1 Problem K32.14

Parts A thru C. What are the magnetic field strengths at points 1, 2, and 3?

Solution: From the equation sheet, the strength of the magnetic field of a long straight wire carrying a current is \(B = \frac{\mu_0 I}{2\pi R} \) where \(R \) is the distance from the center of the wire. The direction of this field (needed for superposition) is found from the right-hand rule. The contribution of the top wire \(\vec{B}_{\text{top}}(1) \) will be out of the page \((+\hat{k})\), while \(\vec{B}_{\text{bot}}(1) \) will be into the page \((-\hat{k} \text{ direction})\), so they get subtracted. So, at point 1,

\[
\vec{B}_{\text{top}}(1) = \frac{\mu_0 I}{2\pi R(1)} \hat{k} = \frac{\left(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}\right) (10 \text{ A})}{2\pi (2 \times 10^{-2} \text{ m})} \hat{k} = 1 \times 10^{-4} \text{ T} \hat{k}
\]

\[
\vec{B}_{\text{bot}}(1) = \frac{(4\pi \times 10^{-7} \text{ T} \cdot \text{m/A})(10 \text{ A})}{2\pi (6 \times 10^{-2} \text{ m})} \left(-\hat{k}\right) = 3.33 \times 10^{-5} \text{ T} \hat{k}
\]

\[
\vec{B}(1) = \left(1 \times 10^{-4} - 3.33 \times 10^{-5}\right) \hat{k} = 6.67 \times 10^{-5} \text{ T} \hat{k}
\]

At points 2 and 3 (don’t forget that the website asks for magnitudes only),

\[
\vec{B}(2) = -\frac{\mu_0 10 \text{ A}}{2\pi (2 \times 10^{-2} \text{ m})} \hat{k} - \frac{\mu_0 10 \text{ A}}{2\pi (2 \times 10^{-2} \text{ m})} \hat{k} = -2 \times 10^{-4} \text{ T} \hat{k}
\]

\[
\vec{B}(3) = -\frac{\mu_0 10 \text{ A}}{2\pi (6 \times 10^{-2} \text{ m})} \hat{k} + \frac{\mu_0 10 \text{ A}}{2\pi (2 \times 10^{-2} \text{ m})} \hat{k} = 6.67 \times 10^{-5} \text{ T} \hat{k}
\]

2 Problem K32.30

A proton moves in the magnetic field \(\vec{B} = 0.50 \hat{i} \text{ T} \) with a speed of \(1.0 \times 10^7 \text{ m/s} \) in the directions shown in Figure 2. For each, what is magnetic force \(\vec{F} \) on the proton?

Part A. The vector \(\vec{v} \) for this part lies in the \(xz \) plane.

Solution: The magnetic force is \(\vec{F} = q\vec{v} \times \vec{B} \). In this case, \(\vec{v} = 1.0 \times 10^7 \left(\frac{\hat{i} + \hat{k}}{\sqrt{2}}\right) \), so

\[
\vec{F} = (1.6 \times 10^{-19} \text{ C}) \left(0.707 \times 10^7 \left(\hat{i} + \hat{k}\right) \text{ m/s}\right) \times (0.50 \hat{i} \text{ T})
\]

\[
= 5.656 \times 10^{-13} \hat{j} \text{ T} = 0, 5.656 \times 10^{-13}, 0 \text{ T}
\]

Part B. The vector \(\vec{v} \) for this part points in the negative \(x \) direction.

Solution: Since both \(\vec{v} \) and \(\vec{B} \) have only \(\hat{i} \) components, the cross product is zero.
3 Problem SP 27.19

A ball with a mass of m which contains N excess electrons is dropped into a vertical shaft with a height h. The ball falls in the $-z$ ($-\hat{k}$) direction. At the bottom of the shaft, the ball suddenly enters a horizontal uniform magnetic field (that is, in the $+y$ ($+\hat{j}$) direction) that has a magnitude of B.

Parts A and B. If air resistance is negligibly small, find the magnitude and direction of the force that this magnetic field exerts on the ball just as it enters the field.

Solution: The charge of the ball is $q = -eN$. The magnetic field is $\vec{B} = B\hat{j}$. To find the velocity, use conservation of energy. The change in potential energy as the ball falls is $-mgh$:

$$\Delta K = \frac{1}{2}mv^2 = mgh = -\Delta U$$

$$v = \sqrt{2gh}$$

$$\vec{v} = -\sqrt{2gh}\hat{k}$$

The magnetic force (remembering that $\hat{k} \times \hat{j} = -\hat{i}$) is:

$$\vec{F} = q\vec{v} \times \vec{B} = -(eN)\left(-\sqrt{2gh}\hat{k}\right) \times \left(B\hat{j}\right) = eN\sqrt{2gh}\hat{B}$$

The magnitude of the force is

$$|F| = eN\sqrt{2ghB}$$

And the direction is the $-\hat{i}$ direction.

4 Problem SP 27.8

A particle with charge $q = -5.4\text{ nC}$ is moving in a uniform magnetic field $\vec{B} = -B\hat{k} = -1.25\text{ T}\hat{k}$. The magnetic force on the particle is measured to be $\vec{F} = F_x\hat{i} + F_y\hat{j} = \left(-3.30 \times 10^{-7} \hat{i} + 7.60 \times 10^{-7} \hat{j}\right)\text{ N}$. (Notation: q is the charge, which is negative. F_x is the x component of the force, which is negative. B is the magnitude of the magnetic field, which is always positive.)

Part A. Are there components of the velocity that are not determined by the measurement of the force?

Solution: Yes! Any velocity component parallel to the \vec{B} field will not contribute to the magnetic force. Notice how v_z doesn’t appear in the force.

$$\vec{F} = q\vec{v} \times \vec{B} = q\left(v_x\hat{i} + v_y\hat{j} + v_z\hat{k}\right) \times \left(-B\hat{k}\right) = qv_xB\hat{j} - qv_yB\hat{i} = F_x\hat{i} + F_y\hat{j}$$

Parts B and C. Calculate the x and y components of the velocity of the particle.

Solution: Using the above calculation and matching \hat{i} and \hat{j} terms.

$$F_y = qv_xB \quad v_x = \frac{F_y}{qB} = \frac{7.60 \times 10^{-7}\text{ N}}{(-5.4 \times 10^{-9}\text{ C})(1.25\text{ T})} = -113\text{ m/s}$$

$$F_x = -qv_yB \quad v_y = -\frac{F_x}{qB} = -\frac{-3.30 \times 10^{-7}\text{ N}}{(-5.4 \times 10^{-9}\text{ C})(1.25\text{ T})} = -48.9\text{ m/s}$$

Part D. Calculate the scalar product $\vec{v} \cdot \vec{F}$. **Solution:**

$$\vec{v} \cdot \vec{F} = \left(v_x\hat{i} + v_y\hat{j} + v_z\hat{k}\right) \cdot \left(F_x\hat{i} + F_y\hat{j}\right) = v_xF_x + v_yF_y = \frac{F_yF_x}{qB} - \frac{F_xF_y}{qB} = 0$$

Part E. What is the angle between \vec{v} and \vec{F}? **Solution:** The angle is 90 degrees. This is easily seen from $\vec{F} = q\vec{v} \times \vec{B}$ because the result of a cross product is perpendicular to both vectors that went into it.