Correlation Between Surface Free Energy and Surface Constitution

MANOJ K. CHAUDHURY AND GEORGE M. WHITESIDES

Self-assembled monolayers (SAMs) of alkylsiloxanes on elastomeric PDMS (polydimethylsiloxane) were used as model systems to study interactions between surfaces. Surface free energies (γ_{SV}) of these chemically modified surfaces were estimated by measuring the deformations that resulted from the contact between small semispherical lenses and flat sheets of the elastomer under controlled loads. The measured surface free energies correlated with the surface chemical compositions of the SAMs and were commensurate with the values estimated from the measurements of contact angles. This study provides direct experimental evidence for the validity of estimates of the surface free energies of low-energy solids obtained from contact angles.

Measurement of contact angles is a technique that is highly sensitive to the composition and properties of surfaces (1). The measured quantities are related to the surface and interfacial free energies through Young's equation (2) (Eq. 1).

$$\gamma_{SV} = \gamma_{LV} \cos \theta + \gamma_{SL}$$

Here the system is assumed to be at thermodynamic equilibrium, and γ_{LV}, γ_{SV}, and γ_{SL} stand for the surface and interfacial free energies of the liquid-vapor, solid-vapor, and solid-liquid interfaces, respectively. One use of Eq. 1 is to estimate γ_{SV}—a fundamental thermodynamic state parameter characterizing the surface of materials. Although γ_{LV} can be determined directly, γ_{SL} cannot, in general. Thus there have been several efforts to express γ_{SV} in terms of γ_{SV} and γ_{LV} in order to reduce the number of unknowns in Young's equation.

This objective has been best achieved (3) by treatments that assume specific forms for the intermolecular forces that operate across condensed phase boundaries. For systems where the London dispersion interactions are prominent, the most commonly used generalization of Young's equation is (3):

$$\gamma_{SV} = \gamma_{LV} (1 + \cos \theta)^{2/3}$$

Equation 2 occupies a central position in estimating the surface free energies of low-energy solids. Because the values of γ_{SV} of solids cannot, in general, be measured directly (4), no rigorous comparison between predicted and experimental values validates this equation. In this report, we present an experimental system based on a methodology developed by Johnson, Kendall, and Roberts (JKR) (5) that allowed direct estimation of the surface free energies of several model low-energy surfaces. This system provides a suitable experimental basis for systematic evaluation of Eq. 2.

The basic protocol of these measurements is to study spreading occurring at the interface between two elastomeric solids. Solids, like liquids, have a tendency to spread on other solids. The driving force for this spreading, like that on solid-liquid interfaces, is the minimization of the interfacial free energies. Thus when a curved solid is brought into contact with a flat substrate, a deformation occurs at the zone of contact. The magnitude of this deformation is determined by the balance of the interfacial and elastic energies. If the elastic constants of the materials are known, the interfacial energies can be estimated directly from contact deformation (5–12). The materials used in these experiments must be compliant and have very smooth surfaces. We have shown that elastomeric PDMS meets these requirements well (12, 13), and we chose this polymer for our contact deformation experiments.

The basic experimental system (12) comprises a semispherical lens and a flat sheet of elastomeric PDMS (Dow Corning Sylgard 170). The surfaces of both lens and sheet were modified chemically using the technology of self-assembled organic monolayers (12–14). In a typical experiment (Fig. 1), the lens was slowly brought into contact with the flat sheet, and an external load was then applied. A spontaneous deformation occurred at the contact zone as soon as the lens touched the flat sheet (Fig. 2). This deformation increased in response to the external loads. Deformation was measured as a function of applied load. At the end of the compressive cycle, the load was decreased stepwise and contact deformations were measured again until the lens completely separated from the flat sheet. All of the measurements were made under ambient conditions with the temperature of the laboratory ~23°C and the relative humidity ~50%. The data obtained from these load-deformation studies were analyzed (15) by using Eq. 3 to estimate γ_{SV} for the surface of the elastomer.

$$a^3 = (R/K)[P + 6\pi R \gamma_{SV} +$$

$$[12\pi RP \gamma_{SV} + (6\pi R \gamma_{SV})^{3/2}]^{0.5}]$$

In Eq. 3, a (cm) is the radius of the contact deformation, R (cm) is the radius of curvature of the lens, P (dynes) is the external load, and K (dynes/cm²) is the composite modulus. In our studies, values of K clustered around 5 × 10⁸ dynes/cm².

We controlled the chemical composition of the surface of PDMS using a procedure described previously (12, 16). Exposure of PDMS to an oxygen plasma generated a thin (<50 Å by x-ray photoelectron spectroscopy

![Fig. 1. Contact between a semispherical lens and flat sheet of PDMS results in the formation of a circular region of radius a. For clarity, the area of contact is exaggerated. The surfaces of both the lens and flat sheets were modified by using alkylsiloxane self-assembled monolayers (SAMs). In a typical load-deformation experiment, the radius of the lens was ~1 mm and the thickness of the flat sheet was ~1.5 mm.](image-url)
Fig. 2. Photomicrograph showing the contact area (innermost circle) resulting from the contact between a lens (R = 0.72 mm) and a flat sheet of PDMS^m-O,Si(CH_2)_10CH_3 under zero load. The radius of contact deformation was ~92 μm.

The sample surface was PDMS^m. Chemisorption of alkylchlorosilanes [Cl_3Si(CH_2)_3,Cl] onto PDMS^m produced monolayers of the corresponding alkylsiloxanes. By varying the head-group functionalities (R) of these silanes, the chemical compositions of the surface of the PDMS lens and sheet could be controlled. Silanes used to modify PDMS^m were Cl_3Si(CH_2)_10CH_3, Cl_3Si(CH_2)_3CF_2, Cl_3Si(CH_2)_10CH_3, Cl_3Si(CH_2)_3OCH_3, Cl_3Si(CH_2)_3Br, and Cl_3Si(CH_2)_3OOCCH_3. We denote the material produced by reaction of PDMS^m and a chlorosilane as PDMS^m-O,Si(CH_2)_3,R. We used XPS to verify the presence of the relevant functional groups on the monolayer-coated PDMS surfaces. One remarkable feature of these surfaces was that they all exhibited negligible hysteresis (18) in contact angles, except for the fluorocarbon surface, which exhibited large hysteresis with diiodomethane (Table 1). The observation of low hysteresis was particularly important in our studies because it suggested that the measured contact angles are close to equilibrium values and that Young's equation should be valid.

The result of a typical load-deformation study (19) is shown in Fig. 3. There was generally finite but small hysteresis in contact deformations as obtained from the compression and decompression cycles. This hysteresis resulted in two different values of γSV for a specific surface. In Table 1, we present these values and compare them with the values obtained from the contact angles of hexadecane and diiodomethane. For the methyl and perfluoromethyl surfaces, we also report the surface free energies obtained from the contact angles of perfluorodecalin. In all cases, we used the average of the advancing and receding contact angles to estimate γSV.

The data tabulated in Table 1 show that small variations in the chemical compositions of the alkylsiloxane monolayers have a profound effect on adhesion of these surfaces and that the values of γSV measured by using Eq. 3 agree remarkably well with those estimated using contact angles (3). There are, however, several details about these data that deserve comment. First, we note that the surface free energies of the methyl surface as estimated from the contact angles of hexadecane and diiodomethane are higher than those obtained with the contact angle of perfluorodecalin. Conversely, the surface free energy (20) of the fluorocarbon surface as obtained from the contact angles of hexadecane is lower than that obtained by using perfluorodecalin (21). The values of γSV measured directly off the methyl surface certainly agree well with those obtained from the contact angle of hexadecane and diiodomethane but not with that obtained using a fluorocarbon liquid. The situation becomes reversed for the fluorocarbon surface (see Table 1).

For PDMS^m-O,Si(CH_2)_10CH_3, the surface free energy as obtained from the contact angle of hexadecane is somewhat lower than that obtained from the contact angle of diiodomethane. Although the reason for this discrepancy is not clear, it is plausible that diiodomethane has a greater ability to interact with underlying functional groups (that is, ether groups) than does hexadecane (22). This observation is similar to that reported for the SAMs of ω-mercaptopropanethiols [HS(CH_2)_3O,Si(CH_2)_11CH_3; n = 0 to 5] on gold, where hexadecane was inferred to be a more surface-sensitive probe liquid than water and glycerol (23). The agreement between the values of γSV for the methyl ether surface (R = OCH_3) obtained from the contact angle of hexadecane and direct measurement indicates that adhesion between solids is very surface sensitive (24). The methyl ether surface (R = CO_2CH_3) was wettable by hexadecane, indicating the head group region of this surface is significantly disordered and populated with the carbonyl groups. The measured surface free energy of this surface is consequently higher than that of the methyl ether surface and is in reasonable agreement with the estimate based on the contact angle of diiodomethane. A similar high wettability (and thus high surface energy) is also observed for the surface containing bromide groups (R = Br).

These studies demonstrate that self-assembled alkylsiloxane monolayers on PDMS are excellent model systems for studying

Table 1. Contact angles of several liquids on functionalized PDMS and surface free energies of these systems. The θ_0 and θ_1 represent advancing and receding contact angles, respectively; HD, PFD, and DM stand for hexadecane, perfluorodecalin, and diiodomethane, respectively. The surface tensions of these three liquids are: 27.7 dynes/cm (HD); 18.2 dynes/cm (PFD); and 49.3 dynes/cm (DM). γSV, and γSV, decom indicate the surface energy values obtained from compression and decompression experiments, respectively. γSV, indicates the surface energy value as obtained from contact angle measurements using liquid i. The errors in estimating γSV values were less than 1 erg/cm^2.

<table>
<thead>
<tr>
<th>Surface</th>
<th>Contact angles (degrees)</th>
<th>Surface free energies (ergs/cm^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>θ_0^HD</td>
<td>θ_1^HD</td>
</tr>
<tr>
<td>PDMS^m-O,Si(CH_2)_3(CF_2),CF_3</td>
<td>71</td>
<td>68</td>
</tr>
<tr>
<td>PDMS^m-O,Si(CH_2)_10CH_3</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>PDMS^m-O,Si(CH_2)_10OCH_3</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>PDMS^m-O,Si(CH_2)_11OCOC_3</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

6 MARCH 1992
adhesion between surfaces. The method
described here, which is based on deformations
in a compliant polymeric lens and sheet, is sensitive to small variations in the
compositions of the surface. In terms of analyzing surface energetics, it is comple-
mentary to measuring contact angles. Al-
though we have so far studied systems that
interact primarily through London–van der
Waals forces, the method can also be used to
investigate more complex interfacial interac-
tions (for example, hydrogen bonding) by
incorporating relevant functional groups on
the surface of the PDMS (25).

REFERENCES AND NOTES
3. L. A. Girifalco and R. J. Good, J. Phys. Chem. 61, 904 (1957); R. J. Good and L. A. Girifalco, ibid. 64, 1284 (1960); E. Fosket, Ind. Eng. Chem. 56, 40 (1964). The theories of intermolecular forces for dispersive systems only predict that the energy of intermolecular interaction between dissimilar phases is given by the geometric mean of their cohesive energies of interaction. Stretching this conclusion to surface free energies (as has been done with Eq. 2) has never been theoretically derived. Therefore Eq. 2 is semiempirical.
4. In his classic paper (1), Zisman wrote: "Unfortunately the efficiency of either \(\gamma_{SV} \) or \(\gamma_{SA} \) is still unknown, and neither quantity can be studied until a satisfactory experimental method for measuring it has been found . . ." (Note that the symbol \(\gamma_{SV} \) in this statement has, basically, the same physical meaning as that of \(\gamma_{SA} \); the superscript "S" implied that the measurements are made under saturated vapor pressure.) One major experi-
mental difficulty in analyzing the energetics of solid
surfaces arises because most real systems exhibit
hysteresis of some sort, indicating that they are not
thermodynamic equilibrium. Young's equation
strictly applies only at equilibrium.
criticisms to our understanding of the deformations
between elastic solids were also made by the school of
Donalds et al. (2) [R. V. Donalds, ibid., 69, 155 (1934); V. M. Muller, Yu. P. Toporov, J. Colloid Interface Sci. 83, 314 (1975)].
However, the present JKR theory is much more applicable to our present
purpose (12). See (6) for the details describing the
relations between various theories dealing
with contact deformations.
15. The original JKR equation was expressed in terms of \(W \), the work of adhesion. For two similar surfaces, \(W \) is equal to \(2 \gamma_S \), and thus we have expressed the

Dissociation of Individual Molecules with Electrons from the Tip of a Scanning Tunneling Microscope

G. Dujardin, R. E. Walkup, Ph. Avouris

The scanning tunneling microscope (STM) can be used to select a particular adsorbed molecule, probe its electronic structure, dissociate the molecule by using electrons from the STM tip, and then examine the dissociation products. This capability is illustrated using a decaborane (14) \(\text{B}_{10} \text{H}_{14} \) molecule adsorbed on a silica surface (111) \((7 \times 7) \) surface. In addition to basic studies, such selective dissociation processes can be used in a variety of applications to control surface chemistry on the molecular scale.

The scanning tunneling microscope (STM) can be used to control the structure and properties of materi-
als on surfaces at the atomic or molecular level. The STM has been previously used to transfer clusters of atoms from the STM tip to the sample (1), to write molecular-scale marks on graphite (2), to reposition adsorbed atoms and molecules on metal sur-
faces (3, 4), and to reversibly transfer indi-
vidual atoms between a surface and a tip by

The application of voltage pulses (4-6). At a somewhat more macroscopic level, the STM has been used for a variety of nanometer-
scale surface modifications (7, 8), including the deposition and etching of materials on surfaces, the electron-stimulated desorption of adsorbates (9), and the exposure of ligh-
tographic films using the STM tip as a field-
microwave electron source (10). In this paper,
we discuss the dissociation of individual
desorbed molecules using low-energy elec-
trons from the tip. With the STM, one can select a particular adsorbed molecule, probe its electronic structure, dissociate the mole-
cule, and then examine the dissociation products.

We investigated decaborane (14)