Homework #6
Math 205

Due Thursday, Mar 24 (TuTh) or Friday, Mar 25 (MWF).

You must show your work in order to receive full credit; correct answers with no, or insufficient work, may not receive credit.

1. (6 points) Let \(B = \{(3, 5), (2, -1)\} \) be a (ordered) basis for \(\mathbb{R}^2 \), and let \(E = \{(1, 0), (0, 1)\} \) be the standard basis.
 (a) Find the change-of-basis matrix \(P_{E \leftarrow B} \).
 (b) Find the change-of-basis matrix \(P_{B \leftarrow E} \).
 (c) If \(\vec{v} = (3, -1) \), find \([\vec{v}]_B \).

2. (6 points) The nullspace of the matrix

\[
A = \begin{bmatrix}
5 & -6 & 8 & -8 \\
-3 & 8 & 4 & -4 \\
2 & 2 & 12 & -12
\end{bmatrix}
\]

has basis \(B = \{(-4, -2, 1, 0), (4, 2, 0, 1)\} \)
 (a) Is \(\vec{v} = (3, -1, 3, 2) \) in the nullspace of \(A \)? If so, find \([\vec{v}]_B \).
 (b) Is \(\vec{w} = (-12, -6, 4, -1) \) in the nullspace of \(A \)? If so, find \([\vec{w}]_B \).

3. Consider the matrix

\[
A = \begin{bmatrix}
1 & -3 & 1 & -1 & 0 & -1 \\
-1 & 3 & 0 & -1 & 1 & 3 \\
0 & 0 & 1 & -2 & 0 & 0 \\
2 & -6 & 0 & 2 & 1 & 0
\end{bmatrix}
\]

 (a) (6 points) Find a basis for the nullspace of \(A \).
 (b) (3 points) Find a basis for the rowspace of \(A \).
 (c) (3 points) Find a basis for the columnspace of \(A \). Explain how you know that the vectors you give are a basis. Did you compute something? If not, how did you know which vectors to pick?

4. (6 points) The following problems are to be solved using the Rank-Nullity Theorem.
 (a) If \(A \) is a 6-by-4 matrix with \(\text{Rank}(A) = 1 \), what is the dimension of the null space of \(A \)? Justify your answer.
 (b) If \(A \) is a 6-by-7 matrix, is it possible that \(\text{Rank}(A) = 4 \) and the dimension of the null space of \(A \) is 3? Justify your answer.