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Abstract. The odd part of 2e! as e → ∞ leads to a 2-adic integer z. The bits of z were
publicized in OEIS-A359349, where two conjectures were made, relevant to computing z.
We prove both of those conjectures. A second 2-adic integer, the limit of ((2e− 1)!!− 1)/2e,
plays a key role in one proof.

1. Introduction

In [1], the author noted that the odd part of 2e! and of 2e−1! agree mod 2e, and

so the 2-adic limit as e approaches ∞ is a 2-adic integer, which we will call z. In

OEIS-A359349([2]), the author and Jon E. Schoenfield publicized the sequence of

bits of z and made two conjectures. One involved a relationship between the bits

of z and some of the unstable bits in the odd part of 2e!, while the other leads to a

more efficient way of computing z. In this paper we prove both conjectures and some

generalizations.

In this introductory section, we review the two conjectures, stating them as theo-

rems. In Sections 2 and 3, we prove generalizations of both.

Let ν(n) denote the exponent of 2 in the prime factorization of n, and od(n) =

2/2ν(n) the odd part of n. Then od(2e!) = 2e!/22
e−1. In Figure 1 we tabulate the first

40 bits in the backward binary expansion (BBE) of od(2e!) for 2 ≤ e ≤ 30. In [2], a

larger table (64 bits for e ≤ 40) was presented.

Bits 0 through e of od(2e!) are stable; they agree with those of z. The unstable bits

of od(2e!) are those in position ≥ e+1; they appear to the right of the space in Figure

1. Note that, for e > d, the first d unstable bits of od(2e!) occur in the same positions

as the last d stable bits of od(2e+d!). The latter are the stable bits of z in position
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2 110 0000000000000000000000000000000000000
3 1101 110010000000000000000000000000000000
4 11010 11101110111011100000110010000000000
5 110100 1011001110100011000001101010001001
6 1101000 000000001101000110100010110011110
7 11010001 10010101001010001010001101011100
8 110100010 0111100111001000110000010011101
9 1101000101 000110101110110000001011000011
10 11010001011 10101101100010111001010101001
11 110100010110 0010011111110101111010110111
12 1101000101101 110111110000001100111011011
13 11010001011010 11100001101100011101011000
14 110100010110100 1011001111011110110100001
15 1101000101101000 000011110100000100110000
16 11010001011010001 10000001011001001111011
17 110100010110100010 0101001000011101001001
18 1101000101101000101 011101001000000000010
19 11010001011010001011 00000101101001010101
20 110100010110100010111 1001101111101111101
21 1101000101101000101110 011011110000010111
22 11010001011010001011101 00100001101011100
23 110100010110100010111011 1101001111111011
24 1101000101101000101110110 111101110010100
25 11010001011010001011101100 10000001111101
26 110100010110100010111011000 0101001100111
27 1101000101101000101110110001 011101101100
28 11010001011010001011101100011 00000011011
29 110100010110100010111011000111 1001011000
30 1101000101101000101110110001110 011111001

Table 1: first 32 bits in BBE of od(2e!)

e+1 through e+d. Let uns(e, d) and stab(e+1, d) denote the numbers whose BBE’s

are these sequences of d bits. The following theorem was the first conjecture of [2].

Theorem 1.1. There is a 2-adic integer K such that, for all d and e > d

uns(e, d) +K ≡ stab(e+ 1, d).
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Example 1.2. The BBE of K begins 1011011. The BBE’s of uns(17, 7) and stab(18, 7)

are 0101001 and 1110110, respectively. After reversing the order of the bits, the the-

orem is easily verified in this case.

This relationship between the stable and unstable parts is, at least, a curiosity. It

could be useful in calculations. We will see in Section 2 that the first d bits of K

can be determined from d bits of z and d bits of another 2-adic integer w. So, for

example, bits 18 through 24 of z can be determined from od(217!) and K mod 27,

which is an easier calculation than od(24!).

Let odpr(ℓ,m) denote the product of all odd integers j satisfying ℓ ≤ j ≤ m, and

let

h(m) = odpr(2m−1 + 1, 2m − 1).

We begin with the following elementary proposition.

Proposition 1.3. For any e ≥ 1,

od(2e!) =
e∏

m=2

h(m)e+1−m.

Proof. Each factor j of h(m) occurs with coefficient 2i for 0 ≤ i ≤ e−m in 2e!.

This yields a method of computing od(2e!) mod 2B, reducing mod 2B at each step.

The following theorem, which was the second conjecture of [2], makes it more efficient.

Theorem 1.4. If 2 ≤ m− 1 ≤ B ≤ 3m− 7, and d = 2 + ⌊B−m
2

⌋, then

h(m) ≡ odpr(2m−1 + 1, 2m−1 + 2d − 1)2
m−1−d

(mod 2B).

The advantage is that now h(m) requires 2d−1 +m− 2− d multiplications (always

reducing mod 2B) compared with 2m−2 − 1 multiplications.

2. A formula for the 2-adic integer K of Theorem 1.1

In this section, we prove Theorem 1.1 and give a formula for the 2-adic integer K

that occurs in it. We begin by reviewing the proof in [1] of existence of the 2-adic

integer z, as some of the ingredients will be useful later.
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Lemma 2.1. Let Ie = {i : 2e−1 < i ≤ 2e} and Se = {j : j odd and 1 ≤ j < 2e}.
Then od : Ie → Se is bijective.

Proof. The inverse function ϕ is defined by ϕ(u) = 2tu where t = max{k : 2ku ≤ 2e}.

Lemma 2.2. If e ≥ 3, the product of all odd positive integers less than 2e is ≡ 2e+1

(mod 2e+1).

Proof. We begin with the proof from [3, Lemma 1] that the product is 1 mod 2e. Pair

each element with its inverse in Z/2e. Only ±1 and 2e−1 ± 1 equal their own inverse,

and their product is 1.

Let P be the set of pairs (a, b) with a < b < 2e odd and ab ≡ 2e + 1 mod 2e+1. If

(a, b) ∈ P , so is (2e − b, 2e − a) since a+ b is even. Moreover, (a, b) ̸= (2e − b, 2e − a)

since, if so, then a(2e − a) ≡ 2e + 1 mod 2e+1, which cannot occur since a2 ≡ 1 mod

8. Thus the cardinality of P is even, and the product of all ab with (a, b) ∈ P is 1

mod 2e+1. Other pairs (c, d) with cd ≡ 1 mod 2e have cd ≡ 1 mod 2e+1. Finally we

have 1, 2e − 1, and 2e−1 ± 1, whose product is ≡ 2e + 1 mod 2e+1.

Corollary 2.3. For e ≥ 3, od(2e−1!) ≡ od(2e!) (mod 2e).

Proof. By Lemmas 2.1 and 2.2,

od(2e!)

od(2e−1!)
=

∏
i∈Ie

od(i) =
∏
j∈Se

j ≡ 1 (mod 2e).

Corollary 2.4. There is a 2-adic integer z which equals od(2e−1!) mod 2e.

Remark 2.5. The stronger (mod 2e+1) part of Lemma 2.2 was not needed here, but

will be used shortly.

A stronger version of the next result will be proved in Theorem 3.1.

Proposition 2.6. With Se as above,∏
i∈Se

i ≡
∏
i∈Se

(2e + i) (mod 22e).
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Proof. If S is a set of cardinality n, let σ̂i(S) = σn−i(S), where σ is the usual elemen-

tary symmetric polynomial. Then σ̂1(Se) is divisible by 2e since, for odd j ≤ 2e−1−1,∏
i∈Se
i̸=j

i+
∏
i∈Se

i̸=2e−j

i is divisible by 2e.

We have ∏
i∈Se

(2e + i)−
∏
i∈Se

i =
∑
j>0

2jeσ̂j(Se) ≡ 2eσ̂1(Se) ≡ 0 (mod 22e).

Let (2e − 1)!! = odpr(1, 2e − 1).

Corollary 2.7. For e ≥ 2,
(2e − 1)!!− 1

2e
≡ (2e+1 − 1)!!− 1

2e+1
(mod 2e−1).

Proof. By Lemma 2.2, the two expressions are odd integers. We will show that their

ratio is ≡ 1 mod 2e−1. Let A = (2e − 1)!! − 1. By Lemma 2.2, A = 2eu with u odd.

By Proposition 2.6, odpr(2e + 1, 2e+1 − 1) = A + 1 + k22e for some integer k. The

desired ratio is

(A+ 1)(A+ 1 + k22e)− 1

2A

=
A2 + 2A+ (A+ 1)k22e

2A
= 2e−1u+ 1 +

(A+ 1)k22e

2e+1u
≡ 1 (mod 2e−1).

Definition 2.8. We define w to be the 2-adic integer which equals
(2e − 1)!!− 1

2e
mod

2e−1.

The binary expansion of w ends · · · 1001110011001.
We have introduced two 2-adic integers, z and w. The next result shows that their

product equals the difference of the unstable parts of consecutive rows of Figure 1 in

a metastable range.

Theorem 2.9. The difference of the unstable parts of od(2e!) and od(2e−1!), i.e.,
od(2e!)− od(2e−1!)

2e
, is congruent mod 2e−1 to w · z.
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Proof. By Lemma 2.1, we have (2e − 1)!! =
od(2e!)

od(2e−1!)
. Thus

(2e − 1)!!− 1

2e
=

od(2e!)− od(2e−1!)

2e od(2e−1!)
,

so
(2e − 1)!!− 1

2e
· od(2e−1!) =

od(2e!)− od(2e−1!)

2e
.

The result follows now from Corollary 2.4 and Definition 2.8.

Example 2.10. The binary expansion of zw ends · · · 011000010011. The numbers

od(27!) and od(26!) agree mod 27. Beginning in the 27 position, the binary expansion

of od(27!) ends · · · 1010011, while that of od(26!) ends with eight 0’s. The difference

agrees with zw mod 26.

We now state the main theorem of this section.

Theorem 2.11. The 2-adic integer K of Theorem 1.1 equals −zw.

Proof of Theorems 1.1 and 2.11. The difference stab(e+1, d)−uns(e, d), as described

in the paragraph preceding Theorem 1.1, equals
od(2e+d!)− od(2e!)

2e+1
mod 2d. We have

od(2e+d!)− od(2e!)

2e+1

=
d∑

i=1

od(2e+i!)− od(2e+i−1!)

2e+1

=
d∑

i=1

2i−1od(2
e+i!)− od(2e+i−1!)

2e+i

≡
d∑

i=1

2i−1zw (mod 2e)

≡
∞∑
i=1

2i−1zw (mod 2d)

= − zw.
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Example 2.12. The binary expansion of −zw ends · · · 010111101101. Add that to

the binary number obtained by reversing the order of the first 12 bits after the space

on line 14 of Figure 1, and you obtain the binary number obtained by reversing the

order of the last 12 bits before the space on line 26.

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4 and some mild generalizations. The bulk of

our work is the following strengthening of Proposition 2.6, the proof of which appears

later.

Theorem 3.1. With Se as defined in Lemma 2.1, and A any integer,∏
i∈Se

(A2e + i) ≡
∏
i∈Se

i (mod 23e−1).

Corollary 3.2. For any integers A, B, and j,∏
i∈Se

(A2e + i)2
j ≡

∏
i∈Se

(B2e + i)2
j

(mod 23e−1+j).

Proof. It is elementary that if α ≡ β mod 2t, then α2 ≡ β2 mod 4t. We apply this

iteratively to Theorem 3.1, and then both expressions in the corollary are congruent

to
∏

i2
j
.

Proof of Theorem 1.4. We write the conjectured congruences in succession, beginning

odpr(2m−1 + 1, 2m − 1) ≡ odpr(2m−1 + 1, 2m−1 + 2m−2 − 1)2 (23m−7)

odpr(2m−1 + 1, 2m−1 + 2m−2 − 1)2 ≡ odpr(2m−1 + 1, 2m−1 + 2m−3 − 1)2
2

(23m−9)

with arbitrary entry

odpr(2m−1 + 1, 2m−1 + 2d+1 − 1)2
m−2−d ≡ odpr(2m−1 + 1, 2m−1 + 2d − 1)2

m−1−d

(22d+m−3).

After canceling, this becomes

odpr(2m−1+2d+1, 2m−1+2d+1−1)2
m−2−d ≡ odpr(2m−1+1, 2m−1+2d−1)2

m−2−d

(22d+m−3).

We can restate this as∏
i∈Sd

(2m−1 + 2d + i)2
m−2−d ≡

∏
i∈Sd

(2m−1 + i)2
m−2−d

(mod 22d+m−3),

and this is a consequence of Corollary 3.2.
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We will prove the following two lemmas, from which Theorem 3.1 follows easily.

Lemma 3.3. σ̂1(Se) ≡ 22e−2 (mod 22e−1).

Lemma 3.4. σ̂2(Se) ≡ 2e−2 (mod 2e−1).

Proof of Theorem 3.1.∏
i∈Se

(A2e + i)−
∏
i∈Se

i =
∑
j>0

(A2e)jσ̂j(Se) ≡ 0 (mod 23e−1)

by Lemmas 3.3 and 3.4, with the argument slightly different for the two parities of

A.

Proof of Lemma 3.3.

σ̂1(Se) =
2e−2−1∑
i=1

(
(2e − 1)!!

2i+ 1
+

(2e − 1)!!

2e − 1− 2i

)
= 2e

2e−2−1∑
i=1

(2e − 1)!!

(2i+ 1)(2e − 1− 2i)
.

Let He =
2e−2−1∑
i=1

(2e − 1)!!

(2i+ 1)(2e − 1− 2i)
. We will prove by induction that He ≡ 2e−2

mod 2e−1, which implies the lemma.

The claim is true for e = 2. Assume it true for e− 1. Mod 2e−1,

He ≡
2e−2−1∑
i=0

((2e−1 − 1)!!)2

(2i+ 1)(2e−1 − 2i− 1)
.

The summands for i and 2e−2 − 1 − i are equal. Thus He ≡ 2(2e−1 − 1)!!He−1 mod

2e−1. By the induction hypothesis, we obtain He ≡ 2e−2 mod 2e−1, as desired.

We thank Andrew Granville for providing an alternate proof of Lemma 3.3.

The following results will be used in the proof of Lemma 3.4.

Lemma 3.5. Of the 2e−1 numbers i2 mod 2e, i ∈ Se, there are exactly four having

each of the 2e−3 values less than 2e and ≡ 1 mod 8.

Proof. Each of the 2e−3 numbers is a quadratic residue, and so must occur as i2 for

some i ∈ Se. It will occur in four ways since for odd i < 2e−1, i, 2e−1 − i, i + 2e−1,

and 2e − i are distinct numbers with the same square mod 2e. Thus the claimed

partitioning must hold.
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Lemma 3.6. For e ≥ 3,

σ̂1(1, 9, . . . , 2
e − 7, 1, 9, . . . , 2e − 7, 1, 9, . . . , 2e − 7, 1, 9, . . . , 2e − 7) ≡ 2e−1 (2e).

Proof. The proof is by induction. The claim is true for e = 3 and 4. [[σ̂1(1, 1, 1, 1) =

4 and σ̂1(1, 9, 1, 9, 1, 9, 1, 9) = 4 · 94 + 4 · 93 = 4 · 93 · 10.]] For arbitrary e, our

expression equals 4 · 93 · · · (2e − 7)3 · σ̂1(1, 9, . . . 2
e − 7). Because of the 4, we can

consider σ̂1(1, 9, . . . , 2
e − 7) mod 2e−2, so we obtain an odd multiple of 4 · Σ with

Σ = σ̂1(1, 9, . . . , 2
e−2 − 7, 1, 9, . . . , 2e−2 − 7, 1, 9, . . . , 2e−2 − 7, 1, 9, . . . , 2e−2 − 7).

By the induction hypothesis, Σ ≡ 2e−3 mod 2e−2, and so our desired expression is

≡ 2e−1 mod 2e.

Proposition 3.7.
∑
i∈Se

((2e − 1)!!)2

i2
≡ 2e−1 (mod 2e).

Proof. By Lemma 3.5, it equals the expression in Lemma 3.6.

Proof of Lemma 3.4. Let De = {(a, b) ∈ Se × Se : a < b}. Note that σ̂2(Se) =∑
(a,b)∈De

(2e − 1)!!

a · b
, denoted by Te. Write Te = T1,e + T2,e, where

T1,e =
∑

(a,b)∈De

a̸≡b (2e−1)

(2e − 1)!!

a · b
and T2,e =

∑
(a,b)∈De

a≡b (2e−1)

(2e − 1)!!

a · b
.

Each summand of T2,e corresponds to a unique element of Se−1, and so, mod 2e−1,

T2,e ≡
∑

a∈Se−1

((2e−1 − 1)!!)2

a2
≡ 2e−2 (mod 2e−1)

by Proposition 3.7.

We will prove T1,e ≡ 0 mod 2e−1 by induction. It is true when e = 3 as we obtain

four summands, each with denominator 3. Assume validity for e− 1. Every element

of De−1 corresponds to four summands of T1,e which are equal mod 2e−1. We obtain,

mod 2e−1,

T1,e ≡ 4
∑

(a,b)∈De−1

((2e−1 − 1)!!)2

a · b
= 4(2e−1 − 1)!!(T1,e−1 + T2,e−1) ≡ 0 (2e−1),
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using the induction hypothesis for 4T1,e−1 and the already-proved result for 4T2,e−1.
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