SOME 2-ADIC INTEGERS RELATED TO THE ODD PART OF 2¢!
DONALD M. DAVIS

ABSTRACT. The odd part of 2°! as e — oo leads to a 2-adic integer z. The bits of z were
publicized in OEIS-A359349, where two conjectures were made, relevant to computing z.
We prove both of those conjectures. A second 2-adic integer, the limit of ((2¢ —1)!I! —1)/2¢,
plays a key role in one proof.

1. INTRODUCTION

In [1], the author noted that the odd part of 2¢! and of 2¢7!! agree mod 2¢, and
so the 2-adic limit as e approaches oo is a 2-adic integer, which we will call z. In
OEIS-A359349([2]), the author and Jon E. Schoenfield publicized the sequence of
bits of z and made two conjectures. One involved a relationship between the bits
of z and some of the unstable bits in the odd part of 2¢!, while the other leads to a
more efficient way of computing z. In this paper we prove both conjectures and some
generalizations.

In this introductory section, we review the two conjectures, stating them as theo-
rems. In Sections 2 and 3, we prove generalizations of both.

Let v(n) denote the exponent of 2 in the prime factorization of n, and od(n) =
2/2¥™ the odd part of n. Then od(2¢!) = 2¢1/22°~1. In Figure 1 we tabulate the first
40 bits in the backward binary expansion (BBE) of od(2°!) for 2 < e < 30. In [2], a
larger table (64 bits for e < 40) was presented.

Bits 0 through e of 0od(2¢!) are stable; they agree with those of z. The unstable bits
of 0od(2¢!) are those in position > e+ 1; they appear to the right of the space in Figure
1. Note that, for e > d, the first d unstable bits of 0d(2°!) occur in the same positions
as the last d stable bits of od(2¢4!). The latter are the stable bits of z in position
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2 | 110 0000000000000000000000000000000000000
311101 110010000000000000000000000000000000
4111010 11101110111011100000110010000000000
5110100 1011001110100011000001101010001001
6 | 1101000 000000001101000110100010110011110
7111010001 10010101001010001010001101011100
8| 110100010 0111100111001000110000010011101
911101000101 000110101110110000001011000011
10 | 11010001011 10101101100010111001010101001
11| 110100010110 0010011111110101111010110111
12 { 1101000101101 110111110000001100111011011
13| 11010001011010 11100001101100011101011000
14 | 110100010110100 1011001111011110110100001
15 | 1101000101101000 000011110100000100110000
16 | 11010001011010001 10000001011001001111011
171 110100010110100010 0101001000011101001001
18 | 1101000101101000101 011101001000000000010
191 11010001011010001011 00000101101001010101
20 | 110100010110100010111 1001101111101111101
21 |1101000101101000101110 011011110000010111
22| 11010001011010001011101 00100001101011100
23 |110100010110100010111011 1101001111111011
24 11101000101101000101110110 111101110010100
25| 11010001011010001011101100 10000001111101
26 | 110100010110100010111011000 0101001100111
271 1101000101101000101110110001 011101101100
28 | 11010001011010001011101100011 00000011011
29| 110100010110100010111011000111 1001011000
30 | 1101000101101000101110110001110 011111001

Table 1: first 32 bits in BBE of od(2¢!)

e+ 1 through e+d. Let uns(e, d) and stab(e+ 1, d) denote the numbers whose BBE’s

are these sequences of d bits. The following theorem was the first conjecture of [2].

Theorem 1.1. There is a 2-adic integer K such that, for all d and e > d
uns(e, d) + K = stab(e + 1,d).
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Example 1.2. The BBE of K begins 1011011. The BBE’s of uns(17,7) and stab(18,7)
are 0101001 and 1110110, respectively. After reversing the order of the bits, the the-

orem is easily verified in this case.

This relationship between the stable and unstable parts is, at least, a curiosity. It
could be useful in calculations. We will see in Section 2 that the first d bits of K
can be determined from d bits of z and d bits of another 2-adic integer w. So, for
example, bits 18 through 24 of z can be determined from od(2'"!) and K mod 27,
which is an easier calculation than od(24!).

Let odpr(¢,m) denote the product of all odd integers j satisfying ¢ < j < m, and
let

h(m) = odpr(2™ ' 4+1,2™ — 1).

We begin with the following elementary proposition.

Proposition 1.3. For anye > 1,

e

od(2) = [ r(m)=t—m.

m=2

Proof. Each factor j of h(m) occurs with coefficient 2° for 0 <i<e—min2¢. N

This yields a method of computing od(2°!) mod 27, reducing mod 27 at each step.

The following theorem, which was the second conjecture of [2], makes it more efficient.
Theorem 1.4. I[f2<m—-1<B<3m-—-7, andd =2+ LB_TmJ, then
h(m) = odpr(2” '+ 1,271 +2¢ — 1)*"""  (mod 25).

The advantage is that now h(m) requires 247! +m — 2 — d multiplications (always

reducing mod 27) compared with 2™~2 — 1 multiplications.

2. A FORMULA FOR THE 2-ADIC INTEGER K OF THEOREM 1.1

In this section, we prove Theorem 1.1 and give a formula for the 2-adic integer K
that occurs in it. We begin by reviewing the proof in [1] of existence of the 2-adic

integer z, as some of the ingredients will be useful later.
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Lemma 2.1. Let I, = {i : 2°°' < i <2} and S, = {j : j odd and 1 < j < 2°}.
Then od : I, — S, is bijective.

Proof. The inverse function ¢ is defined by ¢(u) = 2'u where t = max{k : 2Fu < 2°¢}.
|

Lemma 2.2. Ife > 3, the product of all odd positive integers less than 2¢ is = 2°+ 1
(mod 2¢71).

Proof. We begin with the proof from [3, Lemma 1] that the product is 1 mod 2¢. Pair
each element with its inverse in Z/2°. Only 41 and 2°7! 4+ 1 equal their own inverse,
and their product is 1.

Let P be the set of pairs (a,b) with a < b < 2¢ odd and ab = 2¢ + 1 mod 2. If
(a,b) € P, sois (2° —b,2° — a) since a + b is even. Moreover, (a,b) # (2° —b,2° — a)
since, if so, then a(2° — a) = 2° + 1 mod 2°™', which cannot occur since a*> = 1 mod
8. Thus the cardinality of P is even, and the product of all ab with (a,b) € P is 1
mod 27!, Other pairs (c,d) with ¢d = 1 mod 2¢ have c¢d = 1 mod 2¢™!. Finally we
have 1, 2¢ — 1, and 2°7! & 1, whose product is = 2° + 1 mod 2¢*!. W

Corollary 2.3. For e > 3, od(2¢7!) = 0d(2°!) (mod 2¢).

Proof. By Lemmas 2.1 and 2.2,

od(2¢! . . e
ﬁ:ﬂod(z): szl (mod 2°).

i€l JESe
[ |
Corollary 2.4. There is a 2-adic integer z which equals od(2°71!) mod 2¢.

Remark 2.5. The stronger (mod 2¢!) part of Lemma 2.2 was not needed here, but

will be used shortly.
A stronger version of the next result will be proved in Theorem 3.1.

Proposition 2.6. With S, as above,

H i = H(?e +4) (mod 2%).

1€Se 1€,
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Proof. 1If S is a set of cardinality n, let 7;(S) = 0,,—;(S), where o is the usual elemen-

tary symmetric polynomial. Then &, (S,) is divisible by 2¢ since, for odd j < 2¢7! —1,
[Ti+ I iis divisible by 2°.

1E€Se 1E€Se
i#j i#2¢—j
We have
[T +i-J1i=>Y_2%(S)=2%1(S.) =0 (mod 2).
1€Se 1ESe 7>0
|

Let (2¢ — 1)Il = odpr(1,2¢ — 1).

2¢ = —1 ¢t Pt —1
Corollary 2.7. Fore > 2, ( ) = ( ) (mod 2¢71).
¢ e+l
Proof. By Lemma 2.2, the two expressions are odd integers. We will show that their
ratio is = 1 mod 2°7!. Let A = (2¢ — 1)!! — 1. By Lemma 2.2, A = 2°u with u odd.

By Proposition 2.6, odpr(2¢ + 1,271 — 1) = A + 1 + k22¢ for some integer k. The

desired ratio is
(A+D(A+1+ k:226) —1

2A
A2+ 2A+ (A+ 1Dk2% | (A+1)k2%¢ o1
= 9A =2 u+1+W:1 (m0d2 )
|
‘s . _ (2¢ =1l -1
Definition 2.8. We define w to be the 2-adic integer which equals e mod
2¢~1,

The binary expansion of w ends ---1001110011001.
We have introduced two 2-adic integers, z and w. The next result shows that their
product equals the difference of the unstable parts of consecutive rows of Figure 1 in

a metastable range.

Theorem 2.9. The difference of the unstable parts of od(2°!) and od(2°7), i.e.,
od(2¢!) — od(2¢711)

5 , s congruent mod 2¢71 to w - 2.




d(2¢!
Proof. By Lemma 2.1, we have (2° — 1)!! = o(()i(ée 1)') Thus
(2° =D —1  od(2°) —od(2°711)
2¢ - 2eod(2el)
i 2¢ — I —1 d(2¢! d(2¢—!
( _26)" - Od(2e—1!) _ 0 ( ) _260 ( )

The result follows now from Corollary 2.4 and Definition 2.8. W

Example 2.10. The binary expansion of zw ends ---011000010011. The numbers
od(2™) and od(2°%!) agree mod 2. Beginning in the 27 position, the binary expansion
of od(2™) ends - -- 1010011, while that of od(2°!) ends with eight 0’s. The difference

agrees with zw mod 2.
We now state the main theorem of this section.
Theorem 2.11. The 2-adic integer K of Theorem 1.1 equals —zw.

Proof of Theorems 1.1 and 2.11. The difference stab(e+1, d) —uns(e, d), as described
d(2¢741) — od(2¢!
od( ) — 0d(2%) mod 2¢. We have

in the paragraph preceding Theorem 1.1, equals

26+1
od(2¢+41) — 0d(2°)
26+1
& od(294) — od(20 1)
B Z e+1
=1
d e+1 e+i—
o 221»710(1(2 + ') — Od<2 + 1')
o 2e+i
=1
d
= ZQi_lzw (mod 2°)
=1
= ZQi_lzw (mod 2)
=1
= — ZW.
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Example 2.12. The binary expansion of —zw ends ---010111101101. Add that to
the binary number obtained by reversing the order of the first 12 bits after the space
on line 14 of Figure 1, and you obtain the binary number obtained by reversing the
order of the last 12 bits before the space on line 26.

3. PROOF OF THEOREM 1.4

In this section, we prove Theorem 1.4 and some mild generalizations. The bulk of
our work is the following strengthening of Proposition 2.6, the proof of which appears

later.

Theorem 3.1. With S, as defined in Lemma 2.1, and A any integer,
[JA2e+4i)=[]i (mod2°7).
i€8e i€8Se
Corollary 3.2. For any integers A, B, and 7,
[TA2e + = [](B2° +9)*  (mod 2%1*).
i€8Se i€Se

Proof. 1t is elementary that if « = 8 mod 2¢t, then a? = 3% mod 4t. We apply this

iteratively to Theorem 3.1, and then both expressions in the corollary are congruent
to []:%.

Proof of Theorem 1.4. We write the conjectured congruences in succession, beginning
odpr(2™ ' +1,2™ — 1) = odpr(2™ ! +1,2m7 1 4 2m72 —1)2  (23m7T)
odpr(27 1 41,21 4+ 2m72 _ 1)2 = odpr(2™ + 1,27 4 2773 — 1) (23m9)
with arbitrary entry
odpr(271 41,21 4 24 )27 = odpr(27 T 4 1,27 420 — )P (22l
After canceling, this becomes

om—2—d

odpr(2™ 29 41,2m7 1 429 1) = odpr(2™ ' 41,2m 420 1) (2=

We can restate this as

[Tert+2/+0) " =J[eE ' +)* " (mod 2*m3),

i€Sy 1€Sy

and this is a consequence of Corollary 3.2. H



We will prove the following two lemmas, from which Theorem 3.1 follows easily.
Lemma 3.3. 7,(S.) = 2*2 (mod 2%¢71).
Lemma 3.4. 55(S,) =22 (mod 2°7').
Proof of Theorem 3.1.
[JA2e+i) = J]i=> (A2)5;(S) =0 (mod 2°7)

i€Se i€Se >0
by Lemmas 3.3 and 3.4, with the argument slightly different for the two parities of
A N

Proof of Lemma 3.3.

2e—2_1 2e—2_1

~ (2c— 1)1 (26— 1)l . (2¢ — 1)
o1(Se) = 2 ( 2+ 1 +2e—1—2¢):2 z; (20 +1)(2¢ —1—2i)

20721
2¢ — !l
Let H, = ; @it (1)(26 _)1 — %) We will prove by induction that H, = 272
mod 2°7!, which implies the lemma.

The claim is true for e = 2. Assume it true for e — 1. Mod 27!,

(2 =)y
R S

2+ 1)(21 =2 — 1)

The summands for 4 and 272 — 1 — i are equal. Thus H, = 2(2°7! — 1)!'H,_; mod
2¢~1. By the induction hypothesis, we obtain H, = 272 mod 2°7!, as desired. N

We thank Andrew Granville for providing an alternate proof of Lemma 3.3.

The following results will be used in the proof of Lemma 3.4.

Lemma 3.5. Of the 2°7! numbers i*> mod 2¢, i € S,, there are exactly four having

each of the 273 values less than 2¢ and = 1 mod 8.

Proof. Each of the 2°72 numbers is a quadratic residue, and so must occur as i for
some i € S.. It will occur in four ways since for odd 7 < 2671, ¢, 2671 — 4, 4 + 2¢71,
and 2¢ — ¢ are distinct numbers with the same square mod 2¢. Thus the claimed

partitioning must hold. M



Lemma 3.6. Fore > 3,

51(1,9,...,2°=7,1,9,...,2°—7,1,9,...,2° = 7,1,9,...,2° = 7) = 2°1  (29).

Proof. The proof is by induction. The claim is true for e = 3 and 4. [o7(1,1,1,1) =
4 and 71(1,9,1,9,1,9,1,9) = 4-9* +4-9> = 4.93.10.] For arbitrary e, our
expression equals 4 - 93---(2¢ — 7)3 - 51(1,9,...2° — 7). Because of the 4, we can
consider 1(1,9,...,2¢ — 7) mod 272, so we obtain an odd multiple of 4 - ¥ with

S=51(19,...,272 = 7,1,9,...,272 = 7,1,9,..., 22 = 7,1,9,...,2°2 - 7).

By the induction hypothesis, ¥ = 272 mod 2°72, and so our desired expression is
= 2! mod 2°.
|

— 1N
Proposition 3.7. g —)) =2°"! (mod 2°).
i2
1€ESe

Proof. By Lemma 3.5, it equals the expression in Lemma 3.6. H

Proof of Lemma 3.4. Let D, = {(a,b) € Se x Sc : a < b}. Note that 09(S,) =

2¢ — 1!
E (—b)’ denoted by T.. Write T, =T}, + 15, where
a .
(a,b)€De

2¢ =1l 2¢— 1Nl
n.- Y g p- y ESUE

(@pep. ¢ (@pep. b
azb (2¢71) a=b (2¢71)

Each summand of T, . corresponds to a unique element of S, 1, and so, mod 2¢7*,

Ty, = Z —((26_1 — Dy’ =27 (mod 2°7")

a?

by Proposition 3.7.

We will prove 71, = 0 mod 2¢7! by induction. It is true when e = 3 as we obtain
four summands, each with denominator 3. Assume validity for e — 1. Every element
of D._ corresponds to four summands of 73 . which are equal mod 2¢~1. We obtain,

mod 2¢71,

26 1 112
Tie=4 —)) — 42 = D) (Do + Toey) =0 (271,

(ab EDB 1
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using the induction hypothesis for 47 ._; and the already-proved result for 475 ..
|
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