37. This is clearly a hereditary system: if S has size at most k and is not a subset of any of the A_i then any $S' \subset S$ also has these properties. To see that it is non-empty we need an extra condition, that $|E| \geq k$. Then if $|A_i| < k$ for all i all size k subsets of E are bases. If $|A_i| \geq k$ for some i, choose $x \not\in A_i$ (which exists as we assumed $A_i \neq E$) and $X \subseteq A_i$ with $|X| = k - 1$. Then $X \cup \{x\}$ is a base. It has size k and if it was contained in any A_j then $|A_j \cap A_i| \geq k - 2$.

Let B_1 and B_2 be two bases and $e \in B_1 - B_2$. Let $B_2 - B_1 = \{f_1, f_2, \ldots, f_i\}$. If $B - e + f_i$ is not a base then, since its size is k, for some $A_{\sigma(i)}$ we have $B_1 - e + f_i \subseteq A_{\sigma(i)}$. Assume that $B - e + f_i$ is a base for all $f_i \in B_2 - B_1$. For f_i and f_j in $B_2 - B_1$ we get sets $A_{\sigma(i)}$ and $A_{\sigma(j)}$ with the size $k - 1$ set $B_1 - e$ a subset of both. The intersection condition then implies $A_{\sigma(i)} = A_{\sigma(j)}$ (if they were distinct their intersection would be too large). So all of the $A_{\sigma(i)}$ are the same set, call it A. Now $B_3 \subseteq \bigcup_{i=1}^{f} (B_1 - e + f_i) \subseteq \bigcup_{i=1}^{f} A_{\sigma(i)} = A$ contradicting B_2 a base. Thus $B_1 - e + f_i$ is a base for some i and the base exchange axiom holds.

38. Let $\{e_1, e_2, \ldots, e_t\} = B_1 - B_2$ and $\{f_1, f_2, \ldots, f_i\} = B_2 - B_1$. Construct a bipartite graph H with parts $B_1 - B_2$ and $B_2 - B_1$. Put an edge in H between e_i and f_j if $B_1 - e_i + f_j$ is a base. A perfect matching in H gives the bijection. Use Hall’s Theorem to show that H has a perfect matching. Consider $S \subseteq B_1 - B_2$. The B_2 is an independent set in $(B_1 \cup B_2) - S$. Thus we can augment the independent set $B_1 - S$ to an independent set $(B_1 - S) \cup T$ of size B_2 in $(B_1 \cup B_2) - S$. Note that $T \subseteq B_2 - B_1$ and has size $|S|$. Consider $f_j \in T$. $B_1 + f_j$ contains a circuit and this circuit must intersect S as otherwise it is a subset of the independent set $(B_1 - S) \cup T$. So for some $e_i \in B_1 - B_2$ we have $B_1 - e_i + f_j$ a base. This implies that T is contained in the neighborhood of S in H. So Hall’s condition holds in H and we can find a perfect matching.

39. 18.1.23(a) By monotonicity of the rank function $r(X) \leq r(X + e + f)$ we need to show $r(X) \geq r(X + e + f)$ from $r(X + e) = r(X + f)$ and submodularity. By submodularity $r((X + e) \cap (X + f)) + r((X + e) \cup (X + f)) \leq r(X + e) + r(X + f)$ which implies $r(X) + r(X + e + f) \leq r(X) + r(X)$ and cancelling gives $r(X + e + f) \leq r(X)$ as needed.

18.1.23(d) Assume that $x \in C_1 \cap C_2$. If $(C_1 \cup C_2) - x$ does not contain a circuit and is thus independent. By uniqueness $((C_1 \cup C_2) - x) + x = C_1 \cup C_2$ contains at most one circuit, a contradiction.
40. (18.2.2(a)): Note that \(\overline{S} \) is independent in both dual matroids \(M_1^* \) and \(M_2^* \). By the intersection formula there is some set \(Y \) attaining the minimum \(|\overline{S}| = r_1^*(Y) + r_2^*(\overline{Y}) \). Putting \(\overline{Y} \) into the intersection formula for the original matroids \(M_1 \) and \(M_2 \) we get \(|I| \leq r_1(\overline{Y}) + r_2(Y) \). With \(|S| = |E| - |\overline{S}| \) and \(|E| = |Y| + |\overline{Y}| \) we get

\[
|I| + |S| \leq r_1(\overline{Y}) + r_2(Y) + |E| - (r_1^*(Y) + r_2^*(\overline{Y}))
\]

\[
= (|Y| - r_1^*(Y) + r_1(\overline{Y})) + (|\overline{Y}| - r_2^*(\overline{Y}) + r_2(Y))
\]

\[
= r_1(E) + r_2(E)
\]

where the last equality follows from the dual rank formula.

Similarly let \(X \) attain the minim in the intersection formula to get \(|I| = r_1(X) + r_2(\overline{X}) \) and in the duals we have \(|\overline{S}| \leq r_1^*(\overline{X}) + r_2^*(X) \). With \(|S| = |E| - |\overline{S}| \) this gives a lower bound on \(|S| \). Then

\[
|I| + |S| \geq r_1(X) + r_2(\overline{X}) + |E| - (r_1^*(\overline{X}) + r_2^*(X))
\]

\[
= (|X| - r_2^*(X) + r_2(\overline{X})) + (|\overline{X}| - r_1^*(\overline{X}) + r_1(X))
\]

\[
= r_2(E) + r_1(E)
\]

where the last equality follows from the dual rank formula. Combining we get \(|I| + |S| = r_1(E) + r_2(E) \).

(b) Let \(G \) be a bipartite graph with bipartition \(U_1, U_2 \) and let \(M_{U_i} \) be the partition matroid with a set of edge independent if and only if the endpoints in \(U_i \) are distinct. Thus the ranks of the matroids are \(|U_i| \). A set of edges is independent in both \(M_{U_1} \) and \(M_{U_2} \) if and only if the edges have distinct ends in both \(U_1 \) and \(U_2 \). That is, if they form a matching. A set of edges is spanning in \(U_i \) if every vertex in \(U_i \) is the end of at least one of the edges (if not then edges incident to such a vertex are not in the span as adding them increases the rank). Thus a set of edges spanning both matroids is an edge cover of the vertices. For both of these the correspondence goes both ways so we have \(\alpha'(G) = |I| \) and \(\beta'(G) = |S| \). Then from part (a) we get \(\alpha'(G) + \beta'(G) = |I| + |S| = r_{U_1}(E) + r_{U_2}(E) = |U_1| + |U_2| = n(G) \). Note that the set of vertices not covered by a set of edges independent in both matroids must form an independent set as otherwise we could add an edge. Thus \(\alpha(G) \geq n(G) - \alpha'(G) = n(G) - (n(G) - \beta'(G)) = \beta'(G) \). Since independent vertices must be covered by distinct edges we also have \(\alpha(G) \leq \beta(G) \). Thus \(\alpha(G) = \beta'(G) \).

41. Do 18.2.3: Let \(k \) denote the number of paths in a minimum disjoint path partition, \(n \) the number of vertices in \(G \) and use \(\alpha \) for \(\alpha(G) \) and \(\beta \) for \(\beta(G) \). A set of edges is independent in both the head and tail partition matroids \(M_H \) and \(M_T \) if and only if all indegrees and outdegrees are at most one. That is, if and only if the edges form disjoint paths. In any forest with \(t \) components (possibly including some isolated
vertices, which will correspond to trivial paths in the path partition) the number of edges is \(n - t \). Thus \(k = n - |I| \) where \(I \) is a maximum size set independent in both matroids. Recall also Gallai’s identity \(\alpha + \beta = n \). Then using the matroid intersection formula \(k = n - |I| = \alpha + \beta - |I| = \alpha + \beta - \min_{X \subseteq E} \{r_H(X) + r_T(\overline{X})\} \). From this \(k \leq \alpha \) will follow if we show \(\beta \leq \min_{X \subseteq E} \{r_H(X) + r_T(\overline{X})\} \). An independent set in the head partition matroid corresponds to a set of edges that induce a graph where every indegree is at most 1. That is, an inforest. Similarly, an independent set in the tail partition matroid corresponds to an outforest. For a given set of edges \(X \) let \(S \) be a maximal independent set in \(X \). We have \(r_H(X) = |S| \). Let \(R_H \) be the set of vertices with indegree 1 in the graph induced by \(S \). Note that \(|R_H| = |S| = r_H(X) \). These vertices cover the edges of \(X \). Adding an edge not covered by \(R_H \) to \(S \) would increase the indegree of a vertex with indegree 0 and hence we would still have an independent set, contradicting maximality of \(S \). In a similar manner we get a set \(R_T \) of \(r_T(X) \) vertices covering the edges of \(\overline{X} \) by looking at the tail partition matroid. Then \(R_H \cup R_T \) is a vertex cover of the edges and \(\beta \leq |R_H \cup R_T| \leq |R_H| + |R_T| = r_H(X) + r_T(\overline{X}) \) and the result follows as this holds for all \(X \).

42. Given a rainbow spanning tree and a partition \(V_1, V_2, \ldots, V_k \) there are at least \(k - 1 \) edges joint the parts as the tree is spanning. Since the edges must have different colors we have at least \(k - 1 \) colors. It remains to show that if this color condition holds there is a rainbow spanning tree.

Let \(M_1 \) be the cycle matroid on the edges of \(G \) and let \(M_2 \) be the partition matroid on the edges with a set independent if and only if the edges have different colors. Then a set that is independent in both matroids is a rainbow forest. A common independent set of size \(|V| - 1 \) would be a rainbow spanning tree. Thus the result follows from matroid intersection if \(\min_{X \subseteq E} \{r_1(X) + r_2(\overline{X})\} \geq |V| - 1 \) as this would imply a common independent set of size \(|V| - 1 \). We will show that \(r_1(X) + r_2(\overline{X}) \geq |V| - 1 \) for all \(X \). The graph \(G' \) induced by a set \(X \) of edges yields a partition of the vertices \(V_1, V_2, \ldots, V_k \) with two vertices in the same part if and only if they are in the same component of \(G' \). Since each component has a spanning tree there is a forest with \(|V| - k \) edges among the edges of \(X \). That is, \(r_1(X) \geq |V| - k \) (in fact it is equal). The set \(\overline{X} \) contains the set of edges between the parts of the partition and thus by assumption contains edges of at least \(k - 1 \) colors. Thus \(r_2(\overline{X}) \geq k - 1 \). So \(r_1(X) + r_2(\overline{X}) \geq (|V| - k) + (k - 1) = |V| - 1 \) as needed.