28. Assume that the equilateral triangles have side length s. The heuristic starts with a minimum spanning tree. Since the distance between any two points is at least s, a minimum spanning tree has weight at least $s(2m - 2)$. Thus the spanning tree consisting of the path $1, 2m - 1, 2, 2m - 2, 3, 2m - 3, \ldots, m + 2, m - 1, m + 1, m$ is minimum. With this, the only two odd degree vertices are 1 and m and the heuristic adds the edge between them with weight $s(m - 1)$. The result is a Hamiltonian path, so there is no shortcutting and the heuristic produces a Hamiltonian path of length $s(2m - 2 + m - 1) = s(3m - 3)$. A minimum weight Hamiltonian tour has weight at least $s(2m - 1)$ as each edge has weight at least s and there are $2m - 1$ edges. Given ϵ, take $m > \frac{3}{4\epsilon} + \frac{1}{2}$, then it can be checked (with some straightforward algebra) that $-3/2 \geq -\epsilon(2m - 1)$. Thus, for such m we have $3m - 3 = (2m - 1) + .5(2m - 1) - 3/2 \geq (2m - 1) + (.5 - \epsilon)(2m - 1)$ as needed.

29. (6.2.4) We give three different proofs:

Proof 1: Let M^* be a maximum matching and M maximal. M^* has $2|M^*|$ vertices as ends and M has $2|M|$. So at least $2|M^*| - 2|M|$ vertices of M^* are not ends of edges of M. If $|M| < |M^*|/2$ then $2|M^*| - 2|M| > |M^*|$ and since more than $|M^*|$ vertices are not covered by M, both ends of some edge of M^* are not covered by M. This edge could then be added to M contradicting maximality.

Proof 2: By maximality, the vertices that are ends of edges in M cover all edges (an edge not covered could be added to M). Thus there is a vertex cover of size at most $2|M|$. So $2|M| \geq \beta(G)$. Since also we have $\beta(G) \geq \alpha'(G)$ (weak duality) we get $2|M| \geq \alpha'(G)$.

Proof 3: Let M^* be a maximum matching and M maximal. Consider the symmetric difference $M \triangle M^*$. There are at least $|M^*| - |M|$ augmenting paths in this symmetric difference. Since M is maximal none of these paths consists of a single edge from M^*. Thus each augmenting path contains at least one edge from M and we get $|M| \geq |M^*| - |M| \Rightarrow |M| \geq |M^*|/2$.

30. (6.2.24) Show that Tutte’s condition holds. This implies the existence of a 1-factor. Note that $G - S$ is connected for $|S| < r$ and in particular that G is connected. If $1 \leq |S| < r$ then odd$(G - S) \leq 1$ and we have odd$(G - S) \leq |S|$. Since G is connected and has even order odd$(G_S) = 0$ when $S = \emptyset$ and we have odd$(G_S) \leq |S|$ for $S = \emptyset$. For $|S| \geq r$ construct a bipartite graph H with parts $S = \{v_1, v_2, \ldots, v_s\}$ and the components C_1, C_2, \ldots, C_t with $t = odd(G - S)$. Put an edge between v_i and C_j if there is at least one edge between v_i and a vertex of C_j. Since there is no $K_{1,r+1}$ the degree of each v_i in H is at most r. Since deleting fewer
than r vertices does not disconnect the graph, the degree of each C_j in H is at least r. If H has e edges, counting the edges in two ways we get $sr \geq e \geq tr$. So $s \geq t$, which is $|S| \geq odd(G_S)$. So Tutte’s condition holds in all cases.

31. (6.3.6) (a) Consider the matrix

$$
\begin{array}{cccc}
4 & 4 & 4 & 3 \\
1 & 1 & 4 & 3 \\
1 & 4 & 5 & 3 \\
5 & 6 & 4 & 7 \\
5 & 3 & 6 & 8 \\
\end{array}
$$

We can find an initial cover by taking $u_i = \max_j row_i$ for all i, yielding

$$
\begin{array}{c|cccc}
0 & 0 & 0 & 0 & 0 \\
6 & 2 & 2 & 2 & 3 & 0 \\
4 & 3 & 3 & 0 & 1 & 0 \\
5 & 4 & 1 & 0 & 2 & 0 \\
9 & 4 & 3 & 5 & 2 & 0 \\
8 & 3 & 5 & 2 & 0 & 5 \\
\end{array}
$$

where the underlined zeros correspond to a matching. If we let $R = \{\emptyset\}$ and $T = \{3, 4, 5\}$ the minimum ϵ of the uncovered elements is equal to 1. Thus, we decrease u_i by 1, for all i and increase v_3, v_4, v_5 by 1, yielding

$$
\begin{array}{c|cccc}
0 & 0 & 1 & 1 & 1 \\
5 & 1 & 1 & 2 & 3 & 0 \\
3 & 2 & 2 & 0 & 1 & 0 \\
4 & 3 & 0 & 0 & 2 & 0 \\
8 & 3 & 2 & 5 & 2 & 0 \\
7 & 2 & 4 & 2 & 0 & 5 \\
\end{array}
$$

Here, we let $R = \{\emptyset\}$ and $T = \{2, 3, 4, 5\}$. This gives $\epsilon = 1$, so we decrease u_i by 1 for all i and increase v_2, v_3, v_4, v_5 by 1, yielding the final solution

$$
\begin{array}{c|cccc}
0 & 1 & 2 & 2 & 2 \\
4 & 0 & 1 & 2 & 3 & 0 \\
2 & 1 & 2 & 0 & 1 & 0 \\
3 & 2 & 0 & 0 & 2 & 0 \\
7 & 2 & 2 & 5 & 2 & 0 \\
6 & 1 & 4 & 2 & 0 & 5 \\
\end{array}
$$

where $c(u, v) = 29 = w(M)$.
(b) Consider the matrix

\[
\begin{array}{cccc}
7 & 8 & 9 & 8 \\
8 & 7 & 6 & 7 \\
9 & 6 & 5 & 4 \\
8 & 5 & 7 & 6 \\
7 & 6 & 5 & 5
\end{array}
\]

We can find an initial cover by taking \(u_i = \max_j \text{row}_i \) for all \(i \), yielding

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 \\
9 & 2 & 1 & 0 & 1 & 2 \\
8 & 0 & 1 & 2 & 1 & 2 \\
9 & 0 & 3 & 4 & 5 & 3 \\
8 & 0 & 3 & 1 & 2 & 4 \\
7 & 0 & 1 & 2 & 2 & 2
\end{array}
\]

If we let \(R = \{\emptyset\} \) and \(T = \{1, 3\} \), we have \(\epsilon = 1 \), so we decrease \(u_i \) by 1 for all \(i \) and increase \(v_1, v_3 \) by 1, yielding

\[
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
8 & 2 & 0 & 0 \\
7 & 0 & 2 & 0 \\
8 & 0 & 2 & 4 \\
7 & 0 & 2 & 1 \\
6 & 0 & 0 & 2
\end{array}
\]

Then, if we let \(R = \{\emptyset\} \) and \(T = \{1, 2, 3, 4\} \), we have \(\epsilon = 1 \), so we decrease \(u_i \) by 1 for all \(i \) and increase \(v_1, v_2, v_3, v_4 \) by 1, yielding

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
7 & 2 & 0 & 0 \\
6 & 0 & 0 & 2 \\
7 & 0 & 2 & 4 \\
6 & 0 & 2 & 1 \\
5 & 0 & 0 & 2
\end{array}
\]

Finally, we let \(R = \{1, 2, 5\} \) and \(T = \{1\} \), giving \(\epsilon = 1 \), and yielding the final solution

\[
\begin{array}{cccc}
3 & 1 & 2 & 1 \\
7 & 2 & 0 & 0 \\
6 & 0 & 0 & 2 \\
6 & 0 & 1 & 3 \\
5 & 0 & 1 & 0 \\
5 & 0 & 0 & 2
\end{array}
\]
where \(c(u, v) = w(M) = 36. \)

(b) Consider the matrix

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 7 & 2 \\
1 & 3 & 4 & 4 & 5 \\
3 & 6 & 2 & 8 & 7 \\
4 & 1 & 3 & 5 & 4 \\
\end{bmatrix}
\]

We can find an initial cover by taking \(u_i = \max_j \text{row}_j \) for all \(i \), yielding

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 5 \\
4 & 3 & 2 & 1 & 0 & \\
8 & 2 & 1 & 0 & 1 & 6 \\
5 & 4 & 2 & 1 & 1 & 0 \\
8 & 5 & 2 & 6 & 0 & 1 \\
5 & 1 & 4 & 2 & 0 & 1 \\
\end{array}
\]

If we let \(R = \{\emptyset\} \) and \(T = \{3, 4, 5\} \), we have \(\epsilon = 1 \), so we adjust the cover and the excess graph, accordingly, yielding

\[
\begin{array}{cccccc}
0 & 0 & 1 & 1 & 1 & 4 \\
4 & 3 & 2 & 2 & 1 & 0 \\
7 & 1 & 0 & 0 & 1 & 6 \\
4 & 3 & 1 & 1 & 1 & 0 \\
7 & 4 & 1 & 6 & 0 & 1 \\
4 & 0 & 3 & 2 & 0 & 1 \\
\end{array}
\]

Then, if we let \(R = \{2, 4\} \) and \(T = \{4, 5\} \), we have \(\epsilon = 1 \), leading to the final solution

\[
\begin{array}{cccccc}
0 & 0 & 1 & 2 & 2 & 3 \\
2 & 1 & 1 & 1 & 0 & 7 \\
1 & 0 & 0 & 1 & 6 & 3 \\
2 & 0 & 0 & 1 & 0 & 6 \\
3 & 0 & 5 & 0 & 1 & 4 \\
0 & 3 & 2 & 0 & 1 & 4 \\
\end{array}
\]

where \(c(u, v) = w(M) = 28 \)

32. (6.3.8) Create a bipartite graph with parts \(\{u_1, u_2, \ldots, u_m\} \) and \(\{v_1, v_2, \ldots, v_n\} \) and the weight on edge \(u_iv_j \) equal to \(\max\{0, x_i + y_j - t\} \). The weights are the overtime, if any, for the corresponding pairing of routes. Thus we solve the problem by finding a minimum weight perfect matching.
Label so that \(x_1 \leq x_2 \leq \cdots \leq x_n \) and \(y_1 \geq y_2 \geq \cdots \geq y_n \). To show that a best solution is to pair the \(i^{th} \) shortest with the \(i^{th} \) longest we need to show that matching using edges \(u_iv_i \) for \(i = 1, 2, \ldots, n \) is minimum. We will show this using induction.

If \(n = 1 \) the result is trivial. For \(n > 1 \) if \(u_1v_1 \) is in the matching delete this edge and use induction on the remaining edges. We will show that there exists a minimum matching pairing \(u_1v_1 \) and the apply induction as in the previous sentence to establish the result. Assume that \(u_iv_j \) and \(v_1u_i \) are in the minimum matching with weight \(c^* \).

Switching these edges to match \(u_1v_1 \) and \(u_iv_j \) yields a matching with weight \(c \) such that

\[
c^* - c = \max\{0, x_1 + y_j - t\} + \max\{0, x_i + y_1 - t\} - \max\{0, x_1 + y_1 - t\} - \max\{0, x_i + y_j - t\}
\]

(as all other weights remain unchanged). With \(x_1 \leq x_i \) and \(y_1 \geq y_j \) we get

Case 1: If \(x_i + y_1 \leq t \) then each of \(x_1 + y_j, x_i + y_j, x_1 + y_j \) is at most \(t \). In this case the weights on all four edges are 0 and \(c^* - c = 0 \).

Case 2: \(x_i + y_j \leq t \). Then \(x_1 + y_j \leq t \) and the weights on edges \(u_1y_j \) and \(u_1y_i \) are 0. As also \(x_1 + y_i \leq x_i + y_i \) the weight on edge \(u_1v_1 \) is at most that on edge \(u_1y_i \) and \(c^* - c \geq 0 \).

Case 3: \(x_1 + y_1 \leq t \). Then \(x_1 + y_j \leq t \) and the weights on edges \(u_1v_1 \) and \(u_1v_1 \) are 0. As \(x_i + y_j \leq x_i + y_1 \) the weight on edge \(u_1v_1 \) is at most that on edge \(u_1y_i \) and \(c^* - c \geq 0 \).

Case 4: None of the above. Then The weights on edges \(u_1v_i, u_1v_j, u_1v_i \) are respectively \(x_1 + y_1 - t, x_i + y_j - t, x_i + y_1 - t \) and \(c^* - c = (\max\{0, x_1 + y_j - t\} + (x_i + y_1 - t) - (x_1 + y_1 - t) - (x_i + y_j - t) = (\max\{0, x_1 + y_j - t\}) - (x_i + y_j - t) \geq 0 \).

Thus in each case switching does not increase the weight and we get a minimum matching using the edge \(u_1v_1 \) and as noted above by induction the result follows.

33. (6.3.11) Form a bipartite graph with bipartition \(U = \{u_1, u_2, \ldots, u_n\} \) and \(V = \{v_{rs} | r = 1, 2, \ldots, k \) and \(s = 1, 2, \ldots, k_r \}. \) Put the weight on edge \(u_iv_{rs} \) to be \(t \) if seminar \(r \) is the \(i^{th} \) highest seminar on the list of student \(i \). A minimum weight perfect matching is stable under this definition of stable. (Here we put student \(i \) in seminar \(r \) if \(u_i \) is matched to \(v_{rs} \) for some \(s \).) If student \(i \) in seminar \(r \) and student \(i' \) in seminar \(r' \) want to switch then \(i \) prefers \(r' \) and \(i' \) prefers \(r \) so for any \(s, s', s'', s''' \) we have \(weight(u_iv_{rs}) > weight(u_iv_{rs'}) \) and also \(weight(u_{i'}v_{r's''}) > weight(u_{i'}v_{r's'''}) \). Thus the matching after the switch has lower weight, a contradiction.

Note - one can also check that a ‘greedy’ approach, going through the list of students and assigning the highest ranked seminar with an available slot will produce a stable matching.