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a b s t r a c t

This paper contains an explicit computation of the KO∗-ring structure of an m-fold
product of CP∞, the Davis–Januszkiewicz spaces and of toric manifolds which have trivial
Sq2-homology. A key ingredient is the stable splitting of the Davis–Januszkiewicz spaces
given by Bahri et al. (2009, 2010) [6,7].

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The term ‘‘toric manifolds’’ in this paper refers to the topological spaces whose detailed information may be found in
[15,11] and a brief description is given in Section 6. These spaces are also called ‘‘quasitoric manifolds’’ and include the class
of all non-singular projective toric varieties.

An n-torus T n acts on a toric manifold M2n with quotient space a simple polytope Pn having m codimension-one faces
(facets). Associated to Pn is a simplicial complex KP on vertices {v1, v2, . . . , vm}with each vi corresponding to a single facet
Fi of Pn. The set {vi1 , vi2 , . . . , vik} is a simplex in KP if and only if Fi1 ∩ Fi2 ∩ · · · ∩ Fik ≠ ∅.

The classifying space of the real n-torus T n is denoted by BT n. Associated to the torus action is a Borel-space fibration

M2n
−→ ET n

×Tn M2n p
−→ BT n. (1.1)

Of course here, BT n
= CP∞ × CP∞ × · · · × CP∞, (n factors).
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The homotopy type of the Borel space ET n
×Tn M2n depends on KP only. It is referred to as the Davis–Januszkiewicz space

of KP and is denoted by the symbol DJ(KP). More generally, a Davis–Januszkiewicz space exists for any simplicial complex
K ; Section 5 contains more details about this generalization. The convention following is adopted throughout.
Convention: All generalized homology and cohomology theories are considered reduced.

It is known for any complex-oriented cohomology theory E∗ that,

E∗(DJ(KP)) = E∗(BTm)/IESR (1.2)

where IESR is an ideal in E∗(BTm) described next. In this context, the two-dimensional generators of the graded ring E∗(BTm)

are denoted by {v1, v2, . . . , vm}. The ideal IESR is generated by all square-free monomials vi1vi2 · · · vis corresponding to
{vi1 , vi2 , . . . , vis} /∈ KP . The ring (1.2) is called the E∗-Stanley–Reisner ring.

For a toric manifoldM2n an argument, based on the collapse of the Atiyah–Hirzebruch–Serre spectral sequence for (1.1),
yields an isomorphism of E∗-algebras

E∗(M2n) ∼= E∗(DJ(KP))

JE (1.3)

where the ideal JE is generated by p∗(E2(BT n)) and therefore by the E-theory Chern classes of certain associated line bundles,
([12], page 18 and [13], page 6).

For the case of non-singular compact projective toric varieties and E equal to ordinary singular cohomologywith integral
coefficients (E = HZ), this is the celebrated result of Danilov and Jurkiewicz [14]. The E = HZ version for the topological
generalization of compact smooth toric varieties, is due to Davis and Januszkiewicz [15]. For certain singular toric varieties,
the results of [14,23] cover also the case E = HQ.

The question of an analogue of (1.3) for a non-complex-oriented theory arises naturally. The obvious first candidate is
KO-theory. The ring structure of

KO∗(BTm) = KO∗


m
i=1

CP∞


(1.4)

does not seem to appear in the literature for m > 2. The thesis of Dobson [17] investigates the ring structure for the case
m = 2. The KO∗-algebra structure of KO∗(CPn) is deduced in [13] from the seminal work of Fujii [18]. There, the calculation
is extended to KO∗(CP∞) in the context of the theorem of Wood, which is applied also in Section 2.

The fact that KO∗(BTm) is torsion free and concentrated in even degree, was known to D.W. Anderson, whose thesis [2]
appeared in 1964.

Two different presentations for the ring KO∗(BTm) are given in Sections 3 and 4. Following Atiyah and Segal [4], these
provide a description of the completion of the representation ring RO(Tm) at the augmentation ideal. The calculation herein
may be interpreted in that context, along the lines of Anderson [3]. In particular, the fact that the complexification map and
the realification map

c : KO∗(BTm) −→ KU∗(BTm) (1.5)
r : KU∗(BTm) −→ KO∗(BTm) (1.6)

are injective and surjective respectively, is used throughout. This follows from the Bott exact sequence

· · · −→ KO∗+1(X)
·e
−→ KO∗(X)

χ
−→ KU∗+2(X)

r
−→ KO∗+2(X) −→ · · · (1.7)

where χ is complexification (1.5) followed by multiplication by the Bott element v−1. Since KO∗(BTm) is concentrated in
even degree, the Bott sequence implies that the realification map r is surjective and complexification c is injective. They are
related by

(r ◦ c)(x) = 2x and (c ◦ r)(x) = x+ x. (1.8)

The complexity of the calculation is a result of the fact that the realification map r is not a ring homomorphism. The
first presentation generalizes the methods of [17]. A companion result is given for KO∗(

m
i=1 CP∞). The second approach

produces generators better suited to the task of giving a description of KO∗(DJ(KP)) in terms of KO∗(BTm). The results of
[5] are used then to give a description of KO∗(M2n) analogous to (1.3) for any toric manifold which has no Sq2-homology.

The group structure of KO∗(
m

i=1 CP∞) is much more accessible than the ring structure. The Adams spectral sequence
yields a concise description in terms of the groups KU∗(

k
i=1 CP∞) with fewer smash product factors. This is discussed in

the next section.
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2. The group structure of KO∗(
m

i=1 CP∞)

2.1. The ko-homology

The calculation begins with the determination of ko∗(BTm), the connective ko-homology corresponding to the spectrum
bo. The main tool is the Adams spectral sequence. It is used in conjunction with the following equivalence, which is well
known among homotopy theorists and extends a result of Wood. Let bu denote the spectrum corresponding to connective
complex k-theory.

Theorem 2.1. There is an equivalence of spectra
∞
k=0

Σ4k+2bu −→ bo ∧ CP∞.

Proof. Background information about the Adams spectral sequence in connection with ko-homology calculations may be
found in [5] or [9]. A change of rings theorem implies that the E2-term of the Adams spectral sequence for ko∗(CP∞) =
π∗(bo ∧ CP∞) depends on the A1-module structure of H∗(CP∞;Z2) where A1 denotes the sub-algebra of the Steenrod
algebra A generated by Sq1 and Sq2.

As an A1-module, H∗(CP∞;Z2) is a sum of shifted copies of H∗(CP2
;Z2). Consequently, the E2-term of the spectral

sequence is a sum of shifted copies of Exts,tA1
(H∗(CP2

;Z2),Z2) and so has classes in even degree only. Hence, the spectral
sequence collapses. A non-trivial class in each π4k+2(bo ∧ CP∞) is represented in the E2-term by a generator of dimension
4k+ 2 in filtration zero. The η-extension on this class is trivial as the E2-term is zero in odd degree. So the map

S4k+2 −→ bo ∧ CP∞ (2.1)

extends over a (4k+ 4)-cell e4k+4 attached by the Hopf map η. This gives a map

Σ4kCP2
= S4k+2 ∪η e4k+4 −→ bo ∧ CP∞ (2.2)

which extends to

s :
∞
k=0

Σ4kCP2
−→ bo ∧ CP∞. (2.3)

Smashing with bo and composing with the product map bo ∧ bo
µ
−→ bo gives

bo ∧


∞
k=0

Σ4kCP2


1∧s
−→ bo ∧ bo ∧ CP∞

µ∧1
−−→ bo ∧ CP∞. (2.4)

The equivalence of spectraΣ2bu→ bo ∧ CP2, due to Wood and cited in [1] (page 206), is used next to give a map

g :
∞
k=0

Σ4k+2bu −→ bo ∧ CP∞. (2.5)

This map induces an isomorphism of stable homotopy groups and hence gives the required equivalence of spectra. �

Remark. An equivalence of the form (2.4) follows also from the methods of [19] and the fact that twice the Hopf bundle
over CP∞ is a Spin bundle and therefore ko-orientable.

The next corollary follows immediately.

Corollary 2.2. There is an isomorphism of graded abelian groups
∞
k=0

Σ4k+2


KU∗


m
i=2

CP∞

−→ KO∗


m
i=1

CP∞

.

Notice here that the summands on the left hand side are the underlying groups of a tensor product of divided power algebras
each of which is dual to a polynomial algebra.

Recall next that there are classes e ∈ ko1, α ∈ ko4, β ∈ ko8 so that

ko∗ = Z[e, α, β]/⟨2e, e3, eα, α2
− 4β⟩ (2.6)

and a class v ∈ ku2 so that

ku∗ = Z[v]. (2.7)
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Remark 2.3. An examination of the E2-term of the Adams spectral sequence for ko∗(CP2) reveals that the action of ko∗ on
ko∗(CP2) ∼= ku∗ is given by

e · 1 = e · v = 0, α · 1 = 2v2, β · 1 = v4. (2.8)

This coincides with the module action of ko∗ on ku∗ given by the ‘‘complexification’’ map, ([17], page 16).

2.2. From ko-homology to KO-cohomology

One consequence of the calculation above is that the Bott element β acts as a monomorphism on ko∗(
s

i=1 CP∞) and so
can be inverted to get the periodic KO-homology of

s
i=1 CP∞.

Proposition 2.4. There is an isomorphism of abelian groups

∞
k=0

KU∗+4k+2


m
i=2

CP∞

−→ KO∗


m
i=1

CP∞

.

Proof. The result follows from Corollary 2.2 and Remark 2.3. �

The proof of Theorem 2.1 works equally well in the dual situation. Let D(CP2n) denote the S-dual of CP2n. Aside from a
dimensional shift, H∗(D(CP2n);Z2), as an A1-module, is isomorphic to a sum of suspended copies of H∗(CP2

;Z2). So, the
Adams spectral sequence forπ∗(bo∧D(CP2n)) collapses for dimensional reasons. The argument of Theorem2.1 goes through
essentially unchanged to give an equivalence of spectra

g :
n

k=1

Σ−4kbu −→ bo ∧ D(CP2n). (2.9)

The next lemma, which follows directly from the discussion in Section 2.1, records the fact that (2.9) is natural with respect
to the inclusion

CP2n ⊂
−→ CP2(n+1).

Lemma 2.5. The diagram following commutes
n

k=1
Σ−4kbu

g
−−−−→ bo ∧ D(CP2n)φ ψ


n+1
k=1

Σ−4kbu
g

−−−−→ bo ∧ D(CP2(n+1))

(2.10)

where the map φ collapsesΣ−4(n+1)bu to a point and ψ is induced by the inclusion

CP2n ⊂
−→ CP2(n+1). �

The duality result from [1, Proposition 5.6], implies

D


m
i=1

CP2n


≃

m
i=1

D(CP2n). (2.11)

From this follows an isomorphism of abelian groups, analogous to Proposition 2.4 for finite projective spaces,

n
k=1

KU∗−4k


D


m
i=2

CP2n


−→ KO∗


D


m
i=1

CP2n


(2.12)

and so an isomorphism

n
k=1

KU∗+4k


m
i=2

CP2n


−→ KO∗


m
i=1

CP2n


. (2.13)

The next result extends (2.13) to
m

i=1 CP∞.
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Proposition 2.6. There are isomorphisms

KO∗


m
i=1

CP∞

∼= lim

←−
n

KO∗


m
i=1

CP2n


and

∞
k=1

KU∗+4k


m
i=2

CP∞

∼= lim

←−
n

n
k=1

KU∗+4k


m
i=2

CP2n


.

Proof. It follows from the calculations above that the maps in the inverse limit arising from

KO∗
 m

i=1

CP2(n+1)

−→ KO∗

 m
i=1

CP2n


and
n+1
k=1

KU∗+4k


m
i=2

CP2(n+1)


−→

n
k=1

KU∗+4k


m
i=2

CP2n


(induced from the maps ψ and φ of diagram (2.10)) are all surjective. Thus the Mittag-Leffler condition is satisfied and the
lim←−

n
1 terms are zero. �

Finally, Lemma 2.5 implies that the isomorphisms (2.13) are compatible with the maps in the inverse limits and so yield
the main result of this section.

Theorem 2.7. There is an isomorphism of graded abelian groups
∞
k=1

KU∗+4k


m
i=2

CP∞

−→ KO∗


m
i=1

CP∞

.

3. The algebra KO∗(BTm)

This section contains the first of two descriptions of the algebra KO∗(BTm). It extends the calculation done in [17] for
the case m = 2. Section 3.4 is an addendum to this section which incorporates pertinent observations made by the referee
about the calculation.

3.1. Notation and statement of results

Here, as in Section 1,

BTm ∼=

m
i=1

CP∞.

The two sets of generators presented for KO∗(BTm) have contrasting advantages. The first description yields generators
which are slightly complicated but the relations among them are fairly straightforward. This situation is reversed in the
second description.
The complexification and realification maps, (1.5) and (1.6), are denoted again by c and r respectively.

Let α ∈ KO−4 and β ∈ KO−8 be the elements arising from (2.6), for which α2
= 4β . Let v ∈ KU−2 be the Bott element,

which satisfies r(v2) = α and c(α) = 2v2. Let BTm
+
denote the disjoint union of BTm with a point. The generators ofKU0(BTm

+
)

are denoted by xi for i = 1, . . . ,m so that KU0(BTm
+
) ∼= Z[[x1, . . . , xm]].

More notation is established next.

Definition 3.1. Consider the set N = {1, . . . ,m} and let S ⊆ N . Then

(1) set min(S) = min{i : i ∈ S},
(2) let |S| denote the cardinality of S,
(3) for s ∈ {0, 1, 2}, let X (s)S = r(vs


i∈Sxi) ∈ KO−2s(BTm),

(4) let XS = X (0)S and Xi = X{i} = r(xi),
(5) for s ∈ {0, 1}, let X (s)∅ = 1+ (−1)s,
(6) for s ∈ {0, 1}, letM(s)

S = X (s)S ·


i∈N\SXi andMS = M(0)
S .

(7) BTm
=
m

i=1 CP∞ and
(8) Z[[−]] denotes the augmentation ideal of a power series ring.
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Theorem 3.2. There is an isomorphism of graded rings

KO∗(BTm) ∼= Z[γ±1] ⊗ Z[[XS, X
(1)
S : ∅ ≠ S ⊆ N]]/∼

where γ is an element with |γ | = −4 satisfying 2γ = α and γ 2
= β . Here∼ refers to the two families of relations (I) and (II).

(I) If A, B and C are disjoint subsets of N and 0 ≤ s, t ≤ 1, then

X (s)A∪BX
(t)
A∪C =


i∈A

Xi ·


T⊆A

X (s+t)T∪B∪C + (−1)
s+|A∪B|


S⊆B

(−1)|S|


i∈S

Xi


X (s+t)C∪B\S


.

Here B, C, S, T may be empty, X (2)S = γ XS and products over empty sets are considered equal to 1.
(II) For i < min(S), |S| > 1 and s ∈ {0, 1},

XiX
(s)
S = (−1)

s

T⊆S


(−1)|T |


j∈S\T

Xj


· X (s)
{i}∪T


+ X (s)
{i}∪S .

Again, T may be empty.

In particular, KO∗(BTm) is a finite direct sum of free KO∗-modules over power series rings.

Remark 3.3. The element γ is introduced here for notational convenience. It arises naturally in the Adams spectral sequence
and has the property that γ r(x) = r(v2x) for all x ∈ KU0(BTm). The use of γ may be removed in Theorem 3.2 and in
Corollary 3.4, by allowing the choice of the exponent s in Definition 3.1 to be unrestricted.

Relations (I) allow the elimination of all products X (u)U X (v)V with |U| and |V | both greater than 1, reducing everything to
products of Xi’s times at most one X (w)W with |W | > 1. Relations (II) allow the elimination of XiX

(w)
W with |W | > 1 and

i < min(W ). Notice that for a product Xi1Xi2 · · · XikX
(w)
W , (II) need be performed once only for just one Xij with minimal ij.

The next corollary is now immediate.

Corollary 3.4. Every element of KO∗(BTm) can be expressed as a formal sum of terms from

G1 =


γ j
 m

i = min(S)

X ei
i


X (s)S : S ⊆ N, S ≠ ∅, ei ≥ 0, j ∈ Z and s ∈ {0, 1}


.

The example below follows easily from Theorem 3.2.

Example 3.5. For s ∈ {0, 1}, KO−(4j+2s)(BT 2) has a basis

G1 =


γ jX e2

2 X (s)2 , γ
jX e1

1 X e2
2 X (s)1 , γ

jX e1
1 X e2

2 X (s)
{1,2} : e1, e2 ≥ 0


.

The following relations determine all products among these basis elements. Here s ∈ {0, 1} and i ∈ {1, 2}. Recall X (2)S = γ XS .

X{1,2}X{1,2} = X1X2(X{1,2} + X1 + X2 + 4)
X (s)
{1,2}X

(1)
{1,2} = X1X2(X

(s+1)
{1,2} + X (s+1)1 + X (s+1)2 )

X (1)i X (1)i = γ (X
2
i + 4Xi)

X (s)1 X (1)2 = 2X (s+1)
{1,2} − X2X

(s+1)
1

X (1)1 X (1)
{1,2} = γ X1(2X2 + X{1,2}).

The first two relations are of type (I); the last three are of type (II).

Remark. The case m = 2 is done in [17]. The example above agrees with Proposition 8.2.20 in [17] after certain
typographical errors are corrected. (These include replacing all the equal signs with minus signs and correcting the formula
for ‘‘w2iw2j’’ so that it is consistent with Lemma 8.2.8 in the same document.)

A closely related result gives KO∗(BTm
).

Theorem 3.6. KO−(4j+2s)(BTm
) is a free module over Z[[X1, . . . , Xm]] on

γ jM(s)
S : 1 ∈ S ⊆ N


.

The product M(s)
S1

M(t)
S2

can be computed in terms of this basis from the relations (I) and (II) of Theorem 3.2.
Relations (I) and (II) of Theorem 3.2 are proved next. This is followed by an identification of the terms given by

Theorem 3.6 with those appearing in Theorem 2.7. Finally, Theorem 3.2 is derived from Theorem 3.6.
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3.2. The proof of relations (I) and (II)

The complexification map c is injective and so it suffices to prove relations (I) and (II) after c is applied. For convenience,
the relations will be verified in the ring KU∗(BTm)with the classes {zi =

√
1+ xi : i = 1, . . . ,m} adjoined.

c(X (s)S ) = v
s

i∈S

xi + vs

i∈S

xi

= vs


i∈S

xi


1+ (−1)s+|S|


i∈S

1
1+ xi


= vs


i∈S

 xi
√
1+ xi


·


i∈S


1+ xi + (−1)s+|S|


i∈S

1
√
1+ xi


= vs


i∈S

 z2i − 1
zi


·


i∈S

zi + (−1)s+|S|

i∈S

1
zi


= vs


i∈S


zi −

1
zi


·


i∈S

zi + (−1)s+|S|

i∈S

1
zi


.

More notation is introduced next.

Definition 3.7. Let A, S, and T be disjoint subsets of N . Then

1. Let

w
(s)
A,S,T :=


j∈A

z2j


j∈S

zj



j∈T

zj
+ (−1)s+|S∪T |


j∈T

zj
j∈A

zj2


j∈S
zj

 ,
2. for A = ∅, setw(s)S,T = w

(s)
∅,S,T and for T = ∅,w(s)S = w

(s)
S,∅,

3. setwi = w
(0)
{i} = zi −

1
zi
.

Notice that in this new notation, the calculation above is

c(X (s)S ) = v
s


i∈S

wi


w
(s)
S .

Recall that if A, B and C are disjoint subsets of N and 0 ≤ s, t ≤ 1, relation (I) is

X (s)A∪BX
(t)
A∪C =


i∈A

Xi ·


T⊆A

X (s+t)T∪B∪C + (−1)
s+|A∪B|


S⊆B

(−1)|S|


i∈S

Xi


X (s+t)C∪B\S


. (3.1)

Applying c and dividing both sides by vs+t

i∈A
w2

i

 
i∈B∪C

wi

makes (3.1) equivalent to

w
(s)
A∪Bw

(t)
A∪C =


T⊆A


i∈T

wi


w
(s+t)
T∪B∪C


+ (−1)s+|A∪B|


S⊆B

(−1)|S|


i∈S

wi


w
(s+t)
C∪B\S . (3.2)

The left hand side of (3.2) is checked easily to satisfy

w
(s)
A∪Bw

(t)
A∪C = w

(s+t)
A,B∪C,∅ + (−1)

s+|A∪B|w
(s+t)
C,B . (3.3)

The first term on the right hand side of (3.2) satisfies
T⊆A


i∈T

wi


w
(s+t)
T∪B∪C


=


T⊆A


R⊆T

(−1)|T\R|w(s+t)R,B∪C,∅


, (3.4)

where R ⊆ T is defined by the fact that T \ R is the set of i’s in T for which the second term of wi = zi − 1
zi
is chosen in the

product


i∈T wi. With T satisfying R ⊆ T ⊆ A, the order of summation on the right hand side of (3.4) is rearranged to give
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T⊆A


R⊆T

(−1)|T\R|w(s+t)R,B∪C,∅


=


R⊆A

w
(s+t)
R,B∪C,∅


T⊆A

(−1)|T\R|

. (3.5)

Now
T⊆A

(−1)|T\R| =
|A\R|
j=0

(−1)j

|A \ R|

j


. (3.6)

Here, the binomial coefficient on the right hand side counts the number of sets T , R ⊆ T ⊆ A satisfying |T \ R| = j. Notice
that the right hand side is zero unless A = R in which case it equals 1. So now (3.4) implies that the first term on the right
of (3.2) isw(s+t)A,B∪C,∅ which is the first term on the right hand side of (3.3).

The second term on the right hand side of (3.2) is analyzed similarly. With S satisfying U ⊆ S ⊆ B,

(−1)s+|A∪B|

S⊆B

(−1)|S|


i∈S

wi


w
(s+t)
C∪B\S = (−1)

s+|A∪B|

S⊆B


(−1)|S|


U⊆S

(−1)|U|w(s+t)C∪B\U,U


(3.7)

where here S \ U is the set of i’s in S for which the second term ofwi = zi − 1
zi
is chosen in the product


i∈S wi. Continuing

as above,

(−1)s+|A∪B|

S⊆B


(−1)|S|


U⊆S

(−1)|U|w(s+t)C∪B\U,U


= (−1)s+|A∪B|


U⊆B


w
(s+t)
C∪B\U,U


S

(−1)|S\U|


= (−1)s+|A∪B|

U⊆B


w
(s+t)
C∪B\U,U

|B\U|
j=0

(−1)j

|B \ U|

j


= (−1)s+|A∪B|w(s+t)C,B (3.8)

which is the second term on the right hand side of (3.3). This completes the proof of the relations (I).
The verification of relations (II) is next. For i < min(S), |S| > 1 and s ∈ {0, 1}, the second set of relations is

XiX
(s)
S = (−1)

s

T⊆S


(−1)|T |


j∈S\T

Xj


· X (s)
{i}∪T


+ X (s)
{i}∪S .

Applying c to both sides and dividing by


j∈{i}∪Swj makes relations (II) equivalent to

wiw
(s)
S = (−1)

s

T⊆S


(−1)|T |w(s)

{i}∪T


j∈S\T

wj


+ w

(s)
{i}∪S . (3.9)

Definition 3.7 implies immediately that

wiw
(s)
S = − w

(s)
S,{i} + w

(s)
{i}∪S (3.10)

and so it remains to show that

(−1)s

T⊆S


(−1)|T |w(s)

{i}∪T


j∈S\T

wj


= − w

(s)
S,{i}. (3.11)

To this end and using the fact that i < min(S) implies i /∈ S,

(−1)s

T⊆S


(−1)|T |w(s)

{i}∪T


j∈S\T

wj


= (−1)s


T⊆S


(−1)|T |


B⊆S\T

(−1)|B|w(s)
{i}∪S\B,B



= (−1)s

B⊆S


(−1)|B|w(s)

{i}∪S\B,B


T⊆S\B

(−1)|T |


= (−1)s

B⊆S


(−1)|B|w(s)

{i}∪S\B,B

S\B
j=0

(−1)j

|S \ B|

j



= (−1)s+|S|w(s)
{i},S = −w

(s)
S,{i}

where, as in (3.6),
S\B

j=0 (−1)
j

|S \ B|

j


= 0 unless S = B in which case it equals 1.
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3.3. The proof of Theorems 3.2 and 3.6

First, the additive generators appearing in Theorem 3.6 are identified with the KU generators given by Theorem 2.7.
Choose generators yi ∈ KU0(

m
i=2 CP∞) so that

KU∗


m
i=2

CP∞

∼= Z[v±1][[y2, . . . , ym]] · (y2 · · · ym). (3.12)

Theorem 2.7 can be written as

KO∗


m
i=1

CP∞

∼=

∞
k=1

KU∗+4k


m
i=2

CP∞

∼= Z[v±1][[z, y2, . . . , ym]] · (zy2 · · · ym) (3.13)

where z is given grading equal to 4. The fact that the realification map r increases filtration in the Adams spectral sequence
by 1, v has filtration 1 and γ filtration 2, allows the determination of the Adams filtration of the generators described in
Theorem 3.6. This thenmakes possible a comparison of generators via the Adams spectral sequence, modulo terms of higher
filtration.

Lemma 3.8. Let S be a set satisfying 1 ∈ S ⊆ N. In the description (3.13), the element

v2j+sze1y2e22 · · · y
2em
m


i∈N\S

yi


zy2 · · · ym ∈ KU−(4j+2s)+4(e1+1)


m
i=2

CP∞


corresponds to the element

X e1
1 · · · X

em
m γ

jM(s)
S ∈ KO−(4j+2s)(BTm

) = KO−(4j+2s)


m
i=1

CP∞

,

modulo terms of higher filtration in the Adams spectral sequence. �

Lemma 3.8 allows now the use of Theorem 2.7 to conclude that the generators given by Theorem 3.6 must span
KO−(4j+2s)(BTm

) and be linearly independent.
The proof of Theorem 3.2 from Theorem 3.6 uses the homotopy equivalence

Σ(Y1 × Y2 × . . .× Ym) −→ Σ


S⊆N


i∈S

Yi


, (3.14)

where Yi = CP∞ for all i ∈ N . Theorem 3.6 is applied to each wedge summand


i∈S Yi to conclude that for S =

{i1, i2, . . . , i|S|}, KO−(4j+2s)


i∈S Yi

is a free module over Z[[Xi1 , . . . , Xi|S| ]] on


γ jM(s)

T : 1 ∈ T ⊆ S

. Assembling these

generators over all S ⊆ N , S ≠ ∅ produces the generators in Theorem 3.2. The multiplicative relations (I) and (II) have
been checked.

3.4. Addendum: an interpretation of the calculation

The authors are grateful to an anonymous referee for suggesting the formulation of a topological result implicit in the
calculations of this section.

Proposition 3.9. The image of the complexification map

c : KO∗(BTm) −→ KU∗(BTm)

is the ring of conjugate invariants in KU∗(BTm).

Proof. Let ξ denote the conjugation operator on KU∗(BTm). It follows from the Bott sequence (1.7) that the image of c is the
kernel of the composite rv−1. This is same as the kernel of the map crv−1 because c is a monomorphism. Then

crv−1 = (1+ ξ)v−1 = v−1 + ξv−1 = v−1 − v−1ξ = v−1(1− ξ).

The result follows now because multiplication by v−1 is an isomorphism. �
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4. A second set of generators for the algebra KO∗(BTm)

4.1. Notation and statement of results

As usual,

KU∗ ∼= Z[v, v−1] with v ∈ KU−2

KO∗ ∼= Z[e, α, β, β−1]/(2e, e3, eα, α2
− 4β)

where e ∈ KO−1, α ∈ KO−4 and β ∈ KO−8. As in Section 3, denote by xi, i = 1, . . . , n, the generators of KU0(BT n). It is
convenient to write

KU0(BTm) ∼= Z[[x1, . . . , xm, x1, . . . , xm]]/(xixi + xi + xi). (4.1)
Let I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm) with ik ≥ 0, jk ≥ 0 for k = 1, . . . ,m. For s ∈ Z and r the realification map
(1.6), set

[I, J](s) := r

vsxi11 x

i2
2 . . . x

im
m (x1)

j1(x2)j2 . . . (xm)jm


in KO−2s(BTm). If s = 0, the notation [I, J] is used instead of [I, J](0).

Theorem 4.1. The classes [I, J](s) satisfy the relations:

(A) [I, J](s) = (−1)s[J, I](s)

(B) [I, J](s) = −[I ′, J](s) − [I, J ′](s)

where, for I = (i1, . . . , ik, . . . , im), J = (j1, . . . , jk, . . . , jm) with ik · jk ≠ 0,

I ′ = (i1, . . . , ik − 1, . . . , im) and J ′ = (j1, . . . , jk − 1, . . . , jm).

(C) [I, J](s) · [H, K ](t) = [I + H, J + K ](s+t) + (−1)s[J + H, I + K ](s+t)

where the product here is in KO∗(BTm).

Remark. Formula (C) is symmetric because relation (A) implies

(−1)s[J + H, I + K ](s+t) = (−1)t [I + K , J + H](s+t).

Proof of Theorem 4.1. Relations (A) follow immediately from (1.8) by applying complexification followed by realification.
Relations (B) follow by recalling that x = −x(1+ x) and decomposing xixj−1 as

xixj−1 = xi−1xxj−1

= xi−1xj−1(−x(1+ x))

= −xi−1xj − xixj

which gives xixj = −xi−1xj − xixj−1. To see relations (C), the complexification monomorphism c is applied to both sides:

c

[I, J](s) · [H, K ](t)


= c


[I, J](s)


· c

[H, K ](t)


= [vsxi11 x

i2
2 . . . x

im
m (x1)

j1(x2)j2 . . . (xm)jm + (−1)svs(x1)i1(x2)i2 . . . (xm)imx
j1
1 x

j2
2 . . . x

jm
m ]

·[vtxh11 xh22 . . . x
hm
m (x1)

k1(x2)k2 . . . (xm)km + (−1)tvt(x1)h1(x2)h2 . . . (xm)hmx
k1
1 xk22 . . . x

km
m ]

= vs+txi1+h11 xi2+h22 . . . xim+hmm (x1)j1+k1(x2)j2+k2 . . . (xm)jm+km

+ (−1)s+tvs+txj1+k11 xj2+k22 . . . xjm+kmm (x1)i1+h1(x2)i2+h2 . . . (xm)im+hm

+ (−1)svs+txj1+h11 xj2+h22 . . . xjm+hmm (x1)i1+k1(x2)i2+k2 . . . (xm)im+km

+ (−1)tvs+txi1+k11 xi2+k22 . . . xim+kmm (x1)j1+h1(x2)j2+h2 . . . (xm)jm+hm

= c

[I + H, J + K ](s+t)


+ c


(−1)s[J + H, I + K ](s+t)


= c


[I + H, J + K ](s+t)


+ c


(−1)t [I + K , J + H](s+t)


. �

Remark 4.2. The elements X (s)S of Definition 3.1 are related to the classes [I, J](s) by

X (s)S = [(ϵ(1), ϵ(2), . . . , ϵ(m)), (0, 0, . . . , 0)]
(s)

where ϵ is the characteristic function of S.
Next, a distinguished class of elements [I, J](s) ∈ KO−2s(BTm) is selected.
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For I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm), with all ik ≥ 0, jk ≥ 0, set

G2 :=

[I, J](s) : I · J = 0 and il ≥ jl if ik + jk = 0 for k < l


(4.2)

where here, I · J denotes the dot product of vectors and I · J = 0 is interpreted to mean that for all k, ik = 0 or jk = 0.
The KO∗-module structure is described easily. Recall that

KO∗ ∼= Z[e, α, β, β−1]/(2e, e3, eα, α2
− 4β).

Lemma 4.3. The KO∗-module action on KO∗(BTm) is given by

e · ([I], [J])(s) = 0

α · ([I], [J])(s) = 2([I], [J])(s+2)

β · ([I], [J])(s) = ([I], [J])(s+4).

Proof. The complexification monomorphism c is applied to both sides of these relations. The result follows then from the
identities c(e) = 0, c(β) = v4 and c(α) = 2v2 from [17], Lemma 2.0.3. �

Theorem 4.4. Every element of KO∗(BTm) can be expressed as a formal sum of terms from G2.

Proof. The classes vsxi11 x
i2
2 · · · x

im
m (x1)

j1(x2)j2 · · · (xm)jm generate KU∗(BTm) as a power series ring. The realification map r is
onto by (1.7). So, the classes [I, J](s) ∈ KO−2s(BTm) generate KO∗(BTm) as a KO∗-module. Relations (A) and (B) in Theorem 4.1
imply that every element [I, J](s) ∈ KO−2s(BTm) can be written as a linear combination of elements in G2. A product of two
elements in G2 is not given explicitly in terms of elements of G2 by relation (C) but repeated applications of relation (A) and
(B) reduce the result of (C) to a linear combination of elements of G2. �

Remark. Lemma 4.3 and the proof of Theorem 4.4 describe the KO∗-algebra structure of KO∗(BTm). In particular, as noted in
Section 1, this result and Theorem 3.2 both describe the completion of the representation ring RO(Tm) at the augmentation
ideal.

5. The Davis–Januszkiewicz spaces

5.1. The Davis–Januszkiewicz space associated to a simplicial complex

In Section 1, the Davis–Januszkiewicz space DJ(KP), associated to simple polytope P , was defined in terms of a toric
manifold M2n. More generally, a Davis–Januszkiewicz space DJ(K) can be constructed for any simplicial complex K by
means of the generalized moment-angle complex/polyhedral product construction Z(K ; (X, A)) of [15,11,16,6,7]. A description
of the space DJ(K) follows.

Definition 5.1. Let K be a simplicial complex with m vertices. Identify simplices σ ∈ K as increasing subsequences of
[m] = (1, 2, 3, . . . ,m). The Davis–Januszkiewicz space DJ(K) is defined by

DJ(K) = Z(K ; (CP∞, ∗)) ⊆ BTm
=

m
i=1

CP∞

where ∗ represents the basepoint and

Z(K ; (CP∞, ∗)) =

σ∈K

D(σ )

with

D(σ ) =
m
i=1

Wi , whereWi =


CP∞ if i ∈ σ
∗ if i ∈ [m] − σ .

(5.1)

A toricmanifoldM2n is specified by a simple n-dimensional polytope and a characteristic function on its facets as described
in [15]. Equivalently, M2n can be realized as a quotient. The characteristic function corresponds to a specific choice of sub-
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torus Tm−n
⊆ Tm which acts freely on the moment-angle complex Z(KP ; (D2, S1)) to give

M2n ∼= Z(KP ; (D2, S1))/Tm−n.

This description ofM2n yields an equivalence of Borel constructions

ETm
×Tm Z(KP ; (D2, S1)) ≃ ET n

×Tn

Z(KP ; (D2, S1))/Tm−n ∼= ET n

×Tn M2n
= DJ(KP). (5.2)

Moreover, for any simplicial complex K , there is an equivalence [15,11,16],

ETm
×Tm Z(K ; (D2, S1)) ∼= Z(K ; (CP∞, ∗)). (5.3)

It follows that for K = KP , the three descriptions of DJ(KP) given by (5.2) and (5.3) agree up to homotopy equivalence.

5.2. The KO∗-rings of the Davis–Januszkiewicz spaces

It is well known that (1.2) extends to DJ(K) and so, for any complex-oriented cohomology theory E∗

E∗(DJ(K)) ∼= E∗(BTm)/IESR (5.4)

where IESR is the Stanley–Reisner ideal described in Section 1. A related but more general result can be found in [7],
Theorem 2.35. Also from [7], the geometric results following will prove useful for the computation of KO∗(DJ(K)) in this
section. Below, increasing subsequences of [m] = (1, 2, 3, . . . ,m) are denoted by σ = (i1, i2, . . . , ik), τ = (i1, i2, . . . , it)
and ω = (i1, i2, . . . , is) and Xij = CP∞ for all ij.

Theorem 5.2. The Davis–Januszkiewicz space DJ(K) splits stably as follows.

Σ

DJ(K)

 ≃
−→ Σ


σ∈K

Xi1 ∧ Xi2 ∧ · · · ∧ Xik


.

Moreover, there is a cofibration sequence

Σ

DJ(K)

 i
−→ Σ

 
τ∈[m]

Xi1 ∧ Xi2 ∧ · · · ∧ Xit


q
−→ Σ


ω/∈K

Xi1 ∧ Xi2 ∧ · · · ∧ Xis


,

where the map i is split.
A particular case of (5.4) is given by E∗ = KU∗, so

KU∗(DJ(K)) ∼= KU∗(BTm)/IKUSR . (5.5)

Remark 5.3. Notice that in the representation of KU0(BTm) given in (4.1), the monomials generating the ideal IKUSR could
equally well contain a generator xi or its conjugate xi.

Theorem 5.2 and the results of Section 2 imply that KO∗(DJ(K)) is concentrated in even degrees. The Bott sequence (1.7)
implies then that the realification map

r : KU∗(DJ(K)) −→ KO∗(DJ(K))

is onto and that the complexification map

c : KO∗(DJ(K)) −→ KU∗(DJ(K))

is a monomorphism. The goal of the remainder of this section is to use the generators G2 of Section 4 to describe the ring
KO∗(DJ(K)).

Let K be a simplicial complex onm vertices. For I = (i1, i2, . . . , im) as in Section 4, set

ϵ(I) = {k : ik ≠ 0} ⊆ [m].

Let SRKO denote the ideal in KO∗(BTm) generated by the set

{[I, J](s) ∈ G2 : ϵ(I) ∪ ϵ(J) /∈ K}, (5.6)

where again, simplices of K are identified as increasing subsequences of [m] = (1, 2, 3, . . . ,m). The notation SRKO for the
KO Stanley–Reisner ideal is more appropriate than IKOSR as it is structurally different from that for a complex-oriented theory.
Next, the ideal SRKO is related to r(IKUSR ). The non-multiplicativity of the map r makes necessary a preliminary lemma.

Lemma 5.4. The abelian group r(IKUSR ) is the kernel of the map

i∗ : KO∗(BTm) −→ KO∗(DJ(K)). (5.7)
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Proof. With reference to the notation of Theorem 5.2, setX τ = Xi1 ∧ Xi2 ∧ · · · ∧ Xit and Xω = Xi1 ∧ Xi2 ∧ · · · ∧ Xis .

Recall here that each Xij = CP∞. The split cofibration of Theorem 5.2 gives rise to the diagram following

KU−2s

DJ(K)

 i∗
←−−−− KU−2s

 
τ∈[m]

X τ  q∗
←−−−− KU−2s

 
ω/∈K

Xω
r

r

r

KO−2s

DJ(K)

 i∗
←−−−− KO−2s

 
τ∈[m]

X τ  q∗
←−−−− KO−2s

 
ω/∈K

Xω.
(5.8)

The maps i∗ are onto and so KO∗

DJ(K)


is a quotient of KO∗(BTm). A diagram chase is needed next. Let x ∈

KO−2s


τ∈[m]
X τ  be such that i∗(x) = 0. Then, y ∈ KO−2s


ω/∈K

Xω exists satisfying q∗(y) = x. Since r is onto,
z ∈ KU−2s


ω/∈K

Xω exists with r(z) = y. Then

r(q∗(z)) = q∗(r(z)) = x.

Now q∗(z) ∈ IKUSR which implies that x ∈ r(IKUSR ). Conversely, the commutativity of the left hand half of (5.8) implies that if
x ∈ r(IKUSR ) then i∗(x) = 0, completing the proof. �

Corollary 5.5. The abelian group r(IKUSR ) is an ideal in KO∗(BTm).

The next proposition allows a characterization of this important ideal in terms of the set of generators (5.6).

Proposition 5.6. As ideals in KO∗(BTm)

r(IKUSR ) = SRKO.

Proof. Let [I, J](s) ∈ SRKO. Since ϵ(I) ∪ ϵ(J) /∈ K ,

[I, J](s) = r

vsyα1yα2 . . . yαkm


(5.9)

where, in the light of Remark 5.3, each yαj = xαj or xαj , {α1, α2, . . . , αk} /∈ K and m is a monomial in the classes
x1, . . . , xm, x1, . . . , xm. (Notice here that the choice of α1, α2, . . . , αk in (5.9) may not be unique.) Now vsyα1yα2 . . . yαkm ∈
IKUSR and so [I, J](s) ∈ r(IKUSR ). Conversely, an element in r(IKUSR ) is a KO∗-linear combination of elements each of the
form r


vsyα1yα2 . . . yαkn


again with each yαj = xαj or xαj , {α1, α2, . . . , αk} /∈ K and n is a monomial in the classes

x1, . . . , xm, x1, . . . , xm. Now r

vsyα1yα2 . . . yαkn


= [I ′, J ′](s) for some I ′ and J ′ and moreover, ϵ(I ′) ∪ ϵ(J ′) /∈ K because

{α1, α2, . . . , αk} /∈ K . It follows that r(IKUSR ) ⊂ SRKO, proving the converse. �

The main theorem of this section follows.

Theorem 5.7. There is an isomorphism of graded rings

KO∗(DJ(K)) ∼= KO∗(BTm)/SRKO.

Proof. Proposition 5.6 identifies SRKO as r(IKUSR ), which is the kernel of the map i∗ of (5.7). �

Remark 5.8. In the notation established by Definition 3.1, let S ⊆ N , S ≠ ∅ and set

S = {min(S),min(S)+ 1, . . . ,m}.

Then, in terms of the basis G1, (Corollary 3.4), SRKO is the ideal in KO∗(BTm) generated (redundantly) by the sets
γ j


i∈S

Xi


X (s)S : S ⊆ N, S ≠ ∅, j ∈ Z, s ∈ {0, 1} and S ∪ S /∈ K


,

and 
γ jX (s)S : S ⊆ N, S ≠ ∅, j ∈ Z, s ∈ {0, 1} and S /∈ K


.
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The examples following illustrate calculations in KO0(DJ(K)) based on Theorem 5.7. The relations of Theorem 4.1 are
used with s = t = 0 and the elements [I, J] are to be interpreted modulo the ideal of relations SRKO.

Examples 5.9. (1) Let K =

{v1}, {v2}


be the simplicial complex consisting of two distinct vertices. Classes of the form

[(i, 0), (0, 0)] and [(0, h), (0, 0)] represent G2 generators of KO0(CP∞ × ∗) and KO0(∗ × CP∞) respectively in KO0(BT 2) as
described by (4.2). Now, for i and h not both zero,

[(i, 0), (0, 0)] · [(0, h), (0, 0)] = [(i, h), (0, 0)] + [(0, h), (i, 0)]

= 0 by (5.6)

which is consistent with the fact that DJ(K) = CP∞ ∨ CP∞ in this case.
(2) Let L =


{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v2, v3}, {v3, v4}, {v2, v4}, {v2, v3, v4}


be the simplicial complex consisting

of a 1-simplex wedged to a 2-simplex at the vertex v2. Here, classes of the form [(i1, i2, 0, 0), (0, 0, 0, 0)] and
[(0, h2, h3, 0), (0, 0, 0, 0)] represent G2 generators of KO0(CP∞×CP∞×∗×∗) and KO0(∗×CP∞×CP∞×∗) respectively
in KO0(BT 4). Now

[(i1, i2, 0, 0), (0, 0, 0, 0)] · [(0, h2, h,3 , 0), (0, 0, 0, 0)]

= [(i1, i2 + h2, h3, 0), (0, 0, 0, 0)] + [(0, h2, h3, 0), (i1, i2, 0, 0)] = 0 by (5.6)

reflecting the fact that {v1, v2, v3} /∈ L. Moreover

[(i1, i2, 0, 0), (0, 0, 0, 0)] · [(l1, l,2 , 0, 0), (0, 0, 0, 0)]
= [(i1 + l1, i2 + l2, 0, 0), (0, 0, 0, 0)] + [(l1, l2, 0, 0), (i1, i2, 0, 0)].

(5.10)

Repeated application of relations (A) and (B) in Theorem 4.1 reduce the right hand side of (5.10) to a sum of terms of the
form [(∗, ∗, 0, 0), (∗, ∗, 0, 0)] each of which satisfies the G2 condition for KO0(CP∞×CP∞). This is consistent with the fact
that KO∗(CP∞ × CP∞) is a KO∗-subalgebra of KO∗(DJ(K)) corresponding to the simplex {v1, v2} ∈ L.

5.3. The cat(K) approach

Definition 5.1 expresses DJ(K) as the colimit of an exponential diagram BT K ([22], where D(σ ) is written BT σ ), over the
category cat(K) associated to the posets of faces of K . Since BT K is a cofibrant diagram, its homotopy colimit is homotopy
equivalent to DJ(K) also. The KO∗ version of the Bousfield–Kan spectral sequence [10], studied in [21, Section 3], applies
in this case and gives an alternative calculation of KO∗(DJ(K)) in terms of the catop(K)-diagram KO∗(BT K ) whose value
on each face σ ∈ K is KO∗(D(σ )). The arguments of [21] apply unchanged and are similar to those of Section 5.2. They
imply that the spectral sequence collapses at the E2-term and is concentrated entirely along the vertical axis. So the edge
homomorphism gives an isomorphism

KO∗(DJ(K))
∼=
−→ lim KO∗(BT K ) (5.11)

of KO∗-algebras, by analogy with [21, Corollary 3.12].
Informally, the elements of lim KO∗(BT K ) are considered as finite sequences (uσ ) whose terms uσ ∈ KO∗(BT σ ) are

compatible under the inclusions i : BT σ −→ BT τ for every τ ⊃ σ . More precisely, the isomorphism (5.11) leads to the
conclusion following.

Theorem 5.10. As KO∗-algebras, KO∗(DJ(K)) is isomorphic to
(uσ ) ∈


σ∈K

KO∗(BT σ ) : i∗(uτ ) = uσ for every τ ⊃ σ


where the multiplication and KO∗-module structure are defined termwise. �

Theorem 5.10 extends to E∗(DJ(K)) for any arbitrary cohomology theory. The corollary following is complementary to
Theorem 5.7.

Corollary 5.11. The natural homomorphism

ℓ : KO∗(BTm) −→ lim KO∗(BT K )

is onto with kernel equal to the ideal SRKO of Theorem 5.7.

Proof. The homomorphism ℓ is induced by the projections KO∗(BTm)→ KO∗(BT σ ) as σ ranges over the faces of K , hence
it is onto.
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Theorem 4.4 describes each summand KO∗(BT σ ) of KO∗(BTm) as generated over KO∗ by those elements [I, J](s) of G2 for
which ϵ(I) ∪ ϵ(J) ⊆ σ . Moreover, Theorem 5.10 implies that ℓ([I, J](s)) = 0 if and only if [I, J](s) satisfies ϵ(I) ∪ ϵ(J) /∈ K as
in (5.6). So, ℓmaps non-trivial formal sums of elements in G2 to zero if and only if they lie in SRKO. �

Corollary 5.11 generalizes to an arbitrary cohomology theory and establishes an isomorphism

E∗(BTm)/ker ℓ −→ E∗(DJ(K))

of E∗-algebras.
It is instructive to revisit Examples 5.9 from this complementary viewpoint.

Examples 5.12. (1) If K = {{v1}, {v2}}, then cat(K) contains the (−1)-simplex ∅ and two 0-simplices. Theorem 5.10 gives
KO∗(DJ(K)) as the KO∗-algebra KO∗(BT {v1}) ⊕ KO∗(BT {v2}). The homomorphism ℓ of Corollary 5.11 maps the elements
[(i, 0), (0, 0)] and [(0, h), (0, 0)] of KO0(BT 2) to the elements


[(i), (0)], 0


and


0, [(h), (0)]


; in particular, their product

is zero.
(2) If L =


{v1}, {v2}, {v3}, {v4}, {v1, v2}, {v2, v3}, {v3, v4}, {v2, v4}, {v2, v3, v4}


, then cat(L) contains the (−1)-simplex ∅,

four 0-simplices, four 1-simplices and one 2-simplex. Theorem 5.10 expresses KO∗(DJ(K)) as a certain KO∗-subalgebra of

KO∗(BT {v2})× KO∗(BT {v1,v2})× KO∗(BT {v2,v3,v4}),

which may be identified as the pullback

KO∗(BT {v1,v2})⊕KO∗(BT {v2}) KO
∗(BT {v2,v3,v4}). (5.12)

The elements of (5.12) consist of ordered pairs (u, w), for which u ∈ KO∗(BT {v1,v2}) and w ∈ KO∗(BT {v2,v3,v4}) share a
common restriction to KO∗(BT {v2}). Pairs aremultiplied coordinate-wise; products of the form (u, 0) ·(0, w) give (0, 0) = 0.
For i1 and h3 nonzero, the homomorphism ℓ of Corollary 5.11 maps the elements

[(i1, i2, 0, 0), (0, 0, 0, 0)] and [(0, h2, h3, 0), (0, 0, 0, 0)]

of KO0(BT 4) to the pairs
[(i1, i2), (0, 0)], 0


and


0, [(h2, h3, 0), (0, 0, 0)]


respectively. Their product is zero as required. Similarly, ℓmaps [(i1, i2, 0, 0), (0, 0, 0, 0)] and [(l1, l,2 , 0, 0), (0, 0, 0, 0)] to
the pairs

[(i1, i2), (0, 0)], 0


and

[(l1, l2), (0, 0)], 0


respectively and, their product is


[(i1 + l1, i2 + l2), (0, 0)] + [(l1, l2), (i1, i2)], 0


.

6. Toric manifolds

6.1. Background

Briefly, a toric manifold M2n is a manifold covered by local charts Cn, each with the standard T n action, compatible in
such a way that the quotientM2n/T n has the structure of a simple polytope Pn. A simple polytope Pn has the property that at
each vertex, exactly n facets intersect. Under the T n action, each copy of Cn must project to an Rn

+
neighborhood of a vertex

of Pn. The construction of Davis and Januszkiewicz ([15], Section 1.5) realizes all such manifolds as follows. Let

F = {F1, F2, . . . , Fm}

denote the set of facets of Pn. The fact that Pn is simple implies that every codimension-l face F can be written uniquely as

F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil
where the Fij are the facets containing F . Let

λ : F −→ Zn

be a function into an n-dimensional integer lattice satisfying the condition that whenever F = Fi1 ∩ Fi2 ∩ · · · ∩ Fil is
a codimension-l face F of Pn, then {λ(Fi1), λ(Fi2), . . . , λ(Fil)} span an l-dimensional submodule of Zn which is a direct
summand. Next, regarding Rn as the Lie algebra of T n, λ associates to each codimension-l face F of Pna rank-l subgroup
GF ⊂ T n. Finally, let p ∈ Pn and F(p) be the unique face with p in its relative interior. Define an equivalence relation∼ on
T n
× Pn by (g, p) ∼ (h, q) if and only if p = q and g−1h ∈ GF(p) ∼= T l. Then

M2n ∼= M2n(λ) = T n
× Pn/ ∼
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and,M2n is a smooth, closed, connected, 2n-dimensionalmanifoldwith T n action induced by left translation ([15], page 423).
The projection π : M2n

→ Pn is induced from the projection T n
× Pn
→ Pn. It is noted in [15] that every smooth projective

toric variety has this description.
The goal of this section is an analogue of (1.3) for the KO∗-rings of certain toric manifolds M2n. For toric manifolds

determined by a simple polytope and a characteristic map on its facets, a description of the KO∗-module structure of
KO∗(M2n) was given in [5] in terms of H∗(M2n

;Z2) as a module over A1, the subalgebra of the Steenrod algebra generated
by Sq1 and Sq2.

A more refined computation of the KO∗-module structure, for certain families of manifolds M2n, is presented in [20].
The KO∗-ring structure for families of toric manifolds known as Bott towers may be found in [13], without reference to
KO∗(DJ(K)).

6.2. The Steenrod algebra structure of toric manifolds

Denote by S0 the A1-module consisting of a single class in dimension 0 and the trivial action of Sq1 and Sq2. Denote by
M the A1-module with a class x in dimension 0, a class y in dimension 2 and the action given by Sq2(x) = y.

According to (1.3), H∗(M2n
;Z2) is concentrated in even degree and so, as an A1-module, must be isomorphic to a direct

sum of suspended copies of the modules S0 and M. That is, there is a decomposition

H∗(M2n
;Z2) ∼=

n
i=0

siΣ2iS0 ⊕
n−1
j=0

mjΣ
2jM, si,mj ∈ Z. (6.1)

The numbers si and mj were labeled ‘‘BB-numbers’’ in [13, Section 5]. The Sq2-homology of M2n, H∗(M2n
; Sq2), is zero

precisely when sj = 0 for all j.

Examples 6.1. The toric manifolds CP2k are Sq2-acyclic for any positive integer k.

Examples 6.2. The toric manifolds CP2k+1 have si = 0 for i ≤ k and sk+1 = 1, for any positive integer k. The terminally odd
Bott towers of [13, Section 5] have s1 = 1 and si = 0 for i ≥ 2; the totally even towers have mj = 0 for every j.

Examples 6.3. The non-singular toric varieties Xn(r; ar , . . . , an) constructed in [20] and satisfying 2 ≤ r ≤ n, aj ∈ Z and
n− r odd are all Sq2-acyclic These varieties correspond to n-dimensional fans having n+ 2 rays.

Remark. The preprint [8] contains a construction of families of toricmanifolds derived from a given one.Work is in progress
to confirm that this construction can be done in such away that the family of derived toricmanifoldswill each be Sq2-acyclic,
though this property might not be satisfied by the initial one.

The next proposition is an immediate consequence of the calculation in [5].

Proposition 6.4. If M2n is Sq2-acyclic, then the graded ring KO∗(M2n) is concentrated in even degree and has no additive
torsion. �

6.3. The KO-rings of Sq2-acyclic toric manifolds

Recall from (1.1) the Borel fibration for toric manifolds,

M2n i
−→ ET n

×Tn M2n p
−→ BT n (6.2)

with total space DJ(K).

Theorem 6.5. For any Sq2-acyclic toric manifold M2n, there is an isomorphism

KO∗(M2n) ∼= KO∗

DJ(K)


/r(JKU)

of KO∗-algebras, where r is the realification map and JKU is the ideal defined in (1.3).

Remark 6.6. Notice that r(JKU), which is the realification of the ideal generated by the image of KU∗(BT n)
p∗
−→ KU∗


DJ(K)


,

is not the same as JKO which is the ideal generated by p∗

KO∗(BT n)


; this represents a significant departure from the situation

for complex-oriented E∗(M2n). As in Lemma 5.4, the non-multiplicativity of the map r implies that r(JKU) is not in general
an ideal but Theorem 6.5 confirms that KO∗


DJ(K)


/r(JKU) is multiplicatively closed.

Proof of Theorem 6.5. The Bott sequences (1.7) for M2n, DJ(K) and BT n link together to give the commutative diagram
following.
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KO∗−2(M2n)
i∗

←−−−− KO∗−2

DJ(K)

 p∗
←−−−− KO∗−2(BT n)

χ χ

 χ


KU∗(M2n)

i∗KU onto
←−−−− KU∗


DJ(K)

 p∗
←−−−− KU∗(BT n)

r onto

r onto

r onto

KO∗(M2n)
i∗

←−−−− KO∗

DJ(K)

 p∗
←−−−− KO∗(BT n)

(6.3)

Recall now that Proposition 6.4 implies that KO∗(M2n) is concentrated in even degrees and so all the Bott sequences are
short exact. The lower left commutative square in (6.3) implies that the maps i∗ are onto. A diagram chase is needed next to
identify the kernel of i∗.

Let z ∈ KO∗

DJ(K)


and suppose i∗(z) = 0. Since r is onto, y ∈ KU∗


DJ(K)


exists with r(y) = z. Then r(i∗KU(y)) =

i∗(z) = 0. The exactness of the leftmost Bott sequence implies now that x ∈ KO∗−2(M2n) exists with χ(x) = i∗KU(y). The
map i∗ is onto sow ∈ KO∗−2


DJ(K)


exists satisfying i∗(w) = x. Then

i∗KU(y− χ(w)) = i∗KU(y)− i∗(χ(w)) = i∗KU(y)− χ(i
∗(w)) = i∗KU(y)− χ(x) = 0.

So y − χ(w) ∈

p∗

KU∗(BT n)


by (1.3) for E = KU . Finally, r(y − χ(w)) = r(y) = z and so z ∈ r


p∗(KU∗(BT n))


as

required. �

6.4. Further examples

A few simple examples illustrate the fact that the situation is considerably more difficult whenM2n is not Sq2-acyclic. In
all that follows, the number si and mj are those defined by (6.1).

ManifoldsM2n for which allmj = 0, as is the case for the totally even Bott towers of Examples 6.2, have KO∗(M2n) a free
KO∗-module. Particularly revealing is the most basic caseM2n

=
n

k=1 CP1 with n = 1. Recall from Section 4 that

KO∗ ∼= Z[e, α, β, β−1]/(2e, e3, eα, α2
− 4β)

with e ∈ KO−1, α ∈ KO−4 and β ∈ KO−8.

Example 6.7. The classes X (s)1 ∈ KO−2s(CP∞) and X (0)i = Xi, specified in Definition 3.1, restrict to classes in KO−2s(CP1)

which also will be denoted by X (s)1 and X1. The KO∗-algebra KO∗(CP1) is isomorphic to KO∗[g]/(g2) where g ∈ KO2(CP1) is
the generator arising from the unit of the spectrum KO. In particular

e2g = X1 ∈ KO(0)(CP1) and 2βg = X (3)1 ∈ KO−6(CP1).

Now CP1 is the smooth toric variety associated to the simplicial complex K =

{v1}, {v2}


in the manner described in

Section 1. Let η denote the universal vector bundle over BT 1. The fibration (6.2) specializes to

CP1 i
−→ S(η ⊕ R)

p
−→ BT 1,

the total space of which is the sphere bundle of η ⊕ R. So DJ(K) is homotopy equivalent to CP∞ ∨ CP∞. (Of course, this
agrees with the description given by (5.3).) The map i includes CP1 into each wedge summand by pinching the equator.

It follows from [13, Section 4] that

(1) i∗ is an epimorphism onto KOd(CP1) for all d ≢ 1, 2 mod 8.
(2) If d = 1− 8t then eβ tg has order 2 but KOd(CP∞ ∨ CP∞) = 0.
(3) If d = 2− 8t then 2β tg ∈ Im(i∗) but β tg /∈ Im(i∗).

These details combined with diagram (6.3) confirm that

Im(i∗) ∼= KO∗

DJ(K)


/r(JKU)

in dimensions≡ 1, 2 mod 8.
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Example 6.7 extends to an analysis of various toric manifolds with a single non-zero si but unrestrictedmj.

Example 6.8. The projective space CP4k+1 has s2k+1 = 1 and all other si = 0. It is the smooth toric variety associated to the
simplicial complex K which is the boundary of the simplex∆4k+1.

The KO∗-algebra KO∗(CP4k+1) admits KO∗(S8k+2) as an additive summand, generated by h ∈ KO8k+2(CP4k+1) such that
h2
= 0. In particular,

e2βkh = X2k+1
1 ∈ KO0(CP4k+1) and 2βk+1h = X2k

1 X (3)1 ∈ KO−6(CP4k+1).

It follows from Example 6.7 that

i∗ : KOdDJ(K)

−→ KOd(CP4k+1)

is an epimorphism for d ≢ 1, 2mod 8. So the cokernel of i∗ is isomorphic to the Z/2 vector space generated by the elements
eβ th and β th, whereas

Im(i∗) ∼= KO∗

DJ(K)


/r(JKU)

in dimensions ≢ 1, 2 mod 8.

Example 6.9. A terminally odd Bott tower M2n has s1 = 1 and all other si = 0. In this case the simplicial complex K is
the boundary of an n-dimensional cross-polytope. As in Example 6.7, it follows that the cokernel of i∗ is isomorphic to the
Z2-vector space generated by the elements eβ tg and β tg whereas

Im(i∗) ∼= KO∗

DJ(K)


/r(JKU)

in dimensions ≢ 1, 2 mod 8.
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