4,4,1,1,1), (4,4,4,4,1,1), (7,7,1,1,1,1),

(8,2,2,2,2,2), (5,5,2,2,2,2)
}
.

Proof of Theorem 5.1. As described in [36], the reflection group G34 is generated by reflections across the following hyper-
planes in C6: xi − x j = 0, x1 − ωx2 = 0, and x1 + x2 + x3 + x4 + x5 + x6 = 0. Here ω = e2π i/3. It follows easily that G34 is
generated by all permutation matrices together with the following two:⎛⎜⎜⎜⎜⎜⎝

0 ω2 0 0 0 0
ω 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ , I − 1

3

⎛⎜⎜⎜⎜⎜⎝
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎞⎟⎟⎟⎟⎟⎠ . (5.2)

In [14], Conway and Sloane consider G34 instead as the automorphisms of a certain Z[ω]-lattice in C6. The lattice has
756 vectors of norm 2. There are none of smaller positive norm. 270 of these vectors are those with ωa in one posi-
tion, −ωb in another, and 0 in the rest. Here, of course, a and b can be 0, 1, or 2. The other 486 are those of the form
± 1√−3

(ωa1 , . . . ,ωa6 ) such that
∑

ai ≡ 0 mod 3.

To verify that this lattice approach to G34 is consistent with the reflection approach, one can check that the reflection
matrices permute these 756 vectors. It is obvious that permutation matrices do, and easily verified for the first matrix
of (5.2). The second matrix of (5.2), which has order 2, sends

• (ω,−ω2,0,0,0,0) to 1√−3
(ω2,ω,1,1,1,1);

• 1√−3
(1,1,1,1,1,1) to − 1√−3

(1,1,1,1,1,1);

• 1√−3
(1,1,1,ω,ω,ω) to − 1√−3

(ω,ω,ω,1,1,1);

• 1√−3
(1,1,ω,ω,ω2,ω2) to itself;

• (1,−1,0,0,0,0) to itself.

After permutation, negation, and multiplication by ω, this takes care of all cases.
Let

pm(x1, . . . , x6) =
∑

(v1,...,v6)

(v1x1 + · · · + v6x6)
m, (5.3)

where the sum is taken over the 756 vectors described above. Then pm is invariant under G34 for every positive integer m.
It is proved in [14, Theorem 10] that the ring of complex invariant polynomials is given by

C[x1, . . . , x6]G34 = C[p6, p12, p18, p24, p30, p42]. (5.4)

In [14], several other lattices isomorphic to the above one are described, any of which can be used to give a different set
of vectors v and invariant polynomials pm , still satisfying (5.4). The one that we have selected seems to give the simplest
polynomials; in particular, the only ones with integer coefficients.

We have p6k = S1 + S2, where S1 = ∑
i �= j

∑2
a,b=0(ω

axi − ωbx j)
6k , with 1 � i, j � 6, and

S2 = 2

(−3)3k

2∑
ai=0

(
ωa1 x1 + · · · + ωa5 x5 + ω−a1−···−a5 x6

)6k
.

The coefficient of 2 on S2 is due to the ±1. Note that the sum for S1 has 6 · 5 · 32 terms, while that for S2 has 35 terms.
Next note that if a term T 6k occurs in either sum, then so does (ωT )6k and (ω2T )6k , and all are equal. Thus we obtain
S1 = 3

∑
i �= j

∑2
b=0(xi − ωbx j)

6k and

S2 = 3
2

(−3)3k

2∑
a2,...,a5=0

(
x1 + ωa2 x2 + · · · + ωa5 x5 + ω−a2−···−a5 x6

)6k
.
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We simplify S1 further as

S1 = 3
6k∑

�=0

(−1)�
(

6k

�

)∑
i �= j

x�
i x6k−�

j

2∑
b=0

ωb�

= 9
2k∑

s=0

(−1)s
(

6k

3s

)∑
i �= j

x3s
i x6k−3s

j

= 18

(
5m(6k) +

k∑
s=1

(−1)s
(

6k

3s

)
m(6k−3s,3s)

)
.

At the first step, we have used that
∑2

b=0 ωb� equals 0 if � �≡ 0 mod 3, and equals 3 if � ≡ 0 mod 3. At the second step, we
have noted that

∑
i �= j x3s

i x6k−3s
j equals m(6k−3s,3s) if s /∈ {0,k,2k}, it equals 2m(3k,3k) if s = k, and equals 5m(6k) if s = 0 or 2k.

The sum S2 becomes

S2 = 6

(−3)3k

∑
e

(e)

2∑
a2=0

(
ωe2−e6

)a2 · · ·
2∑

a5=0

(
ωe5−e6

)a5 xe1
1 · · · xe6

6

= 6

(−27)k

∑
e1≡···≡e6 (3)

(e)34xe1
1 · · · xe6

6 .

Then (−27)k(S1 + S2)/486 equals the expression which we have listed for f6k in the statement of the theorem. We have
chosen to work with this rather than p6k itself for numerical simplicity. It is important that the omitted coefficient is not
a multiple of 7.

For good measure, we show that (5.3) is 0 if m �≡ 0 (6). If m �≡ 0 mod 3, then replacing terms T m by (ωT )m leaves the
sums like S1 and S2 for (5.4) unchanged while, from a different perspective, it multiplies them by ωm . Thus the sums are 0.
If m ≡ 3 mod 6, the term in S1 corresponding to

∑
x3s

i xm−3s
j occurs with opposite sign to that corresponding to

∑
xm−3s

i x3s
j ,

and so S1 = 0. For S2, the (±1)m will cause pairs of terms to cancel. �
Remark 5.5. The only other place known to the author where explicit formulas for invariant polynomials of G34 exist is [28],
where they occupy 190 pages of dense text when printed.

As pointed out by Kasper Andersen, f42 − ( f6)
7 is divisible by 7. This is easily seen by expanding ( f6)

7 = (
∑

(v1x1 +
· · · + v6x6)

6)7 by the multinomial theorem. The need for this became apparent to Andersen, as the author had thought that
the invariant ring of G34 over Ẑ7 was Ẑ7[ f6, . . . , f42], and this would have led to an impossible conclusion for the Adams
operations in Q K 1(X34; Ẑ7).

Let h42 = 1
7 ( f42 − ( f6)

7). Then we have the following result, for which we are grateful to Andersen.

Theorem 5.6. The invariant ring of G34 over Ẑ7 is given by

Ẑ7[x1, . . . , x6]G34 = Ẑ7[ f6, f12, f18, f24, f30,h42].

Proof. A Magma program written and run by Andersen showed that each of these asserted generators is indecomposable
over Z/7. (This is what failed when f42 was used; it equals ( f6)

7 over Z/7.) Thus the result follows from (5.4). �
Since f36 is invariant under G34, it follows from (5.4) that it can be decomposed over C in terms of f6, f12, f18, f24,

and f30. The nature of the coefficients in this decomposition was not so clear. It turned out that all coefficients were rational
numbers which are 7-adic units. We make this precise in

Theorem 5.7. f36 can be decomposed as

q1 f6 f30 + q2 f12 f24 + q3 f 2
18 + q4 f 2

6 f24 + q5 f6 f12 f18 + q6 f 3
12 + q7 f 3

6 f18 + q8 f 2
6 f 2

12 + q9 f 4
6 f12 + q10 f 6

6

with

q1 = 944 610 925 401/15 161 583 716,

q2 = 733 671 261/19 519 520,

q3 = 243 068 633/9 781 739,
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q4 = −133 840 666 859 131 062 549/73 986 709 144 034 080,

q5 = −1 758 887 990 521 258 018 071 215 403/629 320 589 839 873 719 708 800,

q6 = −1 602 221 942 044 323/4 879 880 000 000,

q7 = 4 011 206 338 081 535 787 030 788 541/114 421 925 425 431 585 401 600,

q8 = 701 461 342 458 322 269 763 709 951 654 931/15 733 014 745 996 842 992 720 000 000,

q9 = −11 844 219 519 446 025 955 021 712 628 669/22 348 032 309 654 606 523 750 000,

q10 = 26 589 469 730 264 682 368 719 198 549 833/22 348 032 309 654 606 523 750 000.

Each of these coefficients qi is a 7-adic unit; i.e. no numerator or denominator is divisible by 7.

Proof. The ten products, f6 f30, . . . , f 6
6 , listed above are the only ones possible. We express each of these products as

a combination of monomial symmetric polynomials me . We use Magma to do this. The length of m(e1,...,er) is defined to
be r. We only kept track of components of the products of length � 4. This meant that we only had to include components
of length � 4 of the various f6k being multiplied.

There were 34 me ’s of length � 4. These correspond to the partitions of 36 into multiples of 3. (Note that monomials
with subscripts ≡ 1 or 2 mod 3 only occur for us if the length is 6. Not having to deal with them simplifies our work
considerably.) Indeed, there was one of length 1, six of length 2, twelve of length 3, and fifteen of length 4. Magma expressed
each monomial such as f6 f30 or f 6

6 as an integer combination of these, plus monomials of greater length. We just ignored in
the output all those of greater length. The coefficients in these expressions were typically 12 to 15 digits. We also wrote f36
as a combination of monomial symmetric polynomials of length � 4, ignoring the longer ones. This did not require any
fancy software, just the multinomial coefficients from Theorem 5.1.

Now we have a linear system of 34 linear equations with integer coefficients in 10 unknowns. The unknowns are the
coefficients qi in the equation at the beginning of Theorem 5.7, and the equations are the component monomials of length
� 4. Miraculously, there was a unique rational solution, as given in the statement of this theorem.

If it were not for the fact that the Conway–Sloane Theorem 5.4 guarantees that there must be a solution when all
monomial components (of length � 6) are considered, then we would have to consider them all, but the fact that we got
a unique solution looking at only the monomial components of length � 4 implies that this solution will continue to hold
in the other unexamined components. �

Next we wish to modify the generators in Theorem 5.6 to obtain generators of Q K 1(X34; Ẑ7). Similarly to Theorem 4.7,
we let �0(x) = ln(1 + x), and

Fi = Fi(x1, . . . , x6) = f i
(
�0(x1), . . . , f6

(
�0(x6)

))
. (5.8)

A major calculation is required to modify the classes Fi so that their coefficients are in Ẑ7; i.e. they do not have 7’s
in the denominators. As observed after (4.4), it will be enough to accomplish this through grading 42 (with grading of xi
considered to be 1).

Theorem 5.9. The following expressions are 7-integral through grading 42:

• F30 + 5
7 F36 + 22

72 F42;

• F24 + 4
7 F30 + 45

72 F36 + 104
73 F42;

• F18 + 3
7 F24 + 20

72 F30 + 157
73 F36 + 526

74 F42;

• F12 + 2
7 F18 + 45

72 F24 + 109
73 F30 + 1391

74 F36 + 6201
75 F42;

• F6 + 1
7 F12 + 22

72 F18 + 204
73 F24 + 1107

74 F30 + 9682
75 F36 + 100 682

76 F42 .

It was very surprising that just linear terms were needed here. Decomposable terms were certainly expected. The ana-
logue for G29 in Theorem 4.7 involved many decomposables. It would be interesting to know why Theorem 5.9 works with
just linear terms; presumably this pattern will continue into higher gradings.

Proof of Theorem 5.9. Similarly to the proof of Theorem 4.7, we define

F̃ i = F̃ i(x1, . . . , x6) = f i
(
�p(x1), . . . , �p(x6)

)
,

and observe that a polynomial in the F̃ i ’s is 7-integral if and only if the same polynomial in the Fi ’s is.
Next note that in the range of concern for Theorem 5.9 �7(x) = x + x7/7. If we define

hi = hi(x1, . . . , x6) = f i
(
x1 + x7

1, . . . , x6 + x7
6

)
,

then Theorem 5.9 is clearly equivalent to
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Statement 5.10. For t � 1 and grading � 42,

• h30 + 5h36 + 22h42 ≡ 0 mod 7t in grading 30 + 6t;
• h24 + 4h30 + 45h36 + 104h42 ≡ 0 mod 7t in grading 24 + 6t;
• h18 + 3h24 + 20h30 + 157h36 + 526h42 ≡ 0 mod 7t in grading 18 + 6t;
• h12 + 2h18 + 45h24 + 109h30 + 1391h36 + 6201h42 ≡ 0 mod 7t in grading 12 + 6t;
• h6 + h12 + 22h18 + 204h24 + 1107h30 + 9682h36 + 100 682h42 ≡ 0 mod 7t in grading 6 + 6t.

We use Maple to verify Statement 5.10. Our f i ’s are given in Theorem 5.1 in terms of me ’s. To evaluate me(x1 + x7
1, . . . ,

x6 + x7
6), the following result keeps the calculation manageable (e.g. it does not involve a sum over all permutations).

Partitions can be written either in increasing order or decreasing order; we use increasing. If (a1, . . . ,ar) is an r-tuple of
positive integers, let s(a1, . . . ,ar) denote the sorted form of the tuple; i.e. the rearranged version of the tuple so as to be in
increasing order. For example, s(4,2,3,2) = (2,2,3,4).

Proposition 5.11. The component of m(e1,...,er)(x1 + x7
1, . . . , x6 + x7

6) in grading
∑

ei + 6t is∑
j

P (e1 + 6 j1, . . . , er + 6 jr)

P (e1, . . . , er)

(
e1

j1

)
· · ·

(
er

jr

)
ms(e1+6 j1,...,er+6 jr ),

where j = ( j1, . . . , jr) ranges over all r-tuples of nonnegative integers summing to t, and P (a1, . . . ,ar) is the product of the factorials
of repetend sizes.

For example, P (4,2,3,3) = 2! because there are two 3’s, P (3,1,3,3,1,2) = 3!2!, and P (3,4,2,1) = 1.

Example 5.12. We consider as a typical example, the component of

m(3,3,9,15)

(
x1 + x7

1, . . . , x6 + x7
6

)
in grading 42. Table 5.13 lists the possible values of j and the contribution to the sum. The final answer is the sum of
everything in the right-hand column.

Proof of Proposition 5.11. m(e1,...,er)(x1 + x7
1, . . . , x6 + x7

6) is related to∑
σ

(
xe1
σ(1) +

(
e1

1

)
xe1+6
σ(1) +

(
e1

2

)
xe1+12
σ(1) + · · ·

)
· · ·

(
xer
σ(r) +

(
er

1

)
xer+6
σ(r) + · · ·

)
(5.14)

summed over all permutations σ in Σr . If t values of ei are equal, then (5.14) will give t! times the correct answer. That
is the reason that we divide by P (e). If (e1 + 6 j1, . . . , er + 6 jr) contains s equal numbers, then the associated m will be
obtained from each of s! permutations, which is the reason that P (e1 + 6 j1, . . . , er + 6 jr) appears in the numerator. �

We continue now with the proof of Theorem 5.9. At first, mimicking Theorem 4.7, we were allowing for products of
h’s in addition to the linear terms which appear in Statement 5.10, but it was turning out that what was needed to satisfy
the congruences was just the linear term. If just a linear term was going to work, the coefficients could be obtained by
just looking at monomials of length 1. They were computed by Maple, using that, by Theorem 5.1 and Proposition 5.11,
the coefficient of m(6k+6t) in h6k is (1 + (−1)k27k−1 · 5)

(6k
t

)
. Write the kth expression from the bottom of Statement 5.10 as∑

j�0 a j,kh6k+6 j . We require that the coefficient of m(6k+6t) in
∑t

j=0 a j,kh6k+6 j is 0 mod 7t . But this coefficient equals

t∑
j=0

a j,k

(
6k + 6 j

t − j

)(
1 + (−1)k+ j27k+ j−1 · 5

)
.

Table 5.13
Terms for Example 5.12

j Term

(2,0,0,0)
(3

2

)
m3,9,15,15

(0,2,0,0)
(3

2

)
m3,9,15,15

(0,0,2,0)
(9

2

)
m3,3,15,21

(0,0,0,2)
(15

2

)
m3,3,9,27

(1,1,0,0) 3 · 3 · 3m9,9,9,15

(1,0,1,0) 3 · 9m3,9,15,15

(1,0,0,1) 3 · 15m3,9,9,21

(0,1,1,0) 3 · 9m3,9,15,15

(0,1,0,1) 3 · 15m3,9,9,21

(0,0,1,1) 9 · 15m3,3,15,21
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We solve iteratively for a j,k , starting with a0,k = 1, and obtain the values in Statement 5.10. Note that it first gives
a1,1 ≡ 1 mod 7. If we had chosen a value such as 8 or −6 instead of 1, then the value of a2,1 would be different than 22.
So these numbers a j,k are not uniquely determined. These different choices just amount to choosing a different basis for

Q K 1(X34; Ẑ7).
Verifying Statement 5.10 required running many Maple programs. For each line of Statement 5.10, a verification had

to be made for each relevant t-value, from two t-values for the first line down to six t-values for the last line. Moreover,
for each of these pairs (line number, t-value), it was convenient to use a separate program for monomials of each length
2, 3, 4, and 5, and then, for monomials of length 6, it was done separately for those with subscripts congruent to 0, 1, or
2 mod 3. Thus altogether (2 + 3 + 4 + 5 + 6)(4 + 3) = 140 Maple programs were run. The programs had enough similarity
that one could be morphed into another quite easily, and a more skillful programmer could incorporate them all into the
same program.

Note that expanding from f j to h j does not change the number of components in monomials, nor does it change the
mod 3 value of the sum of the subscripts (i.e. exponents) in the monomials. This is simpler than the situation in the proof of
Theorem 5.7. The algorithm is quite easy. For each combination of h’s in Statement 5.10, replace each h6 j by the combination
of me ’s in f6 j in Theorem 5.1, but expanded using Proposition 5.11. �

To obtain the Adams operations in Q K 1(X34; Ẑ7), we argue similarly to the paragraph which precedes Theorem 4.8.
First note that F36 decomposes in terms of F6i ’s exactly as does f36 in terms of f6i ’s in Theorem 5.7. We can8 modify by
decomposables in dimensions greater than 42 to obtain 7-integral classes G6, G12, G18, G24, and G30 which agree with the
classes of Theorem 5.9 (with F36 decomposed) through dimension 42. There is also a 7-integral class G42 which agrees with
1
7 (F42 − (F6)

7) in dimension 42. These generate K ∗(B X34; Ẑ7) as a power series algebra. As in the preamble to Theorem 4.8,

then zi := B−1e∗(Gi+1) for i = 5, 11, 17, 23, 29, and 41 form a basis for Q K 1(X34; Ẑ7), and e∗ annihilates decomposables.
Similarly to the situation for (X29)5 in the proof of Theorem 4.8, if we let

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1
7 1 0 0 0 0

22
49

2
7 1 0 0 0

204
343

45
49

3
7 1 0 0

1107
2401

109
343

20
49

4
7 1 0

16 647
16 807

1399
2401

183
343

6
49

1
7 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

then the matrix of ψk on the basis {z5, z11, z17, z23, z29, z41} is

P−1 diag
(
k5,k11,k17,k23,k29,k41)P .

The entries in the last row of P are 7 times the coefficients of F42 in Theorem 5.9 reduced mod 1. Those coefficients were
multiplied by 7 because z41 is related to 1

7 F42 rather than to F42.
Using this, we compute the v1-periodic homotopy groups, similarly to Theorem 4.9. Note the remarkable similarity with

that result. Here, of course, ν(−) denotes the exponent of 7 in an integer.

Theorem 5.15. The groups v−1
1 π∗(X34)(7) are given by

v−1
1 π2t−1(X34) ≈ v−1

1 π2t(X34) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t �≡ 5 (6),

Z/75, t ≡ 5,35 (42),

Z/7min(12,5+ν(t−11−12·76)), t ≡ 11 (42),

Z/7min(18,5+ν(t−17−18·712)), t ≡ 17 (42),

Z/7min(24,5+ν(t−23−18·718)), t ≡ 23 (42),

Z/7min(30,5+ν(t−29−12·724)), t ≡ 29 (42),

Z/7min(42,5+ν(t−41−24·736)), t ≡ 41 (42).

Proof. The group v−1
1 π2t(X)(7) is presented by

( (ψ7)T

(ψ3)T −3t I

)
, since 3 generates Z/49× . We let x = 3t and form this matrix

analogously to (4.10). Five times we can pivot on units, removing their rows and columns, leaving a column matrix with
7 polynomials in x. The 7-exponent of v−1

1 π2t(X)(7) is the smallest of that of these polynomials (with x = 3t ). This will
be 0 unless x ≡ 5 mod 7, which is equivalent to t ≡ 5 mod 6. We find that two of these polynomials will always yield,
between them, the smallest exponent. Similarly to (4.11) and Table 4.12, we write these polynomials as pi(3m + y) for
carefully-chosen values of m. Much preliminary work is required to discover these values of m. Ignoring unit coefficients
and ignoring higher-power terms whose coefficients will be sufficiently divisible that they will not affect the divisibility,
these polynomials will be as in Table 5.16.

8 But we need not bother to do so explicitly.
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Table 5.16
Certain pi(3m + y) (linear part only)

m p1 p2

5, 35 75 + 74 y 7�12 + 711 y

11 + 12 · 76 712 + 74 y 712 + 711 y
17 + 18 · 712 718 + 74 y 718 + 711 y
23 + 18 · 718 725 + 74 y 724 + 711 y
29 + 12 · 724 731 + 74 y 730 + 711 y
41 + 24 · 736 743 + 74 y 742 + 711 y

The claim of the theorem follows from Table 5.16 by the same argument as was used in the proof of Theorem 4.9. For t
in the specified congruence, if 3t = 3m + y, then ν(y) = ν(t − m) + 1 � 2, similarly to (4.13). For example, if t ≡ 11 mod 42,
and 3t = 311+12·76 + y, then ν(y) = ν(t −11−12 ·76)+1. Thus min(ν(p1(3t)), ν(p2(3t))) will be determined by the 75 in p1
if t ≡ 5,35 (42), while in the other cases, it is determined by the 74 y in p1 or the constant term in p2.

The groups v−1
1 π2t−1(X34) are cyclic by an argument similar to the one described at the end of the proof of Theorem 4.9,

and have the same order as v−1
1 π2t(X34) for the standard reason described there. �

Similarly to the discussion preceding Theorem 4.15, one of the factors in the product decomposition of SU(42)7 given
in [31] is an H-space B7

5(7) whose F7-cohomology is an exterior algebra on classes of grading 11, 23, 35, 47, 59, 71, and 83,
and which is built from spheres of these dimensions by fibrations. Using [40], we can obtain a degree-1 map B7

5(7) → S71.
Let B7 := B(11,23,35,47,59,83) denote its fiber. The following result was conjectured by the author and proved by John
Harper. Its proof will be described in the last line of the paper.

Theorem 5.17 (Harper). There is a homotopy equivalence (X34)7 � B7 .

6. Proofs provided by John Harper

In this section, we provide proofs of Theorems 4.15, 4.20, and 5.17, which were explained to the author by John Harper.
We begin with the following strengthening of Theorem 3.7.

Theorem 6.1. Theorem 3.7 is true for r � p − 1.

Proof. Although the proof presented in [15] works for r = p − 1 just as it does for r < p − 1, we take this opportunity to
explain some aspects of it more thoroughly. For λ �= 0 ∈ Z/p, a πλ-space (resp. Q λ-space) is one which admits a self-map
inducing multiplication by λ in π∗(−) ⊗ Z/p (resp. Q H∗(−;Z/p)). A πλ-map (resp. Q λ-map) is a map between spaces of
the indicated type which commutes up to homotopy with the self-maps.

The first part of the proof, extending [15, Theorem 1.3], involves showing that if X is an H-space of rank r � p − 1
and with torsion-free homology, then there is a πλ-map X → Sn whose homotopy fiber Y is an H-space of rank r − 1
with torsion-free homology. The proof of this is exactly as in [15, p. 358], noting that [41, 4.2.2] is valid (and stated) for
r = p − 1 as well as for r < p − 1. That Y is an H-space follows from [15, Theorem 1.1] since its rank is less than p − 1. This
construction can be iterated to yield (3.8).

We use Lemma 6.2 to deduce the part of Theorem 6.1 which says that the homotopy type of X is determined by certain
homotopy classes. Suppose we have (3.8) and a primed version. Suppose we have shown that Xi and X ′

i are p-equivalent H-
spaces and that the elements α ∈ πni+1−1(Xi) and α′ ∈ πni+1−1(X ′

i) correspond under this equivalence. Then, in the notation
of Lemma 6.2, there are equivalences as πλ-spaces

Xi+1 � (Xi)
α � (

X ′
i

)α′ � X ′
i+1.

If i + 1 < p − 1, then by [15, Theorem 1.1], there are p-equivalent H-space structures on Xi+1 and X ′
i+1, extending the

induction. Note that for X p−1 and X ′
p−1 we do not assert an equivalence as H-spaces, only as πλ-spaces. �

Lemma 6.2. Suppose Y → X
g−→ Sn is a fibration, with X a πλ-space and Y an H-space with rank(Y ) < p − 1. Let α ∈ πn−1(Y )

denote ∂(ιn) in the homotopy sequence of the fibration. As in [15, p. 351], let Y α = Dn+ × Y ∪c Dn− × Y , where c(x, y) = (x,α(x)y),
using the H-space multiplication of Y . Then there is a homotopy equivalence X � Y α which is a πλ-map.

Proof. We expand on some aspects of the proof given in [15, p. 358] and correct several confusing typos. As explained
there, Y α is a πλ-space and admits an inclusion Y ∪α en ↪→ Y α .

On the other hand, the given fibration is fiber homotopy equivalent to Y → X ′ → Sn , with X ′ = Dn+ × Y ∪γ Dn− × Y ,
where γ : Sn−1 × Y → Sn−1 × Y is the clutching function defined by the homotopy equivalences Dn± × Y → g−1(Dn±). We
will work with X ′ , but in the end may replace it with X . Note that X ′ inherits the πλ-structure of X .
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Since γ |Sn−1 × {∗} represents α, the relative n-skeleta (Y α, Y )n and (X ′, Y )n both equal Y ∪α en . Thus the nth stages
of the Postnikov systems of Y α and X ′ are built from the same Eilenberg–MacLane spaces and same k-invariants, and so
there exists a πλ-map (Y α)n → (X ′)n of these nth stages, inducing a cohomology isomorphism in dimension � n. We wish
to show that this extends to a πλ-map Y α → X ′ , which will then be a homotopy equivalence by the Five Lemma applied to
the homotopy sequences of the fibrations Y → Y α → Sn and Y → X ′ → Sn , and Whitehead’s theorem.

This requires that we consider the primitive Postnikov systems (PPS) of the map X ′ → (X ′)n . The primitive Postnikov
system, as described, for example, in [27, p. 426ff], applies to a rational equivalence, and gives a Postnikov tower in which
all fibers are mod p Eilenberg–MacLane spaces. Our map X ′ → (X ′)n is a rational equivalence because the only infinite
homotopy groups of the spheres that build X ′ are present in (X ′)n . By [15, Lemma 2.8], the maps in the PPS are πλ-maps.
We will also use that, by [15, Lemma 2.4], all our πλ-maps are also Q λ-maps.

We will show that the composite Y α → (Y α)n → (X ′)n lifts through the PPS of X ′ → (X ′)n . Assume there is a lifting
to a πλ-map Y α → Es , where Es is some stage in the PPS. Since the k-invariants in the PPS are λ-eigenvectors by [15,
Lemma 2.8], so are their images in H∗(Y α;Fp). A basis for H∗(Y α;Fp) consists of products of no more than p−1 generators,
each of which is a λ-eigenvector for the Q λ-map of Y α . An element in this basis which is not one of the generators is a
λi-eigenvector for some 2 � i � p − 1. Since, for such i, λi �≡ λ mod p, we deduce that a nonzero image of a k-invariant
can only equal one of the generators9 of H∗(Y α;Fp). However, the k-invariants are in dimension greater than that of the
generators of H∗(Y α;Fp). We conclude that the image of the k-invariants must equal 0, and so the map lifts to Y α → Es+1.
By [15, 2.7], this lifting may be chosen to be a πλ-map. Since the PPS has only finitely many stages through dim(Y α), we
obtain the desired lifting Y α → X ′ . �

We now apply these general results to our specific situations.

Proof of Theorem 4.20. Both spaces (X31)5 and X0(E8) are H-spaces with mod-5 cohomology an exterior algebra on classes
of dimension 15, 23, 39, and 47. By Theorem 6.1, there exist diagrams of fibrations

S15 X2

f2

X3

f3

(X31)5

f4

S23 S39 S47

and

S15 X ′
2

f ′
2

X ′
3

f ′
3

X0(E8)

f ′
4

S23 S39 S47

and the homotopy types of the spaces are determined by relevant elements of homotopy groups.
Always localized at 5, we have π22(S15) ≈ Z/5 generated by α1. The elements in π22(S15) which determine both X2

and X ′
2 are nonzero multiples of α1, and so by Theorem 3.7 we obtain an equivalence X ′

2 � X2. The claim about these ho-
motopy classes is proven for (X31)5 from the entry in position (2,1) in the Adams operation matrix in Theorem 4.18; Adams’
e-invariant says that α1 attaching maps are present iff the relevant Adams operation involves u(kn −kn+p−1)/p with u a unit.
Similarly for X0(E8), the presence of α1 can be deduced from the Adams operations in E8 as given in [17, Proposition 3.5],
although here the well-known Steenrod algebra action in H∗(E8) also implies the attaching map. We now identify X ′

2
with X2 in our notation.

The homomorphism π38(X2) → π38(S23) is a surjection Z/25 → Z/5. See, e.g., Diagram 3.5. The 1
5 (k11 − k19) in posi-

tion (3,2) of Theorem 4.18 and in the formula for ψk(x11) in [17, Proposition 3.5] tell that in both of our sequences, the
determining element of π38(X2) is a generator, i.e., it maps to α2 ∈ π38(S23), and so, by Theorem 3.7, there is a homotopy
equivalence X3 � X ′

3. This is probably the only place that any of our calculations with (X31)5 are required in proving The-
orem 4.20. The α1 attaching maps can be seen by Steenrod operations, but α2 requires secondary operations, which were
used in [23] to see the α2 attaching map in X0(E8), or Adams operations in K -theory, as we have done.

We identify X3 and X ′
3. The homomorphism π46(X3) → π46(S39) is a surjection Z/53 → Z/5. (The cyclicity of π46(X3)

can be proved easily using [17, Proposition 5.5].) As in the previous two paragraphs, Adams operations imply that our deter-
mining element in both sequences is a generator, i.e., it maps to α1 ∈ π46(S39), and so we obtain the asserted equivalence
from Theorem 6.1. �
Proof of Theorem 4.15. We first show that the map B5

3 → S31 described prior to Theorem 4.15 can be chosen to be a
πλ-map. By [15, Lemma 2.8], the generating map S31 → Z(Z,31) has a PPT in which all maps are πλ-maps. The map

9 Or a linear combination of generators in the same dimension.
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B5
3

g−→ K (Z,31) is a πλ-map, since π31(B5
3) is cyclic. By [40], g lifts to a map B5

3 → S31. By the Lifting Theorem [15, 2.7a],
this lifting, through each stage of the PPT, is a πλ-map.

Thus, by [15, Lemma 2.3], the space which we call B(7,15,23,39) in Theorem 4.15 is a πλ-space. Let f denote the
composite B(7,15,23,39) → B5

3 → SU(20) → S39. Its fiber, B3
3 = B(7,15,23), is one of the four factors in SU(12)5, and

hence is an H-space.
On the other hand, Theorem 6.1 yields fibrations of H-spaces, localized at 5,

S7 X2 X3 (X29)5

S15 S23 S39.

(6.3)

We can almost apply Theorem 6.1 to obtain the desired equivalence of (X29)5 and B(7,15,23,39). The only thing missing
is that we do not know that B(7,15,23,39) is an H-space.

Instead, we first use Theorem 3.7 to show that X3 (of (6.3)) and B3
3 are homotopy equivalent H-spaces. Note that in

the proof of Theorem 6.1 we obtained equivalent H-structures as long as the rank was less than p − 1. In this case, the
homotopy classes that must correspond are, in both cases, α1 ∈ π14(S7)(5) ≈ Z/5 and a generator of π22(B(7,15)) ≈ Z/25,
mapping to α1 ∈ π22(S15). The α1’s in B3

3 are well known by the action of P1, while in X3 they may be deduced from
entries in the matrix of Theorem 4.8 in positions (2,1) and (3,2).

For the fibrations X3 → (X29)5 → S39 and B3
3 → B(7,15,23,39) → S39, the relevant homotopy groups, always localized

at 5, π38(X3) and π38(B3
3), are both Z/53, and the relevant classes are generators, which we will call α2 since they each

map to α2 ∈ π38(S23). This is seen for X3 from the entry in position (4,3) of the matrix of Theorem 4.8, while for B3
3

it can be obtained from the Adams operation calculation in [35, pp. 667–668]. Thus, by Lemma 6.2, we have homotopy
equivalences

(X29)5 � (X3)
α2 � (

B3
3

)α2 � B(7,15,23,39),

as desired. �
The proof of Theorem 5.17 is entirely analogous, and is omitted.
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