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Abstract

Purpose – The purpose of this paper is to present the method of lines (MOL) solution of the
stimulated Brillouin scattering (SBS) equations (a system of three first-order hyperbolic partial
differential equations (PDEs)), describing the three-wave interaction resulting from a coupling between
light and acoustic waves. The system has complex numbers and boundary values.
Design/methodology/approach – System of three first-order hyperbolic PDEs are first
transformed and then spatially discretized. Superbee flux limiter is proposed to offset numerical
damping and dispersion, brought on by the low order approximation of spatial derivatives in the
PDEs. In order to increase computational efficiency, the structured structure of the PDE Jacobian
matrix is identified and a sparse integration algorithm option of the ordinary differential equation
(ODE) solvers is used. The flux limiter based on higher order approximations eliminates numerical
oscillation. Examples are presented, and the performance of the Matlab ODE solvers is evaluated
by comparison.
Findings – This type of solution provides a rapid means of investigating SBS as a tool in fiber
optic sensing.
Originality/value – To the best of the authors’ knowledge, MOL solution is proposed for the first
time for the modeling of three-wave interaction in a SBS-based fiber optic sensor.

Keywords Simulation, Brillouin scattering, Finite difference, Flux limiter, Method of lines,
Sparse matrix integrator

Paper type Research paper

1. Introduction
Stimulated Brillouin scattering (SBS) in optical fibers permits us to measure
temperature and/or strain on a truly distributed basis, over kilometric ranges with high
resolution (Horiguchi et al., 1995; Bao et al., 1997, 2001). The SBS effect arises from the
interaction between two counter propagating light waves with frequency shift n and
an acoustic wave of frequency n, the latter being driven through an electrostrictive
process where the medium becomes more dense in regions of high optical density.
In this three-wave mixing process, power is transferred from the pump light wave to
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the Stokes light wave (that is, to the light wave having a lower frequency) and also
to the acoustic wave. The interaction strength depends on the frequency offset between
the two light waves and attains its maximum at the so-called Brillouin frequency nB.
As the Brillouin frequency shift changes linearly with temperature and strain,
a distributed temperature-strain sensor can be realized using SBS.

The equations governing the three-wave SBS transient model (Chow and Bers,
1993), in one spatial dimension, z [m], with the time dependence t [s] included, can be
expressed as:

qap

qt
þ c

n

qap

qz
þ gpap ¼ �Kasaae�jdðzÞt ð1aÞ

qas

qt
� c

n

qas

qz
þ gsas ¼ K�apa�ae�jdðzÞt ð1bÞ

qaa

qt
þ u

qaa

qz
þ gaaa ¼ K�apa�s e�jdðzÞt ð1cÞ

where ap, as, and aa [W] are the pump, Stokes, and acoustic fields respectively.
The terms, g* [MHz], represent each field’s respective damping constant, K is
the Brillouin coupling constant, c is the speed of light [m/sec], u is the speed of sound
in the fiber [m/sec] and n is the refractive index of the fiber. The resonance detuning
parameter, d(z) [MHz] is dependent on the temperature and strain along the fiber.
This dependence can form the basis of distributed fiber optic strain and temperature
sensors (Lecoeuche et al., 2000).

Simulation has proven to be a valuable tool in understanding SBS-based distributed
sensor systems (Marble et al., 2004; Kalosha et al., 2006; Minardo et al., 2011). Accurate
simulation models allow for the rapid design and optimization of both sensor
infrastructure and signal processing techniques. Visualization of the spatiotemporal
behavior of all three fields involved in SBS, at all points through the fiber, is especially
desirable in investigating phenomena whose origins may not be clear from the
“observable” data in an experiment.

If long pulses are assumed, the time dependence in Equation (1) can be neglected,
resulting in a simple and accurate solution to the problem. However, in the short pulse
regime, the temporal derivatives cannot be neglected and the solution becomes more
complex (Chow and Bers, 1993). For this solution, high speed and accuracy with the
low complexity is highly desirable. In general, for the solution of Equation (1),
conventional first order finite difference time domain (FDTD) solution schemes are
preferred since they offer simplicity with respect to the form of the solution, although they
suffer from several drawbacks, e.g. they require more spatial nodes to achieve the same
accuracy as higher order schemes, and this often results in longer computer run-times.

To solve Equation (1), a numerical method based on the Simpson’s rule to approximate
temporal integrals was introduced by Chu et al. (1992). However, they used an
implicit method and employed linearization by assuming that |Esn

mþ 1|E|Esn
m| and this

replacement weakens the coupling of the two laser fields and hence the results deviate
from the exact solutions. Marble et al. (2004) proposed a modified solution which is valid
only when the time step size is equal to spatial step size. However, this solution differs
considerably from the real solution at locations where abrupt change takes place.
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In this contribution we introduce, for the first time to the best of our knowledge,
the solution of Equation (1) via Matlab ordinary differential equation (ODE) solvers
(MATLAB, 2012). The problem is first discretized over a finite grid and manipulated to
provide solutions for the optical and acoustic fields. The resolution of the solution
can thus be varied to suit computational requirements and we have employed an
appropriate flux limiter to combat numerical damping/dispersion. We have used
software which identifies the sparsity pattern of the solution and this is supplied
as an input to the solver. Additionally, we have determined the appropriate Matlab
ODE solver for this particular application. By use of an appropriate sparse matrix ODE
solver along with an effective flux limiter, it is shown that the computation can be
successfully performed in a reasonable computation time without the damping factor
exceeding 3 percent, even with narrow pulse widths. Examples are presented, showing
the utility of this efficient simulation technique.

2. Problem formulation
2.1 The dynamics of SBS
In this paper we consider a system whereby continuous wave (CW) light, at frequency,
np, is injected into the fiber at position z¼ 0. Pulses of light, known as Stokes
pulses, are injected into the fiber at z¼L, at frequency, ns. Due to the SBS, there will be
coupling of a counter propagating CW pump wave and a Stokes pulse wave via an
induced acoustic wave. An enhanced interaction between the two beams occurs when
the frequency difference of the lasers matches the frequency of the longitudinal
acoustic phonons of the optical fiber. There is then a transfer of energy from the high
frequency beam (pump) to the low frequency beam (Stokes). The amount of loss of the
pump is recorded at z¼L, as a function of the frequency difference in the form of a
Brillouin spectrum and thus the power of the CW field intensity over time at z¼L
corresponds to the available time domain information in a real sensing experiment.
The maximum loss occurs when the frequency difference of two beams matches the
Brillouin frequency of the fiber. This maximum loss depends on the resonance
detuning parameter, given by:

d zð Þ ¼ 2p � vp � vs � dvRes zð Þ
� �

ð2Þ

where dnRes(z) is the Brillouin frequency along the fiber and depends on the local
strain and temperature. The resonance detuning parameter, d(z), is the value of the
pump-Stokes frequency shift for a resonant interaction at a given point. The resonance
detuning parameter, d(z) is dependent on the temperature and strain along the fiber. This
dependence can form the basis of distributed fiber optic strain and temperature sensors.

A distributed Brillouin sensor, based on a Brillouin optical time domain analysis
(BOTDA), is a device where Stokes and pump beams counter-propagate and where
frequency and time dependent variations of the Stokes (or pump) intensity is detected.
These sensors have been shown to provide the best performances in terms of sensing
length, spatial resolution, temperature, and strain accuracies (Bao et al., 1997; Zou et al.,
2004). The interaction is the maximum when the optical frequency difference between
pump (np) and Stokes (ns) corresponds to the Brillouin frequency (nB). At the Brillouin
frequency, the Stokes beam is amplified at the expense of the pump. nB is the
longitudinal acoustic phonon frequency and is a local material signature. An increase
(decrease) in temperature or strain induces a proportional increase (decrease) of nB.
The sensor detects the Brillouin frequency variation as a function of position.
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The distributed nature of the sensor is achieved by field modulation of the probe
beam. The topology of this sensor is shown in Figure 1 (Ravet et al., 2006).

2.2 Theoretical model
In Equation (1), the pump and Stokes waves travel at the velocity of light in the fiber,
c/n, while the acoustic wave travels with velocity, u. The counter propagating nature of
the Stokes and pump field is reflected in the choice of positive and negative signs
for the spatial derivatives in Equation’s (1a) and (1b). The resonance detuning
parameter, d(z), governs the frequency at which SBS occurs at position, z, along the
fiber. The resonance detuning parameter is given by d(z)¼ 2p[np�ns�dnRes(z)]. In a
modern optical fiber, losses are low, and thus the damping terms for the Stokes and
pump waves, gs and gp can be neglected. The spatial derivative of the acoustic field can
also be neglected since the interaction occurs on a much smaller timescale than the
propagation of the acoustic wave. By normalizing the time and spatial variables
according to gat-t, zga(n/c)-z, and making the substitutions D(z)¼ d(z)/ga, Ep¼ apK/ga,
Es¼ asK/ga, and Ea¼ ( aaK/ga ) e� jD(z)t, Equation (1) can be expressed as a system of
three first-order hyperbolic partial differential equations (PDEs) (Chow and Bers, 1993;
Lecoeuche et al., 2000; Marble et al., 2004):

qEp

qt
þ qEp

qz
¼ �EsEa ð3aÞ

qEs

qt
� qEs

qz
¼ EpE�a ð3bÞ

qEa

qt
þ ½1þ jDðzÞ�Ea ¼ EpE�s ð3cÞ

2.3 Boundary and initial conditions
The CW light from a laser source representing the pump field, Ep is injected into the
fiber at z¼ 0. Therefore, the boundary condition of the pump wave is:

Epðz ¼ 0; tÞ ¼ C ð4Þ

Test Fibre Es, VsEp, Vp

z=Lz=0

Notes: The energy is transferred from the CW pump to the low
frequency Stokes pulse. The amount of loss of the pump is recorded
at z = L as a function of the frequency difference in the form of the
Brillouin spectrum and thus the power of the CW field intensity over
time at  z = L corresponds to the available time domain information in
a real sensing experiment

Figure 1.
Diagram of a typical

Brillouin optical fiber time
domain analysis (BOTDA)
distributed sensor system
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where C is the constant amplitude of the CW laser. At the opposite end, the Stokes field,
Es, is introduced via a pulsed source. The input Stokes pulse can be described by the
two-kink profile function:

pðtÞ ¼ tanhðt1Þ � tanhðt2Þð Þ=2½ �1=2 ð4aÞ

where t1,2¼ (t7ts/2)/a and ts [s] is the pulse duration. This function has a flat peak
and a short rise time at the pulse edges as compared to the pulse duration and presents
the typical shape of nanosecond optical pulses. The rise time is defined as the time
interval between pulse power levels 0.1 and 0.9 of the peak power at leading and tailing
edges; it is related to the parameter a as trise¼ a/0.45 and is independent of the pulse
duration. We have assumed trise¼ 0.1 ns for all results presented below. Taking into
account the existence of the base power, we model the boundary input Stokes pulse as
(Kalosha et al., 2006):

Esðz ¼ L; tÞ ¼ ðEs � EbÞpðtÞ þ Eb ð4bÞ

where Es,b¼ ( Ps,b/Aeff)
1/2 for the field normalization Equations (3a)-(3c), Ps and Pb [W]

are the peak and CW base powers of the Stokes pulse, respectively, and Aeff [m2] is the
fiber effective area. The base level of the Stokes pulse is characterized by the extinction
ratio ER¼ 10log( Ps/Pb).

After propagating through the fiber, it is assumed that the pump and Stokes pulses
exit the fiber without reflection. The acoustic field is assumed to be zero everywhere at
t¼ 0, and the CW light and Stokes leakage intensities turn on everywhere at t¼ 0.
Therefore the initial conditions are (Marble et al., 2004):

Ep z; t ¼ 0ð Þ ¼ C ð5aÞ

Esðz; t ¼ 0Þ ¼ Eb ð5bÞ

Eaðz; t ¼ 0Þ ¼ 0 ð5cÞ

3. Numerical solution method
3.1 FDTD solution
To obtain a solution to Equations (3a)-(3c), we substitute the following (Chow and Bers,
1993):

Ep ¼ Ap � e jFp ð6aÞ

Es ¼ As � e jFs ð6bÞ

Ea ¼ Aa � e jFa ð6cÞ

into Equations (3a)-(3c), which yields the following equations:

qAp

qt
þ qAp

qz
¼ �AsAa cosðFÞ ð7aÞ
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qAs

qt
� qAs

qz
¼ ApAa cosðFÞ ð7bÞ

qAa

qt
þ Aa ¼ ApAs cosðFÞ ð7cÞ

qFp

qt
þ
qfp

qz
¼ �AsAa

Ap
sinðFÞ ð7dÞ

qFs

qt
� qfs

qz
¼ �ApAa

As
sinðFÞ ð7eÞ

qFa

qt
þ D ¼ �ApAs

Aa
sinðFÞ ð7fÞ

where f¼faþ fs fp.
The steady state is obtained by setting the time derivatives to zero. Thus,

combining Equations (7c) and (7f) yields:

Aa ¼ ApAs cosðFÞ ð8aÞ

D ¼ �ApAs

Aa
sinðFÞ ð8bÞ

and from Equations (8a)-(8b), we find tan f¼�D. Taking the positive part of the
amplitudes, from (7c) it can be concluded that:

cosðFÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p ð8cÞ

sinðFÞ ¼ �Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p ð8dÞ

The basic idea of the method of lines (MOL) is to replace the spatial derivatives with
algebraic approximations (Schiesser and Griffiths, 2009). Since, spatial variables are
discretized and time is used as the continuous variable, this approach is called a
semidiscretization. This effectively removes the spatial derivatives from the PDE and,
since only the initial value independent variable remains, e.g. t, the PDE has been
converted to a system of approximating ODEs that can integrated by standard,
well-established numerical algorithms for initial value ODEs.

Equations (3a)-(3c) are formulated by making some transformations which are treal

� ga ¼ ttransformed and zreal � ga /(v)¼ ztransformed, where n is the speed of the light in the
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fiber (v¼ c/n ). Thus, the problem is discretized over the transformed spatial and
temporal domains:

ðztransformed; ttransformedÞ 2 O :¼ 0p zrealga

v
pz

0ptreal � gapz=v

� �
ð9Þ

The solution is obtained on uniform grids in transformed z and transformed t:

wi; j :¼ ztransformedðiÞ ¼ iDz; ttransformedð jÞ ¼ jDt; 0pipN ; 0pjpM
� �

For the MOL solution of Equation (7a), A p(z, t) can be approximated by using upwind
finite difference (FD) approximations for the first derivatives in z so that
ApE(Ap_(i)�Ap_(i�1))/Dz, where i is an index designating a position along a grid in z
and Dz is the spacing in z along the grid (i�1 designates the upwind direction). For
the MOL solution of Equation (7b), As(z, t) can also be approximated by upwind FD
approximations, i.e. AsE(As_(iþ 1)�As_(i))/Dz (iþ 1 designates the upwind direction).

For the discretization of Equations (7a)�(7h), variables are defined as y1¼A p,
y2¼As, y3¼Aa, y4¼f p, y5¼fs, y6¼fa. The boundary conditions are y1 (z¼ 0,
t)¼C, y2 (z¼L, t)¼Es(z¼L, t ), y4 (z¼ 0, t)¼ 0, y5 (z¼L, t)¼ 0. The initial conditions
are, y1 (z, t¼ 0)¼C, y2 (z, t¼ 0)¼Eb, y3 (z, t¼ 0)¼ 0, y4 (z, t¼ 0)¼ 0, y5 (z, t¼ 0)¼ 0,
y6 (z, t¼ 0)¼ 0. By discretizing Equations (7a)-(7f) in the space variable z, the resulting
system of ODEs is as follows:

dy1i

dt
¼� ðy1i � y1i�1Þ=ðxi � xi�1Þ � y2i � y3i � cosðFÞ 2pipN

y11 ¼C

ð10aÞ

dy2i

dt
¼� ðy2i � y2iþ1Þ=ðxiþ1 � xiÞ þ y1i � y3i � cosðFÞ 1pipN � 1

y2N ¼Esðz ¼ L; tÞ
ð10bÞ

dy3i

dt
¼ �y3i þ y1i � y2i � cosðFÞ 1pipN ð10cÞ

dy4i

dt
¼� ðy4i � y4i�1Þ=ðxi � xi�1Þ � y2

i
� y3i=y1i � sinðFÞ 2pipN

y41 ¼0

ð10dÞ

dy5i

dt
¼� ðy5i � y5iþ1Þ=ðxiþ1 � xiÞ � y1i � y3i=y2i � sinðFÞ 1pipN � 1

y5N ¼0

ð10eÞ

dy6i

dt
¼ �D� y1i � y2i=y3i � sinðFÞ 1pipN ð10fÞ

In the appendix, the handling of Equations (10a)-(10f) is discussed. The solver solves
the PDEs via the Matlab statement:

[t,u]¼ ode23t(@pde_1,tout,u0,options);
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Using the initial conditions u0, transformed time interval tout, and options which
includes tolerances and Jacobian sparsity.

3.2 Application of a sparse matrix integrator
For a large system of ODEs, it is typical that only a few components of y appear in each
equation. If component j of y does not appear in component i of f (t,y), then the partial
derivative qfi/qyj is zero. If most of the entries of a matrix are zero, the matrix is said to
be sparse. By storing only the nonzero entries of a sparse Jacobian, storage is reduced
from the square of the number of equations d to a modest multiple of d. If the Jacobian
is sparse then so is the iteration matrix. As with storage, the cost of solving linear
systems by elimination can be reduced dramatically by paying attention to zero entries
in the matrix. By taking into account the known value of zero for most of the entries in
the Jacobian, it is typically possible to approximate all the nonzero entries of several
columns at a time. An important special case of a sparse Jacobian is one that has all its
nonzero entries located in a band of diagonals (Shampine et al., 2003; Shampine and
Reichelt, 1997).

If PDE systems produced only banded Jacobians, then a banded integrator would be
even more efficient than the sparse integrator since the banded integrator would
know in advance where the nonzero elements occur (all are in the band) and it would
therefore not have to search for the nonzero elements, and follow the resulting logic to
use these nonzero elements, all of which add complexity to a sparse integrator.
However, these nonzero elements are located/displayed with the Matlab command
spy( ). For the PDE systems of Equations (10a)-(10f), some of the nonzero elements
are located along the main diagonal as well as the others located outside the band.
Therefore, for this case, a sparse integrator is particularly effective since it also
operates on out-of-band elements, the so-called outliers, in performing the numerical
integration. Thus, this combination of elements in a band along the main diagonal, plus
outliers, leads to the efficiency of sparse matrix integration.

Since this particular application has a main diagonal, plus outliers, we have used the
routine jpattern_num ( ) to produce a Jacobian map for the sparse matrix option of the
ODE solver. In this routine, the elements of the Jacobian matrix are computed by FDs.
This requires a base point, or base points, around which the numerical derivatives are
computed. A base point can be any value within the range of the variation of the
associated dependent variable. A precise value is not required (but if ODE solver fails,
some experimentation with this value may be required). In our application we set the
base points ybase(i), equal to the initial condition for each dependent variable which
is sufficiently accurate to provide a good solution.

In order to calculate the partial derivatives in the Jacobian matrix by FD
approximations, the derivatives at the base point, dyi/dt, are also required. Note that
the routine pde_1() (see Appendix), that calculates the derivatives dyi/dt in
Equations (10a)-(10f) is called by the Matlab command:

ytbase¼ pde_1(tbase,ybase);
The elements of the Jacobian matrix are evaluated numerically by the Matlab
command:

[Jac,fac]¼ numjac(@pde_1,tbase,ybase,ytbase,thresh,fac,vectorized);
where the following argument values are used: tbase¼ 0, thresh¼ 1x10#-16 and
fac¼ []. The input variable thresh represents the threshold of significance for Y(i),
such that Y(i) o thresh is not important; the input variable fac represents
a working storage column vector and should not be changed between calls; and
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vectorized¼ “off” or “on” tells numjac() whether single or multiple values of Y,
respectively, can be obtained with a single function evaluation.

Once the Jacobian matrix has been defined by this call to numjac(), a map of the
Jacobian is plotted by the code that follows the call to numjac(). With a call to the
routine spones(), each nonzero element is replaced by a “1” so as to create a “0-1” map
of the Jacobian matrix (Schiesser and Griffiths, 2009).

S¼ spones(sparse(Jac));
In Figure 2, the sparsity pattern of Equations (10a)-(10f) is plotted by a subsequent call
to the routine spy(S). Code for jpattern_num() is available as a library routine
which can be downloaded from www.pdecomp.net/TheCompendium/downloads.php
under the compendiumSRC of Chapter 6 directory (accessed November 27, 2012).

Note that only 0.210 percent of the 6x300 � 6x300 elements of the Jacobian
map of Figure 2 are nonzero. This is not uncommon; that is, most of the elements are
zero. This condition is the reason for the use of sparse matrix integrators since they
will in general process only the nonzero elements and will not expend computer
time processing the many zero elements. The processing time with and without
jpattern_num() is illustrated in Table I for the implicit (stiff) ODE solvers (ode15s,
ode23s, ode23t, and ode23tb). The computation is performed on a i5 Core, 4GB RAM,
Laptop computer running the Windows 7 operating system.

Run time (sec) AbsTol and RelTol¼ 1 � 10�5, Pulse width¼ 5 ns. Without Flux-limiter
Jpattern_num

n¼ 300 Without With

ode15s 102 29
ode23t 121 35
ode23tb 146 42
ode23s Computation failed 61

Table I.
Run-time comparison
of implicit ODE solvers
with/without use of
jpattern_num( )
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Figure 2.
Sparsity Pattern of
the Equations (10a)-(10f)
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From Table I, it can be seen that the saving in computer time can be very substantial.
It is clear that the additional logic of the sparse matrix integrator (to detect the nonzero
elements of the Jacobian matrix and then perform the numerical integration using only
these nonzero elements) is well worth the additional complexity of the coding for the
sparse matrix. Moreover, for ode23s, using Jpattern_num() is the difference between
success and failure.

3.3 Use of a flux limiter
Numerical dissipation is generally observed when solving strongly convective or
strongly hyperbolic PDEs. The main cause of the dissipation is low order approximation
of the discretization. It should be noted that numerical dissipation produced by first
order approximations is to be expected due to truncation of the Taylor series that
is the basis for the approximations. In recent years, various high-resolution schemes
have been developed to obviate this effect with a high degree of accuracy, albeit
at the expense of algorithmic and computational complexity. Examples of particularly
effective schemes are based upon flux/slope limiters (Wesseling, 2001) and WENO
methods (Shu, 1998).

Flux limiters are used in numerical schemes to solve problems in science and
engineering that are described by PDEs. Their main purpose is to avoid the spurious
oscillations (wiggles) that would otherwise occur with high-order spatial discretization
due to shocks, discontinuities, or steep gradients in the solution domain. They can be
used directly on FD schemes for simple applications. Use of flux limiters, together
with an appropriate high-resolution scheme, makes the solutions total variation
diminishing. Flux limiters are also referred to as slope limiters because they both have
the same mathematical form and both have the effect of limiting the solution gradient
near shocks or discontinuities. In general, the term flux limiter is used when the limiter
acts on system fluxes, and slope limiter is used when the limiter acts on system states.
The main idea behind the construction of flux limiter schemes is to limit the spatial
derivatives to realistic values; this usually means physically realizable values.
They are used in high-resolution schemes for solving problems described by PDE’s
and only come into operation when sharp wave fronts are present (Griffiths and
Schiesser, 2011).

Consider the semidiscrete scheme below:

dui

dt
þ 1

Dxi

½Fðuiþ1
2
Þ � Fðui�1

2
Þ� ¼ 0 ð11aÞ

where for a finite difference scheme, F(uiþ 1/2) and F(ui-1/2) represent flux values
on the grid at point x¼ xiþ 1/2 and point x¼ xi-1/2. If these fluxes can be

represented by low- and high-resolution schemes, then a flux limiter can switch
between these schemes depending upon the gradients close to the particular cell
as follows:

Fðuiþ1
2
Þ ¼ f low

iþ1
2

� fðriÞð f low

iþ1
2

� f high

iþ1
2

Þ ð11bÞ

Fðui�1
2
Þ ¼ f low

i�1
2

� fðri�1Þð f low

i�1
2

� f high

i�1
2

Þ ð11cÞ
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where f low low-resolution flux, f high high-resolution flux, f(r)¼ flux limiter function,
and r represents the ratio of successive gradients on the solution mesh, i.e.:

ri ¼ ðui � ui�1Þ=ðuiþ1 � uiÞ ð11dÞ
The limiter function is constrained to be greater than or equal to zero, i.e. rX0.
Therefore, when the limiter is equal to zero (sharp gradient, opposite slopes, or zero
gradient), the flux is represented by a low-resolution scheme. Similarly, when the
limiter is equal to 1 (smooth solution), it is represented by a high-resolution scheme.

The various limiters listed below have differing switching characteristics and are
selected to suit the particular problem and numerical solution scheme. No particular
limiter has been found to work well for all problems, and a particular choice is usually
made on a trial-and-error basis (Griffiths and Schiesser, 2011).
van Leer:

fvl ¼
r þ rj j
1þ r

; lim
r!1

fvlðrÞ ¼ 2 ð12aÞ

smart:

fsmðrÞ ¼ max½0;minð2r; ð0:25þ 0:75rÞ; 4�; lim
r!1

fsmðrÞ ¼ 4 ð12bÞ

superbee:

fsbðrÞ ¼ max½0;minð2r; 1Þ;minðr; 2Þ�; lim
r!1

fsbðrÞ ¼ 2 ð12cÞ

The parameters of the flux limiter, which available as a library routine which can be
downloaded from www.pdecomp.net/TravelingWaves/downloadsTW.php (accessed
November 27, 2012) are as follows:

y1x¼ -flux_function(xl,xu,n,y1,1);
y2x¼ flux_function(xl,xu,n,y2,-1);

The fifth parameter is direction of the flow for the linear advection equation utþ cux¼ 0.
This argument is required, since the limiter requires the direction of flow or wave
propagation. It takes the values þ 1 or�1 depending on the direction of the upwinding of
the FD. The fifth parameter value of�1 for y2x indicates that the pulse moves right to left
in z at velocity c¼�1 (i.e. counter propagating in z). The spatial domain in z is defined as
xl p z p xu with n points. The interval xu-xl is determined by the fiber length.

In order to establish the best flux limiter function to suit our particular application
we performed numerical experiments to compute the degree of smearing. In Figure 3,
the effect of van Leer, Smart and Suberbee limiters in terms of smearing can be seen.

In Figure 3(a), it is clearly seen that the Stokes magnitude is damped due to the
numerical dissipation. In Figure 3(b-e), the effect of different flux limiters on the Stokes
pulse is demonstrated. Damping which can be considered as the amplitude ratio
at z¼ 0 and at z¼L is calculated as, Figure 3(b) 62.2 percent for van Leer, Figure 3(c)
55.44 percent for smart Figure 3(d) 47.74 percent for superbee flux limiter, respectively
(n¼ 100). In Figure 3(e), the damping effect is decreased to only 2.8 percent with
superbee flux limiter for 300 discretization points. In Figure 3(b-e), it is clearly seen
that, Superbee is more capable of recovering numerical damping compared with van
Leer and Smart flux limiter for this particular application. Since its superior effect,
in this application, Superbee flux limiter is preferred. Additional performance data is
given in section 4.
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4. Example
4.1 Numerical results
The simulation models an optical fiber, 30 m in length, and the parameter values of the
simulation are inferred from the paper (Marble et al., 2004). The Brillouin frequency,
dnRes(z), is 12.780 GHz along the fiber, except for a 10 m section in the center where
dnRes(z)¼ 12.500 GHz, representing a strained section. The moment in time, when
the Stokes pulse enters the fiber is assumed to be equal to t0¼ 1 ns with respect to the
pulse leading edge. The other relevant parameters are: CW power¼ 3 mW; Stokes
power¼ 30 mW; Stokes pulse rise time¼ 100 ps; pulse width¼ 5 ns; extinction ratio
(ER) 12 dB. The simulation models a pulse on-resonance, with the strained section
(np�ns¼ 12.500 GHz). The acoustic damping constant ga, was chosen to be 110 MHz
which reflects the 35 MHz Brillouin linewidth of standard SMF28 fiber. Aeff¼ 50 m2,
gB¼ 5 � 1011 m/W.

The expected result of this simulation is that the Stokes pulse will propagate down
the section of fiber with no loss or dispersion. Since the fiber’s natural dnRes(z) is
much different from n p�ns, there should be little interaction in the “unstrained” portions
of the fiber. Upon entering the “strained” section, the pulse will interact with the CW field,
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causing a rise in the acoustic field intensity. The CW field will be depleted, and the
pulse will be enhanced. The range of the depletion depends on the extinction ratio and
the interaction is stronger for a low extinction ratio. After the Stokes pulse passes
through the strained section, the acoustic field will decay off and the CW field will
return to its steady state value. The effect of the interaction will take the form of
a depleted region of CW light propagating to the end of the fiber (Marble et al., 2004).

Figure 4 shows the Stokes, CW, and acoustic fields, simulated with and without the
superbee flux limiter. As can be seen in Figure 4(a), dissipation and damping is clearly
observed. Over time, the Stokes pulse broadens, as well as decreases in intensity.
However, the expectation from this simulation is that Stokes pulse will propagate
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down the section of fiber with no loss or dispersion. It must be noted that, in the
“unstrained” portions of the fiber Da0, i.e., np�nsadnRes(z), in the “strained” section
of the fiber D¼ 0, i.e. np�ns¼ dnRes(z). Plots Figure 3(d-f ) show the fields simulated
with the superbee flux limiter. Especially in plot (d), with flux limiter, it can be clearly
seen that damping is suppressed and the ration of the amplitudes at z¼ 0 and at z¼L
becomes 0.972 which means that Stokes wave lost only 2.8 percent of its magnitude.
Another expectation of the simulation is that, when the pulse enters the strained
section there should be a rise in the acoustic field intensity. However, the superbee flux
limiter prevents this rise during stabilization.

4.2 Comparison of Matlab ODE solver performances
A time domain measurement of the CW light exiting the fiber gives spatially
resolved information about the local value of dnRes(z). Thus, computing the CW traces
is particularly important for BOTDA sensors. To better understand the performance of
ODE solvers we made some numerical experiments regarding with AbsTol, RelTol,
and number of discretization values.

To better illustrate the performance of the ode15s solver, two traces of the CW field
intensity over time at z¼L 30 m from the simulation described above are shown in
Figure 5. The dip in each trace corresponds with the 10 m strained section in the center
of the fiber. Up to n¼ 300 points, implicit solvers show the same performance in terms
of oscillation. However, more than n¼ 300 points ode15 solver oscillate for AbsTol and
Rel Tol¼ 10�5. However, after improving the tolerances to 10�6, oscillation disappears.

As can be seen in Figure 6, even with the high tolerance values, ode15s cannot
suppress the oscillation of fp ( y4). However, ode23tb and ode23t solvers are successful
in handling oscillation. The numerical experiment in Figure 6 is performed with RelTol
and AbsTol¼ 10�6 using 300 discretization points. Even for more stringent tolerances
and discretization points, ode15s can extinguish but cannot fully eliminate the
oscillation in computing fp.

As the pulse width decreases, damping is more pronounced and the suppression
can only be coped with improving the discretization points. In Table II, pulse with and
corresponding discretization points to guarantee the amplitude ratio at z¼ 0 and at
z¼L as 97 percent is shown. The computation is performed using results from the
jpattern_num() routine.

It must be emphasized that, only the solvers ode15s, ode23t, ode23b, ode23s
could solve the equations. The computation times of the mentioned solvers are shown
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in Table II. The computation time of ode23s is considerably higher and thus it
is not effective. As per Table II and Figure 6, it can be concluded that, if it is intended to
use ode15s, AbsTol, and RelTol values should be in the range of 10�7 (otherwise it
cannot eliminate oscillations) which in turn increases the computation time. Flux
limiter application which is necessary for the elimination of numerical damping
increases the computation time considerably for the pulse width below 4 ns. It must be
emphasized that without using the Jpattern routine the computation becomes
considerably time consuming. For this particular application, ode23t can be regarded
as suitable solver since it does not oscillate and work well in moderate AbsTol and
RelTol values (1 � 10�5). Also, its run time is better than the ode23tb and ode23s
solvers. In Table III, the computation times of the solvers versus AbsTol and RelTol
values are shown.
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Comparison of (a) ode15s
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Run Time (sec) (using jpattern_num( ) with AbsTol and RelTol¼ 1 � 10�5) with flux limiter
Pulse width

5 ns (300 points) 4 ns (400 points) 3 ns (650 points) 2 ns (1,050 points)

ode15s 124 260 661 1749
ode23t 149 306 731 1827
ode23tb 186 400 953 2382
ode23s 379 690 1700 4352

Table II.
Run-time and
discretization number
comparison of implicit
ODE solvers to guarantee
the maximum damping of
3 percent

Run Time (sec) (using jpattern_num( ), with 5 ns pulse width, n¼ 300) with flux limiter

n¼ 100
AbsTol and

RelTol¼ 1 � 10�5
AbsTol and

RelTol¼ 1 � 10�6
AbsTol and RelTol
¼ 1 � 10�7

ode15s 20 30 49
ode23t 23 41 81
ode23tb 28 83 105
ode23s 63 115 257

Table III.
Run-time comparison of
implicit ODE solvers
vs different AbsTol
and RelTol values
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5. Conclusions
The MOL solution to the three-wave interaction problem of SBS, representing
the typical BOTDA distributed sensor system, is demonstrated for the first time to
the best of our knowledge. Thanks to the MOL scheme, the solution is adapted
to the proper mesh size allowing rapid calculation of the fields involved in
three-wave interaction. Numerical damping is suppressed by the introduction of an
appropriate flux limiter. Numerical efficiency is achieved by the use of the sparsity
of the Jacobian matrix. It is demonstrated that, ode23t is more suitable for the
solution of three-wave SBS equations since it has better performance in terms of
running time and nonoscillatory computation. The simulation method presented
here can be used to foster a rapid understanding of the internal dynamics of the
three-wave SBS equations, lending insight for both experimental design and
interpretation of results.
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