Outline

Probabilistic Dynamic Programming
Dealing with **UNCERTAINTY**
- Current stage costs uncertain, but next period’s state is certain:
 - RESOURCE ALLOCATION EXAMPLE
- Next period’s state is uncertain:
 - INVENTORY EXAMPLE

Resource Allocation Example
- 6 gallons of milk available, $1 each
- Selling price is $2 per gallon
- Salvage cost is $0.50 per gallon
- 3 stores, uncertain demand
- Want to maximize expected net profit

<table>
<thead>
<tr>
<th>STORE 1</th>
<th>DAILY DEM</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE 2</th>
<th>DAILY DEM</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STORE 3</th>
<th>DAILY DEM</th>
<th>PROB</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>
Inventory Example

- At Period 1, firm has 1 unit.
- Production cost for x units is $c(x)=3+2x$, $c(0)=0$, $x<5$.
- Demand is random and equal to 1 w.p. 0.5, 2 w.p. 0.5.
- Holding cost $1/unit, inventory at end cannot exceed 3.
- Salvage cost $2/unit.

Example: Sunco Oil

- D dollars to allocate
- Sites 1, 2, ..., T
- $q_t(x) =$ probability that oil will be found on site t given x dollars allocated
- $r_t =$ worth of oil found at site t
- Goal: maximize E(value) of oil found on all sites.
Example: Catching Bass

- Currently
 - Lake contains 10,000 bass
- During year t
 - \(p_t = \) unit price of bass
 - \(c_t(x|b) = \) cost of catching x bass | lake contains b bass
- Between time year t bass are caught and year t+1 begins
 - Bass in lake multiply by factor D, \(P(D=d) = q(d) \)
- Goal: Maximize net profit over next 10 years.

Example: ATM

- Sally has 30 minutes for lunch break
- If she makes it to head of the line at the ATM, her reward is r
- Cost per minute waiting time, c
- \(p(x|n) = \) probability that x people will complete service in one minute if n people are ahead of Sally
- Currently, 20 people are ahead.
- Goal: maximize \(E(\text{net revenue}) \)
Example: Cash Management

- Demand for cash
 - \(P(D=d) = p(d) \)
- Demand met by
 - Previous day’s cash
 - Money from bank
- Shortage cost, \(s \)
- Holding cost, \(i \)
- Day 1: $10,000 on hand, $100,000 in bank
- Time horizon: 30 days. Goal: \(\min E(\text{cost}) \)

Example: Parking

- Approach from west
- Nearsighted
- Cannot return to a spot that’s been passed
- \(p_t = P(\text{space } t \text{ is empty}) \)
- \(M = \text{cost of no parking} \)
- \(|t| = \text{cost of parking in } t \)
- Decision: to park?
Example: Safecracker Dirk

- Begin with $50,000
- Time horizon, 1 – 60
- d_t = payment for job
- p_t = P(capture)
 - All is lost
- Goal: max E(asset)