Design of One-Way Slabs

- Check if it is one-way slab system
 - If clear span in one direction, L1, is greater than or equal to two times the clear span in other direction, L2, then it is.
 - \(L1 \geq 2 \times L2 \), okay
- Design principal flexural reinforcement for short span, perpendicular to that direction place temperature and shrinkage reinforcement.
- Choose slab height, \(h \), to limit deflections \(h \)-min (table 9.5a)
 - Simply supported, \(l/20 \) (\(l = \) clear span)
 - One end continuous, \(l/24 \)
 - Both ends continuous, \(l/28 \)
 - Cantilever, \(l/10 \)
- Determine dead load
- Find \(\text{Mn}_{\text{req}} = (\text{Mu}/\phi) \) using factored loads [use moment modification factors if dealing with an indeterminate multiple span system]
- Determine effective depth, \(d \), based on cover requirements and assumed bar size
- Design section \(\text{Mn}_{\text{req}} = A_s f_y (d-A_s f_y/1.7 f_c') \)
- Find \(A_s_{\text{req}} \)
- Check that the flexural reinforcement is less than \(0.75 \rho_{\text{balanced}} \)
- Check that the flexural reinforcement is greater than
 \[
 \max \left\{ \frac{200}{f_y} \text{ and } \frac{3\sqrt{f_c'}}{f_y} \right\}
 \]
 \(\text{and} \) greater than temperature and shrinkage reinforcement requirements
- Choose bars and spacing for flexural reinforcement
- Check spacing
 - Spacing of the flexural steel should be less than 3 x slab thickness and less than 18"
- Determine temp and shrinkage reinforcement in perpendicular direction to flexural reinforcement.
 - ACI 7.12.2.1
 \[
 \rho = \begin{cases}
 \text{Grade 40 or 50 deformed bars, 0.0020} \\
 \text{Grade 60 deformed bars or welded wire mesh, 0.0018} \\
 \text{Reinforcement greater than 60,000 psi, } \frac{0.0018 \times 60,000}{f_y} \end{cases} \quad \text{and } \geq 0.0014
 \]
- Choose bars and spacing for temperature and shrinkage reinforcement
- Spacing shall be less than the min(5h, 18")
- Draw cross-sections